JPS6035184B2 - Transfer separation device - Google Patents
Transfer separation deviceInfo
- Publication number
- JPS6035184B2 JPS6035184B2 JP15107178A JP15107178A JPS6035184B2 JP S6035184 B2 JPS6035184 B2 JP S6035184B2 JP 15107178 A JP15107178 A JP 15107178A JP 15107178 A JP15107178 A JP 15107178A JP S6035184 B2 JPS6035184 B2 JP S6035184B2
- Authority
- JP
- Japan
- Prior art keywords
- fluid
- cylindrical container
- treated
- container
- separation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Cyclones (AREA)
Description
【発明の詳細な説明】
従来より例えば船内の機関室二重底のビルジ水等の廃液
の処理は、往復式ポンプ、タンク及び遠心分離等の複雑
な組合せにて行なっていた。DETAILED DESCRIPTION OF THE INVENTION Conventionally, waste liquid such as bilge water in a double bottom engine room in a ship has been treated using a complex combination of reciprocating pumps, tanks and centrifugal separation.
ところが前記往復式ポンプ等の移送分離装置は、廃液中
の固形分(鉄粉等)により傷つけられ、更にこれらによ
り作動の中断を余儀なくされることもあり、又場合によ
っては前記のように傷つけられたことにより、全部品の
交換を必要とすることもあった。更に前記往復式ポンプ
等は摺動部分が俵液部分でもあるため、その廃液中の固
形分を噛み込む事故等も起り、長期間の安定使用は困難
であつた。本発明は前記従来の欠点を解消するために提
案されたもので、圧力流体をノズルから噴射して得るジ
ェットをベンチュリーの中心に吹き込み、その周辺に生
じる真空によって被処理流体を吸収し、それをジェット
に伴って吐出すると同時にジェットの余剰エネルギーを
利用して必要最小限の可動部分を持つ簡単な構造で、被
処理流体(分離処理を必要とする混成流体)を、一挙に
三態(固形物、重質油、水蒸気等)に分離でき、信頼性
が高く、かつ稼動率に優れた移送分離装置を提供せんと
するものである。However, the transfer separation device such as the reciprocating pump described above may be damaged by solids (iron powder, etc.) in the waste liquid, and may be forced to suspend operation due to these solids, and in some cases may be damaged as described above. In some cases, it was necessary to replace all parts. Furthermore, since the sliding part of the reciprocating pump and the like is also the bale liquid part, accidents such as getting caught in solids in the waste liquid have occurred, making it difficult to use the pump stably for a long period of time. The present invention was proposed in order to solve the above-mentioned conventional drawbacks, and a jet obtained by injecting pressurized fluid from a nozzle is blown into the center of the Venturi, and the vacuum generated around the center absorbs the fluid to be treated. With a simple structure that has the minimum number of moving parts, it discharges the fluid along with the jet and at the same time uses the jet's surplus energy to convert the fluid to be treated (mixed fluid that requires separation) into three states (solids) at once. The purpose of the present invention is to provide a transfer and separation device that is capable of separating oil into oil, heavy oil, water vapor, etc.), is highly reliable, and has an excellent operating rate.
以下本発明の実施例を図面について説明すると、第1図
は本発明の実施例を示す移送分離装置を示し、移送装置
1と分離装置2とにより構成されている。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a transfer and separation device showing an embodiment of the present invention, and is composed of a transfer device 1 and a separation device 2. As shown in FIG.
移送装置1は圧力流体3a又は3bを噴射するノズル4
を内包すると共に、同ノズル4の近傍に、被処理流体5
a又は5bを吸入する吸入管6の開口部6aが位置する
ように取付けたベンチュリー管7により構成されており
、ノズル4から圧力流体3a又は3bをベンチュリー管
7の喉部8に噴射すると、その周辺部9に生じる真空に
よって吸入管6から被処理流体5a又は5bを吸入する
ようになっている。なお、前記被処理流体5aは液体の
場合の被処理流体とし、この場合に用いる圧力流体を3
aで示す。The transfer device 1 includes a nozzle 4 that injects a pressure fluid 3a or 3b.
At the same time, the fluid to be treated 5 is placed near the nozzle 4.
It consists of a Venturi tube 7 installed so that the opening 6a of the suction pipe 6 that sucks in the fluid 3a or 5b is located, and when the pressure fluid 3a or 3b is injected from the nozzle 4 into the throat 8 of the venturi tube 7, the The vacuum generated in the peripheral portion 9 causes the fluid to be treated 5a or 5b to be sucked in from the suction pipe 6. Note that the fluid to be treated 5a is a fluid to be treated in the case of liquid, and the pressure fluid used in this case is 3.
Indicated by a.
又彼処理流体5bは気体の場合の被処理流体とし、この
場合に用いる圧力流体を3bで示すことにする。ここで
被処理流体5aは、例えば船内に発生するドレン等であ
り、油、水の混在中に鉄粉(鉄錆等)及び剥離した塗料
等が混入して懸濁液となっている。一方圧力流体3aに
は、例えば船内にある圧縮空気(9〜30k9/の)、
ディーゼル機関の掃除空気(2k9/c鰭,180oo
)、排ェコ蒸気(4k9/地,150oo)等が用いら
れ、被処理流体5aに粘性があっても、これは圧力流体
3aが合せ持つ熱エネルギーで加熱され、ジェット流に
乗せることで微細化され、分離し易い状態となる。Further, the processing fluid 5b is assumed to be a fluid to be processed in the case of gas, and the pressure fluid used in this case is indicated by 3b. Here, the fluid to be treated 5a is, for example, drain generated inside a ship, and is a suspension in which iron powder (iron rust, etc.), peeled paint, etc. are mixed in with oil and water. On the other hand, the pressure fluid 3a includes, for example, compressed air (9 to 30k9/) inside the ship,
Diesel engine cleaning air (2k9/c fin, 180oo
), exhaust steam (4k9/ground, 150oo), etc. are used, and even if the fluid to be treated 5a has viscosity, it is heated by the thermal energy of the pressure fluid 3a, and by being placed on the jet flow, it becomes fine. and becomes easy to separate.
又圧力流体3bは被処理流体5bよりも相対的に霧点が
低く、不活性な液化ガスの圧力流体である。なお分離精
度及び圧力流体の噴射速度は、要求度合により設計され
るもので、設計以後圧力流体の供給量を調節することで
分離精度に中を持たせることができる。次に前記分離装
置2はベンチュリ一管7の出口部が円筒容器11に接線
方向から接続(関口10され、同円筒容器11の内部に
設けられた固体物分離用回転翼12と、固体物の受取り
構造、即ち円筒容器11のB同部内壁の全周にわたり、
岡内壁と所定間隔を隔てて設けられた網体により形成さ
れた円環部13a,及び同円環部13aを円筒容器11
の内壁に固定するための網体よりなる円環底部13bと
よりなるこし絹13と、前記円筒容器11の下方が縮小
されると共に下端が閉口した円錐形容器14の、下方外
面に取付けられた伝熱管15よりなる前記彼処理流体5
a又は5bの加熱手段と、前記円筒容器11の中心部に
垂直に設けるた排気筒16とにより構成されている。な
お、円筒容器11は円筒でなくてもよく、他の形状の筒
形容器でもよい。前記排気筒16は固形物分離用回転翼
12の内周内にこれと僅かな間隔を隔てて配設され、円
錐形容器14内の気体を上方に排出するものである。The pressure fluid 3b has a relatively lower fog point than the fluid to be treated 5b, and is an inert liquefied gas pressure fluid. Note that the separation accuracy and the injection speed of the pressure fluid are designed according to the required degree, and the separation accuracy can be adjusted by adjusting the supply amount of the pressure fluid after the design. Next, in the separation device 2, the outlet part of the venturi tube 7 is tangentially connected to the cylindrical container 11 (separator 10), and the solid material separation rotor 12 provided inside the cylindrical container 11 is connected to the solid material separation rotor 12. The receiving structure, that is, the entire circumference of the inner wall of the B part of the cylindrical container 11,
An annular portion 13a formed of a mesh body provided at a predetermined distance from the inner wall of the container, and the annular portion 13a connected to the cylindrical container 11.
A conical container 14 is attached to the lower outer surface of a conical container 14 whose lower end is reduced and the lower end of the cylindrical container 11 is closed. The processing fluid 5 consisting of a heat transfer tube 15
It consists of heating means a or 5b and an exhaust pipe 16 provided vertically at the center of the cylindrical container 11. Note that the cylindrical container 11 does not need to be a cylinder, and may be a cylindrical container of another shape. The exhaust pipe 16 is disposed within the inner periphery of the solid separation rotary blade 12 with a slight spacing therebetween, and discharges the gas inside the conical container 14 upward.
又前記回転翼12は排気筒16の下部に取付けた3本の
サポート17にて支持した軸受18(転り軸受、オイル
レス軸受等)に、そのスポ−ク19を介して回転自在に
支持されている。なお、円錐形容器14内の気体は前記
スポーク19の間を通って排気筒16内に上昇する。こ
こで前記回転翼12は、ベンチュリー管7の出口部から
同容器11の内部にその接線方向から流入する流体が旋
回するにつれて回転するが、同回転翼12の回転速度は
微視的には前記流体の旋回流の速度より遅いことになる
。Further, the rotary blade 12 is rotatably supported by a bearing 18 (rolling bearing, oil-less bearing, etc.) supported by three supports 17 attached to the lower part of the exhaust pipe 16 via its spokes 19. ing. Note that the gas in the conical container 14 passes between the spokes 19 and rises into the exhaust pipe 16. Here, the rotor blade 12 rotates as the fluid flowing from the outlet of the Venturi tube 7 into the container 11 from the tangential direction swirls, but the rotational speed of the rotor blade 12 is microscopically This is slower than the velocity of the swirling flow of the fluid.
そしてこの速度が懸濁物質(軽い固形物等)を外側へは
じき出す役目をするように、前記回転翼12の形状に工
夫をこらしてある。円筒容器11内の温度は、被処理流
体5a又は5bの性状及び分離の目的により、処理前の
状態から加熱側か冷却側かを選定する。The shape of the rotary blade 12 is designed so that this speed plays a role in repelling suspended matter (light solid matter, etc.) to the outside. The temperature in the cylindrical container 11 is determined from the pre-processing state to either the heating side or the cooling side, depending on the properties of the fluid to be treated 5a or 5b and the purpose of separation.
そして彼処理流体が5aのように液体の場合には、先ず
100qo以上に加熱された状態(特に伝熱管内及びそ
のフィン等)であり、伝熱管15は圧力流体3aと同一
の流体にて加熱する。一方被処理流体5bの場合は、こ
れと逆に同一流体3bにて冷却する。20は伝熱管15
が配設されている部分の円錐形容器14の内壁面に配置
されたフィンで、同フィン20は旋回流の謙導路と、熱
交換効率の向上を狙ったもので、前記伝熱管15と共に
被処理流体の加熱手段を構成している。When the processing fluid is a liquid like 5a, it is first heated to 100 qo or more (especially inside the heat transfer tube and its fins, etc.), and the heat transfer tube 15 is heated with the same fluid as the pressure fluid 3a. do. On the other hand, in the case of the fluid to be treated 5b, it is cooled using the same fluid 3b. 20 is a heat exchanger tube 15
The fins 20 are arranged on the inner wall surface of the conical container 14 in the part where the heat exchanger tubes 15 are arranged. It constitutes heating means for the fluid to be treated.
21は円筒容器11の且岡部側面に設けた窓に鉄込まれ
たガラス等の透明体で、同透明体21を透して外部から
内部を監視したり、又これを取外して保守点検が出来る
ようになっている。Reference numeral 21 is a transparent body such as glass that is iron-cast in a window provided on the side surface of the cylindrical container 11, and the interior can be monitored from the outside through the transparent body 21, and maintenance and inspection can be performed by removing it. It looks like this.
次に作用を説明する。Next, the action will be explained.
(1)彼処理流体が液体の場合。圧力流体3aをノズル
4から噴射して得るジェットを、ベンチュリー管7の喉
部8に吹込み、その周辺部9に発生する真空によって吸
入管6から被処理流体5aを吸入する。そしてこれをジ
ェットに伴って霧化し、関口10部より円筒容器11内
に送り込む。送り込まれた被処理流体は矢印21aの如
く円筒容器11に接線方向から流入し、渦巻状となって
下降する。この時固形物分離用回転翼12は前記の渦巻
状の流体により、軸受18の支持を得て回転し、その流
体内に混入している鉄粉等の固形物22aを外側にはじ
き飛ばす。(1) When the processing fluid is liquid. A jet obtained by injecting the pressurized fluid 3a from the nozzle 4 is blown into the throat 8 of the Venturi tube 7, and the fluid 5a to be treated is sucked from the suction pipe 6 by the vacuum generated around the throat 8. This is then atomized by the jet and sent into the cylindrical container 11 through the Sekiguchi 10 section. The sent fluid to be treated flows into the cylindrical container 11 from a tangential direction as indicated by an arrow 21a, and descends in a spiral shape. At this time, the solid matter separation rotor 12 rotates with the support of the bearing 18 due to the swirling fluid, and the solid matter 22a such as iron powder mixed in the fluid is thrown away to the outside.
この固形物22aと共に流体も外側に飛ばされるが、こ
れらはこし網13の上に堆積し、そのうち流体は矢印2
3aの如くこし絹13の網目で炉遇されて下降する。こ
の矢EP28aの如く下降する炉週された流体は円錐形
容器14に集められ、同円錐形容器14の外面に設けら
た伝熱管15とフィン20の作用により含水分等を蒸発
させる。蒸発した水蒸気等は矢印24aの如く上昇し、
スポーク19の間から排気筒16に入って排出される。
一方固形物22a及び水分等を除去された分離液25a
は円錐形容器14の下端開□部から矢印の如く取出され
る。(0)被処理流体5bが気体の場合。Fluid is also blown to the outside together with this solid matter 22a, but these are deposited on the strainer net 13, and among them, the fluid is
As shown in 3a, it is surrounded by a mesh of strained silk 13 and descends. The evacuated fluid descending as shown by arrow EP28a is collected in the conical container 14, and water content is evaporated by the action of the heat exchanger tubes 15 and fins 20 provided on the outer surface of the conical container 14. The evaporated water vapor rises as shown by the arrow 24a,
It enters the exhaust pipe 16 between the spokes 19 and is discharged.
On the other hand, a separated liquid 25a from which solid matter 22a and water etc. have been removed
is taken out from the opening at the lower end of the conical container 14 as shown by the arrow. (0) When the fluid to be treated 5b is a gas.
被処理流体5bより相対的に露点が低く、不活性な液化
ガス等圧力流体3bをノズル4からジェットとしてベン
チュリー管7の喉部8に吹き込み、その周辺部9に発生
する真空によって吸入管6から、相対的に圧力流体3b
より霧点が高い被処理流体5bを吸入する。そしてこれ
を開ロー0部よりジェットに伴って冷却しながら矢印2
1bの如く接線方向から円筒容器1に送り込む。このよ
うにして被処理流体5bは円筒容器11に入り、更に冷
却されながら渦を巻いて下降する。この時固形物分離用
回転翼12も前記渦につれて回転し、固形物22b等を
外側にはじき出す。The inert liquefied gas isopressure fluid 3b, which has a relatively lower dew point than the fluid to be treated 5b, is blown into the throat 8 of the Venturi tube 7 from the nozzle 4 as a jet, and the vacuum generated around the throat 9 causes the fluid to flow from the suction pipe 6. , relatively pressure fluid 3b
The fluid to be treated 5b having a higher fog point is inhaled. Then, while cooling this with the jet from the opening low part 0,
It is fed into the cylindrical container 1 from the tangential direction as shown in 1b. In this way, the fluid 5b to be treated enters the cylindrical container 11, and descends while being further cooled while spiraling. At this time, the solid matter separation rotor 12 also rotates along with the vortex, and the solid matter 22b and the like are thrown out.
このはじき出された固形物22bは」部の流体と共にこ
し絹13の上に堆積され、流体はこし絹13の網目1こ
て炉過されて矢E023bの如く更に下降し、円錐形容
器14内に集められる。円錐形容器14内に集められた
流体は、伝熱管15,フィン20の作用によって冷却さ
れ、相対的に露点の高い流体を凝縮させる。露点の低い
流体等は気体の状態で矢E024bの如く上昇し、排気
筒16から排出される。このように懸濁物質を除去され
た凝縮液は、矢印25bの如く取出される。更に被処理
流体の懸濁物質が多種類の場合には、前記(1)(0)
の場合の組合せにより移送分離を行なうことが可能であ
る。This repelled solid material 22b is deposited on the strained silk 13 together with the fluid in the section, and the fluid is passed through the mesh 1 trowel of the strained silk 13, further descends as shown by the arrow E023b, and enters the conical container 14. Can be collected. The fluid collected in the conical container 14 is cooled by the action of the heat transfer tubes 15 and fins 20, and the fluid with a relatively high dew point is condensed. The fluid with a low dew point rises in a gaseous state as shown by the arrow E024b and is discharged from the exhaust pipe 16. The condensate from which suspended solids have been removed in this manner is taken out as indicated by arrow 25b. Furthermore, when there are many types of suspended substances in the fluid to be treated, the above (1) and (0)
It is possible to carry out transport separation by combining the following cases.
以上詳細に説明した如く本発明によると、圧力流体をノ
ズルからベンチュリー管に噴射し、ノズル周辺に生ずる
真空によって被処理流体を吸入し、更にこれらをジェッ
トに伴って分離装置の筒状容器に移送することができる
。As explained in detail above, according to the present invention, pressurized fluid is injected from the nozzle into the Venturi tube, the fluid to be treated is sucked by the vacuum generated around the nozzle, and the fluid is further transferred along with the jet to the cylindrical container of the separation device. can do.
従って筒状容器内に設けられた固形物分離用回転翼は、
前記ジェットの旋回流につれて回転し、被処理流体内の
固形物を回転翼周辺部の受取り構造部にはじき出す。従
って本発明によると、例えば車質油、水分、固形物(金
属片など)等の混成流体の処理を一挙に三者三機(物質
の三態)に、簡単な構造で分離することができる。固形
物と分離された流体が液体の場合には、加熱手段によっ
てその水分は蒸発して取出され、固形物及び分離液は別
途外部に取出される。Therefore, the rotor blade for separating solids installed inside the cylindrical container is
It rotates with the swirling flow of the jet and expels solid matter in the fluid to be treated to a receiving structure around the rotor blade. Therefore, according to the present invention, it is possible to separate the treatment of mixed fluids such as car oil, moisture, and solids (metal pieces, etc.) into three types (three states of matter) at once with a simple structure. . If the fluid separated from the solids is a liquid, the water is evaporated and removed by the heating means, and the solids and separated liquid are separately taken out to the outside.
又前記流体が気体の場合には、冷却手段によって先ず相
対的に霧点の高い流体が凝縮され、凝縮しない気体は気
体排出口から排出される。このように本発明装置は精密
な可動部分はなく、構造が簡単であるため、半永久的な
稼動が期待でき、しかも動力源としては、例えば船内に
標準的に備えている蒸気或は空気圧縮等が利用できるた
め非常に経済的に被処理流体の連続分離処理ができる。
圧力流体は被処理流体を搬送する駆動源となるほか、被
処理流体の種類により加熱用にも、冷却用にも、兼用で
き、更に本装置を多段に組合せ及び伝熱管内の流体のコ
ントロールで多種類分離ができ、分離液の性状によって
はそのま再使用が可能である。従って被処理流体に混在
している懸濁物質の分離は磁石併用のフィルター方式で
も限界があるのに対し、本発明によると可動部分は最少
限に止めて装置の稼動率の向上を計り、要求する分離精
度を容易に達成できる信頼性の高い装置とすることがで
きる効果がある。なお、本発明は酸、アルカリ性の流体
や固形物を懸濁する流体の輸送及び分離装置等に応用で
きる。When the fluid is a gas, the fluid with a relatively high fog point is first condensed by the cooling means, and the gas that does not condense is discharged from the gas outlet. In this way, the device of the present invention has no precise moving parts and has a simple structure, so it can be expected to operate semi-permanently, and the power source can be, for example, steam or compressed air that is standard onboard ships. Since this method can be used, it is possible to perform continuous separation treatment of the fluid to be treated very economically.
In addition to being a driving source for transporting the fluid to be treated, the pressure fluid can also be used for heating or cooling depending on the type of fluid to be treated.Furthermore, this device can be combined in multiple stages and the fluid in the heat transfer tubes can be controlled. Multiple types can be separated, and depending on the properties of the separated liquid, it can be reused as is. Therefore, even with a filter method that uses magnets, there is a limit to the separation of suspended solids mixed in the fluid to be treated.However, according to the present invention, moving parts are kept to a minimum to improve the operating rate of the equipment and meet the requirements. This has the effect of making it possible to provide a highly reliable device that can easily achieve separation accuracy of 1. The present invention can be applied to transportation and separation devices for acidic, alkaline fluids, and fluids that suspend solids.
第1図は本発明の実施例を示す移送分離装置の側断面図
、第2図は第1図のA−A断面図、第3図は第1図のB
〜B断面図である。
図の主要部分の説明 1・・…・移送装置、2・・・・
・・分離装置、3a,3b・・・・・・圧力流体、4・
・・・・・ノズル、5a,5b・・・・・・被処理流体
、6・・・・・・吸入管、7・・・・・・ベンチュリー
管、10……開口、11・・・・・・円筒容器(筒形容
器)、12…・・・固形物分離用回転翼、13・・・・
・・こし絹、15・・・・・・伝熱管(加熱手段)、1
6…排気筒、20……フィン(加熱手段)。
賄l図
第2図
第3図FIG. 1 is a side sectional view of a transfer separation device showing an embodiment of the present invention, FIG. 2 is a sectional view taken along line A-A in FIG. 1, and FIG. 3 is a sectional view taken along line B in FIG.
~B sectional view. Explanation of main parts of the diagram 1...transfer device, 2...
...Separation device, 3a, 3b... Pressure fluid, 4.
... Nozzle, 5a, 5b ... Fluid to be treated, 6 ... Suction pipe, 7 ... Venturi tube, 10 ... Opening, 11 ... ...Cylindrical container (cylindrical container), 12...Rotor blade for solid matter separation, 13...
... strained silk, 15 ... heat transfer tube (heating means), 1
6...Exhaust pipe, 20...Fin (heating means). Figure 2 Figure 3
Claims (1)
ズルの近傍に被処理流体を吸入する管を開口させたベン
チユリー管構造をなす移送装置と、同ベンチユリー管の
出口部が上部に開口した円筒容器、同円筒容器の中心部
に垂直に設けられ下部が同容器内に開口した排気筒、前
記円筒容器の開口位置の前記排気筒の外周部に回転自在
に設けられた固形物分離用回転翼、前記円筒容器の下方
部内壁に固定された固形物受取用こし網、前記円筒容器
の下部に連結された下端開口の円錐形容器、同円錐形容
器の下方外面に設けられた加熱手段あるいは冷却手段と
よりなることを特徴とする移送分離装置。1. A transfer device having a ventilate tube structure containing a nozzle that injects pressurized fluid and having a tube opened near the nozzle for sucking the fluid to be treated, and a cylindrical container in which the outlet of the ventilate tube opens at the top. , an exhaust pipe installed perpendicularly to the center of the cylindrical container and having its lower part opened into the container; a rotor for solid matter separation rotatably provided on the outer periphery of the exhaust pipe at the opening position of the cylindrical container; A strainer for receiving solids fixed to the inner wall of the lower part of the cylindrical container, a conical container with an opening at the lower end connected to the lower part of the cylindrical container, and heating means or cooling means provided on the lower outer surface of the conical container. A transfer separation device characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15107178A JPS6035184B2 (en) | 1978-12-08 | 1978-12-08 | Transfer separation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15107178A JPS6035184B2 (en) | 1978-12-08 | 1978-12-08 | Transfer separation device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5579060A JPS5579060A (en) | 1980-06-14 |
JPS6035184B2 true JPS6035184B2 (en) | 1985-08-13 |
Family
ID=15510664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15107178A Expired JPS6035184B2 (en) | 1978-12-08 | 1978-12-08 | Transfer separation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6035184B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57136447U (en) * | 1981-02-17 | 1982-08-25 | ||
JP5489564B2 (en) * | 2009-07-15 | 2014-05-14 | 株式会社テイエルブイ | Gas-liquid separator |
-
1978
- 1978-12-08 JP JP15107178A patent/JPS6035184B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5579060A (en) | 1980-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3885934A (en) | Centrifugal tuyere for gas separator | |
CA1077865A (en) | Gas liquid separator for flare systems | |
US3710554A (en) | Wet collector | |
US2768707A (en) | Separator for use with vacuum cleaning | |
US3516551A (en) | Cyclone separator | |
US3904376A (en) | Apparatus for cleaning the discharge of a smokestack or the like | |
US4357152A (en) | Fluid borne particulate separator | |
US4948396A (en) | Compound vortex filtering apparatus | |
CN105413317B (en) | Liquid mist demister applied to rectifying column | |
US3048956A (en) | Particle and fluid collector | |
Jones | Development of the Venturi scrubber | |
JPS6035184B2 (en) | Transfer separation device | |
PL91767B1 (en) | Purification treatment process and apparatus[gb1429580a] | |
US3930960A (en) | Evaporator-condenser unit for producing potable water from sewage | |
US5032260A (en) | Eductor system for water ring vacuum pump | |
RU2372972C1 (en) | Device for dust and gas catching from smoke and aggressive gases | |
US4278450A (en) | Method for the recovery of clean pyrolysis off-gas and a rotary recycling means therefor | |
US2398048A (en) | Fluid treatment and apparatus therefor | |
KR910000475Y1 (en) | Washing duster | |
WO2020249824A1 (en) | Cyclonic evaporator apparatus and associated method | |
US3751882A (en) | Gas scrubber with moisture eliminator | |
JPS5610367A (en) | Ultrasonic atomizer | |
SU1095964A1 (en) | Apparatus for cleaning gas | |
RU2299414C1 (en) | Personal sampler | |
RU1836993C (en) | Unit for removing of harmful waste gases |