JPS6035395B2 - fuel oil composition - Google Patents

fuel oil composition

Info

Publication number
JPS6035395B2
JPS6035395B2 JP57014842A JP1484282A JPS6035395B2 JP S6035395 B2 JPS6035395 B2 JP S6035395B2 JP 57014842 A JP57014842 A JP 57014842A JP 1484282 A JP1484282 A JP 1484282A JP S6035395 B2 JPS6035395 B2 JP S6035395B2
Authority
JP
Japan
Prior art keywords
ethylene
copolymer
weight
molecular weight
propylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57014842A
Other languages
Japanese (ja)
Other versions
JPS58134187A (en
Inventor
立雄 木下
秀邦 小田
昭義 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP57014842A priority Critical patent/JPS6035395B2/en
Publication of JPS58134187A publication Critical patent/JPS58134187A/en
Publication of JPS6035395B2 publication Critical patent/JPS6035395B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Liquid Carbonaceous Fuels (AREA)

Description

【発明の詳細な説明】 本発明は、流動性の改善された中蟹分燃料油組成物に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a medium-grade fuel oil composition with improved flowability.

中蟹分燃料油例えば軽油、A重油等は低温下で使用ある
いは保存する場合、油中に含まれるワックスの結晶が成
長して、配管を閉塞したり、あるいは油全体の粘度が極
端に上昇して流動しなくなるなどのトラブルがいよいよ
発生する。
When medium grade fuel oils, such as light oil and A heavy oil, are used or stored at low temperatures, wax crystals contained in the oil may grow and clog pipes, or the viscosity of the entire oil may increase dramatically. Eventually, troubles such as the fluid not flowing will occur.

このようなトラブルを回避するために一般に流動性向上
剤(FlowImproverF・1)と呼ばれる添加
剤が使用される。この種の添加剤は、油中のワックスと
共晶あるいは吸着などしてその結晶構造や形態を変える
ことにより、低温下での油の流動性を改良すると考えら
れている。
In order to avoid such troubles, an additive called a flow improver (FlowImprover F.1) is generally used. This type of additive is thought to improve the fluidity of oil at low temperatures by changing its crystal structure and morphology through eutectic or adsorption with the wax in the oil.

現在この種の添加剤は数多くの文献あるいは特許に紹介
されているように今後予想される燃料油の重質化に対処
でき得るものとして注目され、国内に於いても一部使用
され始めているようである。
Currently, this type of additive is attracting attention as being able to cope with the expected future heavier fuel oil, as introduced in numerous documents and patents, and it seems that it has begun to be used in some parts of the country as well. It is.

しかし乍ら、これまでに紹介されているような添加剤も
、性能面に於いては、まだ改良が望まれているのが現状
である。
However, the current situation is that the additives introduced so far still require improvement in terms of performance.

すなわち、過去性能評価に用いられていた流動点試験に
よって見かけ上、添加剤使用による効果が著しいとされ
るものであっても、該試験が必ずしも実用上の性能とは
対応していないためか、前述の如きトラブルが発生する
ことが少なからずあった。このようなものについて近年
急速に注目されて来たより実用に則した試験法と云われ
る低温炉通器目詰り点(ColdFilterP1u雛
ingPointCFPP)試験に供して評価すると、
ほとんど添加剤配合効果が認められないのであり、この
ことは前述のワックス結晶の調節が不充分であることを
示している。例えば従来、種々の燃料油と種々のエチレ
ン共重合体の配合に係る流動性の改善された燃料油組成
物が数多〈提案されてきた(例えば英国特許第8487
77号、同993744号、同1264638号、同1
486077号、米国特許第3166387号、同第3
443917号、同3499741号、同350763
6号、同3524732号、特公昭46−32583号
、カナダ特許第991792号など)。
In other words, even if the pour point test used in past performance evaluations shows that the effects of additive use are apparently significant, this may be because the tests do not necessarily correspond to practical performance. Problems such as those mentioned above often occurred. When these items are evaluated by subjecting them to the Cold Filter P1u chick Point CFPP test, which is said to be a more practical test method that has rapidly attracted attention in recent years,
Almost no effect of additives was observed, which indicates that the above-mentioned control of wax crystals was insufficient. For example, a number of fuel oil compositions with improved fluidity have been proposed (for example, British Patent No. 8487) by blending various fuel oils with various ethylene copolymers.
No. 77, No. 993744, No. 1264638, No. 1
486077, U.S. Patent No. 3166387, U.S. Patent No. 3
No. 443917, No. 3499741, No. 350763
No. 6, No. 3524732, Japanese Patent Publication No. 46-32583, Canadian Patent No. 991792, etc.).

これら提案によれば、種々の燃料油と種々のエチレン英
重合体の組合せによって流動性の改善が認められるとさ
れている。確かに前述の流動点試験によれば多くの組合
せにおいて、可成の改善が達成されていると言えるので
あるが、前述のCFPP試験によれば容認しうる程の改
善が認められないものがほとんどであった。本発明者ら
は沸点範囲が高い割には、真に流動性の改善された燃料
組成物を得るために、燃料油の性状と添加剤としてのエ
チレン共重合体の性状との関係を詳細に検討した結果、
それぞれ非常に限定されだ性状のものを粗合せることに
よって初めてその目的が蓬せられることを知った。
According to these proposals, it is said that the fluidity can be improved by combining various fuel oils and various ethylene polymers. It is true that according to the above-mentioned pour point test, it can be said that a considerable improvement has been achieved in many combinations, but according to the above-mentioned CFPP test, most of the combinations do not show an acceptable improvement. Met. The present inventors investigated the relationship between the properties of fuel oil and the properties of ethylene copolymer as an additive in detail in order to obtain a fuel composition with truly improved fluidity despite its high boiling point range. As a result of consideration,
I learned that a purpose can only be achieved by roughly combining things that each have extremely limited properties.

本発明によれば、沸点範囲が170qoないし400午
○にあって360℃以上の終点を有する中留分燃料油1
0の重量部に対し、エチレン含有量が75なし、し85
モル%、数平均分子量が2000なし、し20000、
Q値(Mw/Mn)が3以下のエチレン・Qーオレフイ
ン共重合体を0.005なし、し5.の重量部の割合で
配合してなる燃料油組成物が提供される。
According to the invention, middle distillate fuel oil 1 having a boiling point range of 170 qo to 400 qo and an end point of 360° C. or higher
Ethylene content is 75% and 85% by weight of 0% by weight.
Mol%, number average molecular weight is 2000, 20000,
5. Ethylene/Q-olefin copolymer with a Q value (Mw/Mn) of 3 or less without 0.005. A fuel oil composition is provided in which the fuel oil composition is blended in a proportion of parts by weight of

本発明において用いられる燃料油は上述の如き沸点性状
を有するものである。
The fuel oil used in the present invention has boiling point properties as described above.

たとえ沸点範囲が17000ないし40000の範囲に
あっても、終点が360℃より低いものでは、CFPP
試験においてエチレン共重合体添加に基づく改善がほと
んど認められないし、また沸点範囲及び終点が前記範囲
より高いものでも同様に改善効果がほとんど認められな
い。上言己本発明に適用される燃料油は、一般には流動
点(P・P)が−12・5なし、し十12.500程度
、CFPPが−10ないし十1000程度のものである
。一方、本発明の流動性改良剤として用いられるエチレ
ン・Q−オレフィン共重合体は、エチレン含有量が75
なし、し85モル%、好ましくは77ないし83モル%
の範囲でなければならず、またその数平均分子量が20
00ないし20000、好ましくは3000なし、し1
5000の範囲になければならない。
Even if the boiling point range is between 17,000 and 40,000, if the end point is lower than 360°C, CFPP
In the tests, almost no improvement was observed due to the addition of the ethylene copolymer, and even when the boiling point range and end point were higher than the above ranges, almost no improvement effect was observed. In general, the fuel oil applied to the present invention has a pour point (P·P) of about -12.5 to about -112.500, and a CFPP of about -10 to about 11,000. On the other hand, the ethylene/Q-olefin copolymer used as the fluidity improver of the present invention has an ethylene content of 75
None, 85 mol%, preferably 77 to 83 mol%
The number average molecular weight must be within the range of 20
00 to 20000, preferably 3000 to 1
Must be in the range 5000.

上記以外のエチレン含有量及び/又は分子量のエチレン
共重合体を用いても添加効果は4・さく所望の効果は得
られない。該共重合体を構成するQーオレフィンとして
はプロピレン、1ーブテン、1−ペンテン、1−へキセ
ン、1ーオクテン、これらの2種以上などを例示するこ
とができ、とくに好ましいのはプロピレンである。より
具体的には該共重合体としては、エチレン・プロピレン
共重合体、ェチレン・1ーブテン共重合体、エチレン・
1−へキセン共重合体、エチレンープロピレンー1−フ
テン共重合体などを例示することができ、とくに好まし
いのはエチレン・プロピレン共重合体である。これら共
重合体としてはQ値(Mw/Mn)が3以下、とくに2
.8以下であり、z値(GPCにより測定した最大分子
量/最小分子量)が15なし、し200、とくに20な
し、し190のものが好ましい。なおGPCの測定はJ
oumal ofPolymer SciencePa
れA−2、8巻、89〜103頁(1970)に準じて
行い、また最大分子量及び最小分子量は、分子量分布曲
線においてもっとも分子量の4・さし、ものからみて全
量の99.5重量%目に相当する共重合体の分子量が最
大分子量であり、0.5重量%目に相当する共重合体の
分子量を最小分子量と定義する。エチレン共重合体の添
加量は、燃料油10の重量部に対し、0.005なし、
し、5.の重量部、好ましくは0.01なし、し1.の
重量部である。本発明の燃料組成物には必要に応じ、腐
食防止剤、酸化防止剤、安定剤、分散剤、その他の添加
剤を含有せしめることができる。
Even if an ethylene copolymer having an ethylene content and/or a molecular weight other than the above is used, the addition effect will be 4.0 and the desired effect will not be obtained. Examples of the Q-olefin constituting the copolymer include propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, and two or more thereof, with propylene being particularly preferred. More specifically, the copolymers include ethylene-propylene copolymer, ethylene-1-butene copolymer, ethylene-propylene copolymer, and ethylene-propylene copolymer.
Examples include 1-hexene copolymer and ethylene-propylene-1-phthene copolymer, and ethylene-propylene copolymer is particularly preferred. These copolymers have a Q value (Mw/Mn) of 3 or less, especially 2
.. 8 or less, and a z value (maximum molecular weight/minimum molecular weight measured by GPC) of 15 or 200, particularly preferably 20 or 190. Please note that GPC measurements are carried out by J.
oumal of Polymer SciencePa
A-2, Vol. 8, pp. 89-103 (1970), and the maximum and minimum molecular weights are the 4th point of the molecular weight at the lowest point in the molecular weight distribution curve, which is 99.5% by weight of the total amount. The molecular weight of the copolymer corresponding to eyes is defined as the maximum molecular weight, and the molecular weight of the copolymer corresponding to 0.5% by weight is defined as the minimum molecular weight. The amount of ethylene copolymer added is 0.005% per 10 parts by weight of fuel oil,
5. parts by weight, preferably no 0.01, and 1. parts by weight. The fuel composition of the present invention may contain corrosion inhibitors, antioxidants, stabilizers, dispersants, and other additives as necessary.

次に実施例により説明する。Next, an example will be explained.

実施例 1 灘梓翼を備えた4そガラス製反応器を用い、反応器上部
からへキサン毎時2夕、三塩化バブジルのへキサン溶液
(4ミリモル/〆)毎時1〆、エチルアルミニウムセス
キキロリドのへキサン溶液(32ミリモル/そ)毎時1
〆を反応器中へ連続的に供給し、一方、反応器下部から
、反応器中の反応液が常に2夕になるように連続的に反
応液を抜き出す。
Example 1 Using a four-glass reactor equipped with Nada Azusa blades, hexane was added to the top of the reactor twice every hour, a hexane solution of Babudyl trichloride (4 mmol/〆) was added once every hour, and ethylaluminum sesquikirolide was added every hour. Hexane solution (32 mmol/so) 1/hour
The reactor is continuously fed into the reactor, while the reaction liquid is continuously drawn out from the bottom of the reactor so that the reaction liquid in the reactor is always 2 hours.

又、反応器上部からエチレン、プロピレン、および水素
の混合ガス(エチレン毎時140夕、プロピレン毎時4
0そ、水素毎時120そ)を供給する。反応温度は反応
器外部にとりつけられたジャケットに温水を循環させる
ことにより35℃に調節した、。反応器下部から抜き出
した反応液中に小量のメタノールを添加して反応を停止
させたのち、反応液を3回水洗した。そののち30柳H
gの減圧でポット温度10000の蒸留により溶媒へキ
サンを除きエチレン・プロピレン共重合体を得た。得ら
れた共重合体(A)は、エチレン含量79モル%、数平
均分子量4800 Q値2.を Z値170であった。
この共重合体を試料油(1)(JISK2254による
初留点225℃、終点374℃、流動点(JISK22
69にって測定)2.500、低温炉過器目詰り点(C
FPP:Joumal of the lnSt肌te
ofpetrole川m.vol.52,No.51
0記載の方法に従って測定)200)へ0.02重量部
になるように添加し、CFPP及び流動点を測定した。
実施例 2 実施例1でエチレン・プロピレン共重合体(A)を試料
油(i)へ0.05重量部添加した他は同様に行った。
In addition, a mixed gas of ethylene, propylene, and hydrogen (ethylene 140 m/h, propylene 4 m/h
0 so, hydrogen per hour 120 so). The reaction temperature was controlled at 35° C. by circulating hot water through a jacket attached to the outside of the reactor. A small amount of methanol was added to the reaction liquid taken out from the bottom of the reactor to stop the reaction, and then the reaction liquid was washed three times with water. After that, 30 Yanagi H
The hexane solvent was removed by distillation at a reduced pressure of 10,000 g and a pot temperature of 10,000 g to obtain an ethylene-propylene copolymer. The obtained copolymer (A) had an ethylene content of 79 mol%, a number average molecular weight of 4800, and a Q value of 2. The Z value was 170.
This copolymer was prepared as sample oil (1) (initial boiling point according to JISK2254, 225°C, final boiling point 374°C, pour point (JISK22
69) 2.500, low temperature furnace filter clogging point (C
FPP:Jual of the InSthadate
ofpetrole river m. vol. 52, No. 51
0.02 part by weight was added to 200), and the CFPP and pour point were measured.
Example 2 The same procedure as in Example 1 was carried out except that 0.05 part by weight of the ethylene-propylene copolymer (A) was added to the sample oil (i).

実施例 3 実施例1で試料油(1)の代りに、試料油(ロ)(初総
点:180午0、終点380q0、流動点−10.0℃
、CFPP−800)を用いた他は同機に行った。
Example 3 In Example 1, instead of sample oil (1), sample oil (B) (initial total point: 180 pm, ending point 380 q0, pour point -10.0°C) was used.
, CFPP-800).

実施例 4実施例1で試料油(1)の代りに試料油(0
)を用い、エチレン・プロピレン共重合体(A)の添加
量を0.035重量部とした他は同様に行った。
Example 4 In Example 1, sample oil (0) was used instead of sample oil (1).
), and the same procedure was carried out except that the amount of ethylene-propylene copolymer (A) added was 0.035 parts by weight.

実施例 5実施例1で、三塩化バナジルのへキサン溶液
濃度を20ミリモル/〆、ジェチルアルミニウムセスキ
クロリドのへキサン溶液濃度を160ミリモル/そ、エ
チレン毎時200そ、ブロピレン毎時40そ、水素毎時
60そ供給した他は同様の方法で合成したエチレン・プ
ロピレン共重合体(B)は、エチレン舎量83モル%、
数平均分子量3300、Q値2.4、Z値160であっ
た。
Example 5 In Example 1, the concentration of vanadyl trichloride in hexane was 20 mmol/h, the concentration of diethylaluminum sesquichloride in hexane was 160 mmol/h, ethylene was 200 mmol/hour, propylene was 40 mmol/hour, and hydrogen was 20 mmol/hour. The ethylene/propylene copolymer (B) synthesized in the same manner except that 60% of the ethylene was supplied had an ethylene content of 83 mol%,
The number average molecular weight was 3300, the Q value was 2.4, and the Z value was 160.

この共重合体を試料油(1)へ0.05重量部になるよ
うに添加しCFPP及び流動点を測定した。実施例 6 実施例1でエチレン毎時200そ、プロピレン毎時70
夕、水素毎時30そ供給した他は同様の方法で合成した
エチレン・プロピレン共重合体(C)はエチレン舎量7
6モル%、数平均分子量10200、Q値2.5、Z値
175であった。
This copolymer was added to sample oil (1) in an amount of 0.05 parts by weight, and the CFPP and pour point were measured. Example 6 In Example 1, ethylene was 200 m/h and propylene was 70 m/h.
In the evening, the ethylene/propylene copolymer (C) synthesized in the same manner except that hydrogen was supplied at 30 liters per hour.
It had a number average molecular weight of 6 mol %, a number average molecular weight of 10,200, a Q value of 2.5, and a Z value of 175.

この共重合体を試料油(1)へ0.05重量部になるよ
うに添加しCFPP及び流動点を測定した。比較例 1 実施例1でエチレン毎時117そ、プロピレン毎時78
そ、水素毎時105〆供給した他は同様の方法で合成し
たエチレン・プロピレン共重合体(E)はエチレン含量
65モル%、数平均分子量4600、Q値2.4、Z値
160であった。
This copolymer was added to sample oil (1) in an amount of 0.05 parts by weight, and the CFPP and pour point were measured. Comparative Example 1 In Example 1, ethylene was 117 per hour and propylene was 78 per hour.
Ethylene-propylene copolymer (E) synthesized in the same manner except that hydrogen was supplied at 105 m/hr had an ethylene content of 65 mol%, a number average molecular weight of 4600, a Q value of 2.4, and a Z value of 160.

この共重合体を試料、(1)へ0.05重量部になるよ
うに添加しCFPP及び流動点を測定した。鮫例 2 実施例1でエチレン毎時133そ、プロピレン毎時17
そ、水素毎時150そ供給した他は同様の方法で合成し
たエチレン・プ。
This copolymer was added to sample (1) in an amount of 0.05 parts by weight, and the CFPP and pour point were measured. Shark example 2 In Example 1, ethylene was 133 per hour and propylene was 17 per hour.
Ethylene was synthesized in the same manner except that hydrogen was supplied at a rate of 150 m/hr.

ピレン共重合体(F)はエチレン含量92モル%、数平
均分子量5100、Q値2.5 Z値165であった。
この共重合体を試料油(1)へ0.05重量部になるよ
うに添加したところ殆んど溶解せず溶液は室温で白濁し
ていた。比較例 3実施例1で三塩化バナジルのへキサ
ン溶液濃度20ミリモル/そ、エチルアルミニウムセス
キクロリドのへキサン溶液濃度160ミリモルノク、エ
チレン毎時115夕、プロピレン毎時35そ、水素毎時
150そ供給し、他は同様の方法で合成したエチレン・
ブロピレン共重合体(G)は、エチレン含量79モル%
、数平均分子量1500、Q値2.を Z値170であ
った。
The pyrene copolymer (F) had an ethylene content of 92 mol%, a number average molecular weight of 5,100, a Q value of 2.5, and a Z value of 165.
When this copolymer was added to sample oil (1) in an amount of 0.05 part by weight, it was hardly dissolved and the solution was cloudy at room temperature. Comparative Example 3 In Example 1, the hexane solution concentration of vanadyl trichloride was 20 mmol/hour, the hexane solution concentration of ethylaluminum sesquichloride was 160 mmol/hour, ethylene was supplied at 115 mmol/hour, propylene was supplied at 35 mmol/hour, hydrogen was supplied at 150 mmol/hour, and so on. is ethylene synthesized in a similar manner.
The propylene copolymer (G) has an ethylene content of 79 mol%
, number average molecular weight 1500, Q value 2. The Z value was 170.

この共重合体を試料油(1)へ0.05重量部になるよ
うに添加しCFPP及び流動点を測定した。比較例 4 実施例1で、三塩化バナジルのへキサン溶液濃度1.2
ミリモル/そ、エチルアルミニウムセスキクロリドのへ
キサン溶液濃度9.6ミリモル/そ、エチレン毎時20
0夕、ブロピレン毎時85Z、水素毎時15〆供給し、
他は同様の方法で合成したエチレン・プロピレン共重合
体(H)はエチレン含量79モル%、数平均分子量30
000、Q値2.6、Z値180であった。
This copolymer was added to sample oil (1) in an amount of 0.05 parts by weight, and the CFPP and pour point were measured. Comparative Example 4 In Example 1, the hexane solution concentration of vanadyl trichloride was 1.2.
Concentration of hexane solution of ethylaluminum sesquichloride: 9.6 mmol/so, ethylene per hour 20
0 evening, supplied 85 Z of propylene per hour and 15 Z of hydrogen per hour.
Ethylene-propylene copolymer (H) synthesized in the same manner as above had an ethylene content of 79 mol% and a number average molecular weight of 30.
000, Q value 2.6, and Z value 180.

この共重合体を試料油(1)へ0.05重量部になるよ
うに添加しCFPP及び流動点を測定した。比較例 5 実施例1で、三塩化バナジルのへキサン溶液濃度を40
ミリモル/ぞとして毎時0.1と供給し、エチルアルミ
ニウムセスキクロリドのへキサン溶液濃度を24ミリモ
ル/そ、溶媒へキサン毎時2.9そ、エチレン毎時14
8夕、プロピレン毎時32そ、水素毎時120そ供給し
た他は同様の方法で合成したエチレン・プロピレン共重
合体(J)は、エチレン含量82モル%、数平均分子量
5300、Q値3.8、Z値420であった。
This copolymer was added to sample oil (1) in an amount of 0.05 parts by weight, and the CFPP and pour point were measured. Comparative Example 5 In Example 1, the hexane solution concentration of vanadyl trichloride was set to 40
The hexane solution concentration of ethylaluminum sesquichloride is 24 mmol/h, the solvent hexane is 2.9 mmol/h, and the ethylene is 14 mmol/h.
Ethylene-propylene copolymer (J) synthesized in the same manner except that propylene was supplied at 32 m/hr and hydrogen at 120 m/hr on 8 pm had an ethylene content of 82 mol%, a number average molecular weight of 5300, a Q value of 3.8, The Z value was 420.

この重合体を試料油(1)へ0.05重量部になるよう
に添加したところ殆んど溶解せず、溶液は室温で白濁し
ていた。比較例 6実施例1で試料油(1)の代りに試
料油(皿)(初留点214oo、終点333oo、流動
点一17.5qo、CFPP−1500)を用い、エチ
レン・プロピレン共重合体(A)の添加量を0.05重
量部とした他は同様に行った。
When this polymer was added to sample oil (1) in an amount of 0.05 part by weight, it was hardly dissolved and the solution was cloudy at room temperature. Comparative Example 6 Using sample oil (dish) (initial boiling point 214oo, final point 333oo, pour point -17.5qo, CFPP-1500) instead of sample oil (1) in Example 1, ethylene-propylene copolymer ( The same procedure was carried out except that the amount of A) added was 0.05 parts by weight.

比較例 7 実施例1で試料油(1)の代りに試料油(W)(初留点
270℃、終点410℃、流動点30.0℃、CFPP
2800)を用い、エチレン・プロピレン共重合体(A
)の添加量を0.05重量部とした他は同様に行つた。
Comparative Example 7 In Example 1, sample oil (W) (initial boiling point 270°C, final point 410°C, pour point 30.0°C, CFPP) was used instead of sample oil (1).
2800) and ethylene-propylene copolymer (A
) was added in the same manner except that the amount of addition was 0.05 part by weight.

実施例 7実施例1で三塩化バナジルのへキサン溶液濃
度を8ミリモル/そ、エチルアルミニウムセスキクロリ
ドのへキサン溶液濃度を64ミリモルノク、プロピレン
の代りに1ーブテン毎時40夕、供給した他は同様の方
法で合成したエチレン・1−ブテン共重合体(D)は、
エチレン含量80モル%、数平均分子量5200 Q値
2.3 Z値165であった。
Example 7 Same as Example 1 except that the concentration of vanadyl trichloride in hexane was 8 mmol/hour, the concentration of ethylaluminum sesquichloride in hexane solution was 64 mmol/hour, and 1-butene was supplied at 40 mmol/hour instead of propylene. The ethylene/1-butene copolymer (D) synthesized by the method is
The ethylene content was 80 mol%, the number average molecular weight was 5200, the Q value was 2.3, and the Z value was 165.

Claims (1)

【特許請求の範囲】[Claims] 1 沸点範囲が170℃ないし400℃にあつて、36
0℃以上の終点を有する中留分燃料油100重量部に対
し、エチレン含有量が75ないし85モル%、数平均分
子量が2000ないし20000、Q値(Mw/Mn)
が3以下のエチレン・α−オレフイン共重合体を0.0
05ないし5.0重量部の割合で配合してなる燃料油組
成物。
1 Boiling point range is 170℃ to 400℃, 36
Ethylene content is 75 to 85 mol%, number average molecular weight is 2000 to 20000, Q value (Mw/Mn) for 100 parts by weight of middle distillate fuel oil having an end point of 0°C or higher.
0.0 of ethylene/α-olefin copolymer with 3 or less
05 to 5.0 parts by weight of a fuel oil composition.
JP57014842A 1982-02-03 1982-02-03 fuel oil composition Expired JPS6035395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57014842A JPS6035395B2 (en) 1982-02-03 1982-02-03 fuel oil composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57014842A JPS6035395B2 (en) 1982-02-03 1982-02-03 fuel oil composition

Publications (2)

Publication Number Publication Date
JPS58134187A JPS58134187A (en) 1983-08-10
JPS6035395B2 true JPS6035395B2 (en) 1985-08-14

Family

ID=11872286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57014842A Expired JPS6035395B2 (en) 1982-02-03 1982-02-03 fuel oil composition

Country Status (1)

Country Link
JP (1) JPS6035395B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137998A (en) * 1983-12-26 1985-07-22 Nippon Oil & Fats Co Ltd Fluidity enhancer for fuel oil
JPS60137997A (en) * 1983-12-26 1985-07-22 Nippon Oil & Fats Co Ltd Pour point depressant for fuel oil

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132363Y2 (en) * 1978-07-31 1986-09-20

Also Published As

Publication number Publication date
JPS58134187A (en) 1983-08-10

Similar Documents

Publication Publication Date Title
JP5615907B2 (en) Polymer compositions useful as rheology modifiers and methods of making such compositions
JP3984354B2 (en) Method for producing compositionally varying copolymer
KR100434165B1 (en) Bifunctional additive and additive composition and flammable material which impart heat resistance to fuel
US3897353A (en) Method of preventing haze in oil concentrates containing an amorphous ethylene-propylene copolymer viscosity index improver
KR101530137B1 (en) Viscosity modifiers comprising blends of ethylene-based copolymers
WO2006028169A1 (en) Viscosity modifier for lubricating oils, additive composition for lubricating oils, and lubricating oil compositions
WO2000034420A1 (en) Viscosity modifier for lubricating oil and lubricating oil composition
KR101486833B1 (en) Ethylene based copolymer compositions as viscosity modifiers and methods for making them
CN106544067B (en) The additive for fuel and oil comprising functionalization diblock copolymer
CA2045155A1 (en) Terpolymers of ethylene, their preparation and their use as additives for mineral oil distillates
JP4634300B2 (en) Lubricating oil composition and lubricating oil for internal combustion engine
KR102628852B1 (en) Use of polymer additives for paraffin-containing fluids
US3642633A (en) Lubricant compositions
US5747616A (en) Ethylene-based copolymers and their use as flow improvers in mineral oil middle distillates
KR0160949B1 (en) Fuel oil additives and compositions
JP2004217688A (en) A heavy oil
JPS6035395B2 (en) fuel oil composition
US4022590A (en) Low pour waxy residual fuel oils
EP0184048B1 (en) Terpolymers of ethylene, vinyl acetate and isobutylene useful as pour point depressants in distillate oils
JPS6035396B2 (en) fuel oil composition
JPS63305104A (en) Liquid ethylene random copolymer modified by epoxidation and use thereof
US4142865A (en) Low pour hydrocarbon oil compositions
US8951307B2 (en) Polymers
EP0654526A2 (en) Cloud point depressant composition
US11692053B2 (en) Polymeric pour point depressants for waxy crude oils