JPS6035163Y2 - electron gun structure - Google Patents

electron gun structure

Info

Publication number
JPS6035163Y2
JPS6035163Y2 JP16312378U JP16312378U JPS6035163Y2 JP S6035163 Y2 JPS6035163 Y2 JP S6035163Y2 JP 16312378 U JP16312378 U JP 16312378U JP 16312378 U JP16312378 U JP 16312378U JP S6035163 Y2 JPS6035163 Y2 JP S6035163Y2
Authority
JP
Japan
Prior art keywords
grid
electron beam
electron
electron gun
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16312378U
Other languages
Japanese (ja)
Other versions
JPS5580855U (en
Inventor
昇 渋谷
勝見 山田
徳四郎 田中
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to JP16312378U priority Critical patent/JPS6035163Y2/en
Publication of JPS5580855U publication Critical patent/JPS5580855U/ja
Application granted granted Critical
Publication of JPS6035163Y2 publication Critical patent/JPS6035163Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案はカラー受像管に内装される3個の電子銃が一列
配設された一体化構造の電子銃構体の構造に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of an integrated electron gun assembly in which three electron guns are arranged in a row and are housed in a color picture tube.

3個の電子銃が一列配設された一体化構造の電子銃構体
の3極部は、例えば第1図及び第2図に示す様な構造を
有している。
The three-pole portion of an integrated electron gun assembly in which three electron guns are arranged in a row has a structure as shown in FIGS. 1 and 2, for example.

即ちヒータ1を内装する陰極2と、この陰極2の電子放
出面にそれぞれ相対設し、電子ビーム通過孔部を有する
第1グリツド1、第2グリツドエ及び第3グリツド5よ
りなり、前記ヒータ1の点火により前記陰極2の電子放
出面より放出された電子は電子ビームR,G、 Bとな
り前記第1グリツド11第2グリツドエにより制御され
、前記第3グリツド5即ち加速電極により加速され、更
に図示しない第4グリツドと前記第3グリツド5との間
に形成される主レンズにより集束され、シャドウマスク
の開孔部を介して螢光面に焦点を結ぶようになっている
That is, the cathode 2 has a heater 1 therein, and a first grid 1, a second grid, and a third grid 5 are arranged opposite to each other on the electron emitting surface of the cathode 2 and have electron beam passage holes. Electrons emitted from the electron emitting surface of the cathode 2 by ignition become electron beams R, G, and B, which are controlled by the first grid 11 and second grid, accelerated by the third grid 5, that is, the accelerating electrode, and are further not shown. The light is focused by a main lens formed between the fourth grid and the third grid 5, and focused on the fluorescent surface through the aperture of the shadow mask.

この場合原色ドライブ方式に於ては色信号電圧をそれぞ
れの陰極に印加し、この色信号電圧とそれぞれ浅皿状に
一体形成された第1のグリッド主及び第2のグリッド主
により、電子ビームR,G、Bの電流を所望値にするこ
とが可能である。
In this case, in the primary color drive system, a color signal voltage is applied to each cathode, and the electron beam R is , G, and B can be set to desired values.

図に於て8は前記各電極を支持する絶縁支持棒である。In the figure, 8 is an insulated support rod that supports each of the electrodes.

この場合前述した3極部即ち陰極2、第1グリツドl及
び第2グリツド(に於けるカットオフ電圧E0は次式で
示され、右項の値が犬となると電子ビーム電流が多くな
る。
In this case, the cutoff voltage E0 at the three poles, that is, the cathode 2, the first grid 1, and the second grid (1) is expressed by the following equation, and when the value of the right term becomes dog, the electron beam current increases.

Eo〜−蓮911− (Gl/K)(Gl/G2XG1t) 但し、φG1:第1グリッドの電子ビーム通過孔部径 G□/に:第1グリッドと陰極との間隔 G□/G2第1グリッドと第2グリツドとの間隔 C1t:第1グリツドの厚さ ECI ”第1グリツドの印加電圧 このうちφG1v Gxtt ECIは同一電子銃構体
では一定であるので、E、は”1 / Kと01/G2
即ち第1グリツド3と陰極2との間隔及び第1グリツド
1と第2グリツドエとの間隔に左右され、上式の様にカ
ットオフ電圧はG1/KxG1/G2に反比例し、かつ
一般的にGl/にはGt/G2の1n程度でありG1/
K 、G1 /G2で同じ変化が起った場合G1/に
の影響が大きくなる。
Eo~-Lotus911- (Gl/K) (Gl/G2 Distance C1t between the first grid and the second grid: Thickness of the first grid ECI ``Voltage applied to the first grid Among these, φG1v Gxtt Since ECI is constant in the same electron gun structure, E is ``1/K and 01/G2.
That is, it depends on the distance between the first grid 3 and the cathode 2 and the distance between the first grid 1 and the second grid, and as shown in the above equation, the cutoff voltage is inversely proportional to G1/KxG1/G2, and generally Gl / is about 1n of Gt/G2, and G1/
If the same change occurs in K and G1/G2, the effect on G1/ will be greater.

然るに第1グリツド1と第2グリツドエとの形状はそれ
ぞれ第3図a及びbに示すように一体化された浅皿状か
ら形成されており、それぞれ第2図の絶縁支持棒8への
植設部33及び43が電子ビーム通過孔部が穿設された
平板状電極本体31及び41 と側壁部3□及び42を
介して段差をもって形成されている。
However, the shapes of the first grid 1 and the second grid are each formed into an integrated shallow dish shape as shown in FIGS. The portions 33 and 43 are formed with a step between the flat electrode bodies 31 and 41 in which electron beam passage holes are formed and the side wall portions 3□ and 42.

この様な3極部を有する電子銃構体をカラー受像管に内
装し、ヒータ1を点火して陰極2を加熱し電子放出面か
ら熱電子を放出させた場合、前記陰極2からの輻射熱に
より先ず第4図aの様に破線で示す第1グリツド1の平
板状電極本体31が加熱されるので第1グリツドl全体
としては植設部33を中心として矢印9の様に彎曲し、
実線で示す第1グリツドhに変形する。
When an electron gun assembly having such a triode is installed in a color picture tube and the heater 1 is ignited to heat the cathode 2 and emit thermoelectrons from the electron emission surface, the radiant heat from the cathode 2 first causes As the flat electrode body 31 of the first grid 1 shown by the broken line is heated as shown in FIG.
The grid is transformed into a first grid h shown by a solid line.

次に点火後しばらくすると第4図すに示す様に第1グリ
ツド1工は彎曲したままであるが、この第1グリツド1
aからの輻射熱により破線で示す第2グリツド4が矢印
10方向に彎曲し実線で示す第2グリツド4aに変形す
る。
Next, after a while after ignition, the first grid 1 remains curved as shown in Figure 4;
Due to the radiant heat from a, the second grid 4 shown by the broken line is bent in the direction of the arrow 10 and deformed into the second grid 4a shown by the solid line.

即ち前述したGl/にとGt/G2を考えると、中央の
電子ビーム通過孔部近傍ではG1/には大となり、G□
/G2は小となり、両側の電子ビーム通過孔部近傍では
G、/には小となり、G□/G2は大となる。
That is, considering Gl/ and Gt/G2 mentioned above, near the central electron beam passage hole, G1/ becomes large, and G□
/G2 becomes small, and in the vicinity of the electron beam passage holes on both sides, G and / become small, and G□/G2 becomes large.

前述した第4図に於ける第1グリツド1及び1互と第2
グリツドエ及びハとの温度上昇と伸びとをそれぞれ測定
したところ、第5図に示すように、温度上昇は、第1グ
リツド3については点線11、第2グリツド4について
は点線12で、又、伸びは、第1グリッド主については
実線31、第2グリツド4については実線32でそれぞ
れ示すような値が得られた。
The first grids 1 and 1 and the second grid in FIG.
When we measured the temperature rise and elongation of the grids E and C, we found that the temperature rise was indicated by the dotted line 11 for the first grid 3 and the dotted line 12 for the second grid 4, and the elongation was The values shown by the solid line 31 for the first grid main and the solid line 32 for the second grid 4 were obtained, respectively.

即ち図に於てT。That is, T in the figure.

は点火時、T1は第1グリツド3の温度上昇開始時、T
2は第2グリツド4の温度上昇開始時、T3.T4はそ
れぞれの電極の温度上昇が緩やかになり始める時、T5
.T6はそれぞれの電極の温度が安定する時を示す。
is at the time of ignition, T1 is when the temperature of the first grid 3 starts to rise, T
2 is when the temperature of the second grid 4 starts to rise, T3. T4 is T5 when the temperature rise of each electrode starts to slow down.
.. T6 indicates the time when the temperature of each electrode becomes stable.

第5図を見てもわかるように第1グリツド3と第2グリ
ツド4では温度上昇にかなりの差があることがわかる。
As can be seen from FIG. 5, there is a considerable difference in temperature rise between the first grid 3 and the second grid 4.

次にこの様な温度上昇の異なる第1グリツド1と第2グ
リツドエを内装したカラー受像管を温度安定後、3電子
銃の電子ビーム電流を合わせたのち冷却し、再点火した
場合の電子ビーム電流の変化を第6図に示す。
Next, after stabilizing the temperature of a color picture tube with the first grid 1 and the second grid having different temperature rises, the electron beam currents of the three electron guns are combined, cooled, and then re-ignited. Figure 6 shows the changes in .

図に於て曲線13は中央の電子ビーム電流、曲線14は
両側の電子ビーム電流のそれぞれの変化を示す。
In the figure, a curve 13 shows the electron beam current at the center, and a curve 14 shows the changes in the electron beam current on both sides.

即ち第6図の時間を第5図の時間に対応させて説明する
とT。
That is, the time shown in FIG. 6 corresponds to the time shown in FIG. 5.

の点火後、T1の第1グリツド3の温度上昇開始時即ち
第4図aで9方向に彎曲し始める時より、第2グリツド
4の温度上昇開始時T2即ち第4図すで10方向に彎曲
し始める時までは前述した式の説明よりわかるように中
央の電子ビーム電流13は少なく、両側の電子ビーム電
流14は多く、その差は開いて行く。
After ignition, from the time when the temperature of the first grid 3 at T1 starts to rise, that is, when it starts to curve in 9 directions as shown in Figure 4a, to the time when the temperature of the second grid 4 starts to rise, that is, at T2, that is, when it has already curved in 10 directions as shown in Figure 4. As can be seen from the explanation of the above-mentioned equation, until the time when the electron beam current 13 at the center starts to decrease, the electron beam current 13 at the center is small and the electron beam currents 14 at both sides are large, and the difference between them widens.

次に第2グリツドエの温度上昇開始時T2より第1グリ
ツド3の温度上昇が緩やかになり始める時T3までは中
央の電子ビーム電流と両側の電子ビーム電流の差は大き
く変化しない。
Next, the difference between the center electron beam current and the electron beam currents on both sides does not change significantly from T2 when the temperature of the second grid 3 starts to rise until T3 when the temperature rise of the first grid 3 starts to slow down.

次にT3から第2グリツド4の温度上昇が緩やかになり
始める時T、までは両電子ビーム電流差が次第に少なく
なり、更にT4から第2グリツド4の温度が安定する時
T6までは一度電子ビーム電流が逆転してから設定電子
ビーム電流Iに落ち着く。
Next, from T3 to T, when the temperature rise of the second grid 4 begins to slow down, the difference in both electron beam currents gradually decreases, and from T4 until T6, when the temperature of the second grid 4 becomes stable, the electron beam After the current is reversed, it settles to the set electron beam current I.

通常、このT1からT6までの時間は約3分から159
間かかり、中央の電子銃を緑色G用とした場合、両側の
電子銃は赤色R青色Bとなるが、この両側からの電子ビ
ーム電流が多いため白色に見える所がマゼンタ色となり
正常な画面が見られなくなる。
Normally, the time from T1 to T6 is approximately 3 minutes to 159
If the central electron gun is used for green G, the electron guns on both sides will be red R blue B, but because the electron beam current from both sides is large, the white part will turn magenta and the screen will not be normal. You won't be able to see it.

前述した現象は特に第1グリッド3第2グリッド(を一
体形威し、連動形陰極を使用した時に起き易い。
The above-mentioned phenomenon is particularly likely to occur when the first grid and the second grid are integrated and an interlocking cathode is used.

本考案は前記従来の諸欠点に鑑みなされたものであり、
第1グリツド及び第2グリツド、または第2グリツドを
形成する部材を考慮することによって、特に第2グリツ
ドの変形を急速に行なわせることにより、画面の色が正
常に見える状態に戻るまでの経過時間を短縮することが
可能な電子銃構体を提供することを目的としている。
The present invention was made in view of the various drawbacks of the conventional technology, and
By taking into account the first grid and the second grid or the components forming the second grid, and especially by causing the second grid to deform rapidly, the elapsed time until the screen colors return to a normal visible state. The purpose of the present invention is to provide an electron gun structure that can shorten the length of the electron gun.

次に第7図及び第8図により本考案の電子銃構体の1実
施例を説明する。
Next, one embodiment of the electron gun assembly of the present invention will be described with reference to FIGS. 7 and 8.

図中従来のものと同一符号は同一部分を示す。In the figure, the same reference numerals as in the conventional one indicate the same parts.

即ちヒータ1を内装する陰極2と、この陰極2の電子放
出面にそれぞれ相対設する電ビーム通過孔部を有する第
1グリツドz1、第2グリツド業4及び第3グリツド5
よりなり、前記ヒータ1の点火により前記陰極2の電子
放出面より放出された電子は電子ビームR,G、Bとな
り、前記第1グリツド23、第2グリツド旦により制御
され、前記第3グリツド5即ち加速電極により加速され
、更に図示しない第4グリツドと前記第3グリツド5と
の間に形成される主レンズにより集束され、シャドウマ
スクの開孔部を介して螢光面に焦点を結ぶようになって
おり、この場合、信号電圧をそれぞれの陰極に印加し、
それぞれ浅皿状に一体形成された第1グリツド23及び
第2グリツド24により電子ビームR,G、B電流を所
望値にするように構成されているのは従来の電子銃構体
とほぼ同じであるが、本実施例に於ては第1グリツド業
主及び第2グリツド旦または第2グリツド24を形成す
る部材の熱膨張係数を考慮することにより、第1グリツ
ドi1の加熱による彎曲度と第2グリツド24の加熱に
よる彎曲度を変化させ前述したカットオフ電圧の式に於
て、G1/にとG1/G2とを所望値に変化させ画面の
色が正常に見える状態に戻るまでの経過時間を短縮させ
るように設定されている。
That is, a cathode 2 having a heater 1 therein, and a first grid z1, a second grid 4, and a third grid 5 each having an electron beam passage hole provided oppositely to the electron emitting surface of the cathode 2.
The electrons emitted from the electron emitting surface of the cathode 2 by ignition of the heater 1 become electron beams R, G, and B, which are controlled by the first grid 23 and the second grid 5, and are controlled by the third grid 5. That is, it is accelerated by the accelerating electrode, further focused by the main lens formed between the fourth grid (not shown) and the third grid 5, and focused on the fluorescent surface through the aperture of the shadow mask. In this case, a signal voltage is applied to each cathode,
It is almost the same as the conventional electron gun structure in that the electron beam R, G, and B currents are set to desired values by the first grid 23 and the second grid 24, which are each integrally formed in the shape of a shallow dish. However, in this embodiment, the degree of curvature due to heating of the first grid i1 and the degree of curvature of the second grid i1 are determined by considering the thermal expansion coefficients of the first grid operator and the members forming the second grid 24. By changing the degree of curvature due to heating of 24 and changing G1/G2 to the desired values in the above-mentioned cutoff voltage formula, the elapsed time until the screen color returns to a normal visible state is shortened. It is set to do so.

次に第9図によりグリッドの温度上昇による伸びと時間
との関係を説明する。
Next, the relationship between the elongation of the grid due to temperature rise and time will be explained with reference to FIG.

第9図において実線31は第1グリツド主1の熱膨張に
よる伸びを表わすもので、第2グリツド■を構成する部
材の熱膨張率を前記第1グリツド業主を構成する部材の
熱膨張率より大とすると、実線33で示すように第2グ
リツド旦の伸びは温度上昇開始時T2′より急傾斜で伸
びることになる。
In FIG. 9, a solid line 31 represents the elongation due to thermal expansion of the first grid main body 1, and the coefficient of thermal expansion of the members constituting the second grid (2) is greater than the coefficient of thermal expansion of the members constituting the first grid main body. Then, as shown by the solid line 33, the elongation of the second grid point increases at a steeper slope than T2' at the start of temperature rise.

実線31は第1グリツド23の伸びを示す。The solid line 31 shows the elongation of the first grid 23.

このような伸びは浅皿状電極では電極の彎曲と相関関係
をもっているので、第2グリツド■の彎曲度は従来の第
4図すに示す彎曲度よりも両側の電子ビーム通過孔部近
傍で大となり、カットオフ電圧E。
Since such elongation has a correlation with the curvature of the electrode in a shallow dish electrode, the curvature of the second grid (2) is larger near the electron beam passage holes on both sides than the conventional curvature shown in Figure 4. Therefore, the cutoff voltage is E.

の式に於て01/G2を従来のものより大とすることが
可能となる。
In the formula, it is possible to make 01/G2 larger than the conventional one.

第9図に於てT。′は点火時、T□′は第1グリツド2
3の温度上昇開始時、T2′は前記したように第2グリ
ツドHの温度上昇開始時、T3′、T、′はそれぞれの
電極の温度上昇が緩やかになり始める時、T、′、T6
′はそれぞれの電極の温度が安定する時を示す。
T in Figure 9. ' is at the time of ignition, T□' is the first grid 2
3, T2' is the time when the temperature of the second grid H starts to rise as described above, T3', T,' is the time when the temperature rise of each electrode starts to become gradual, T,', T6
′ indicates the time when the temperature of each electrode becomes stable.

次に従来の電子銃構体と同様に第1グリツド21と第2
グリツド■を内装したカラー受像管を温度安定後3電子
銃の電子ビーム電流を合わせたのち冷却し、再点火した
時の電子ビーム電流の変化を第10図によって説明する
Next, as in the conventional electron gun structure, the first grid 21 and the second
The change in the electron beam current when a color picture tube equipped with a grid (1) is cooled after the temperature has stabilized, the electron beam currents of the three electron guns are combined, and then re-ignited will be explained with reference to FIG.

第10図に示す曲線13.14は第6図の電子ビーム電
流の変化を示す曲線である。
Curves 13 and 14 shown in FIG. 10 are curves showing changes in the electron beam current in FIG.

即ち第10図の時間を第9図の時間に対応させて説明す
るとT。
That is, the time shown in FIG. 10 corresponds to the time shown in FIG. 9.

′の点火時から微小時間で始まるT□′の第1グリツド
23の温度上昇開始時より第2グリツド旦の温度上昇開
始時T2′までは一点鎖線16で示す中央の電子ビーム
電流は少なく、一点鎖線17で示す両側の電子ビーム電
流は多くなりその差は開いて行く。
From the start of the temperature rise of the first grid 23 at T□', which starts in a very short time after the ignition of ', to the start of temperature rise of the second grid T2', the electron beam current in the center indicated by the dashed-dotted line 16 is small, and the electron beam current is small at one point. The electron beam currents on both sides indicated by the chain line 17 increase, and the difference between them increases.

次に第2グリツド■の温度上昇開始時T2′により第1
グリツド23の温度上昇が緩やかになり始める時T3′
までは中央の電子ビーム電流と両側の電子ビーム電流の
差は大きく変化しないが、このT2′より第2グリツド
Hの彎曲度が第9図の様に急上昇するので両側の電子ビ
ーム電流は従来のものより少なく従ってマゼンタ色は薄
くなる。
Next, when the temperature of the second grid (■) starts to rise, the first
T3' when the temperature rise of the grid 23 starts to slow down
Up to this point, the difference between the center electron beam current and the electron beam currents on both sides does not change significantly, but from T2' onwards, the degree of curvature of the second grid H increases rapidly as shown in Figure 9, so the electron beam currents on both sides become the same as before. The less the one, the more the magenta color will be paler.

次にT3′より第2グリツドHの温度が安定する時T6
′迄は一度両電子ビーム電流が交叉し最後に設定電子ビ
ーム電流Iに落ち着く。
Next, when the temperature of the second grid H becomes stable from T3', T6
Until ', the two electron beam currents cross once and finally settle to the set electron beam current I.

この場合本実施例のものに於ては従来のものより早い時
間に交叉し、T7′に於ては視惑上問題とならないので
このT7′に対応する従来のT7よりも本案のT7′の
方が時間が早く、画面の色が正常に見える状態に早く戻
ることになる。
In this case, in the case of this embodiment, the intersection occurs earlier than in the conventional case, and there is no visual problem at T7'. This will take less time, and the screen will return to a state where the colors look normal sooner.

すなわち視惑により問題ない範囲まで中央の電子ビーム
と両側の電子ビームの電流差が小さくなる時間がT7か
らT7′へと短かくなり、したがって視惑上正常に見え
る状態に戻るまでの時間が短かくなるという効果がある
In other words, the time it takes for the current difference between the central electron beam and the electron beams on both sides to become small enough to cause no problem due to visual acuity becomes shorter from T7 to T7', and therefore the time it takes for the current to return to a normal visual state becomes shorter. It has the effect of becoming darker.

第10図においてaは従来の両側電子ビームと中央電子
ビームとの間において色が正常に見える両者の電流差を
示すもので、このT7より図の右側が正常に見える範囲
である。
In FIG. 10, a indicates the current difference between the conventional double-side electron beam and the center electron beam, in which the color appears normal, and the right side of the figure from this T7 is the range in which the color appears normal.

またbは本考案による両電子ビームと火中電子ビーム間
において色が正常に見える両者の電流差を示し、aとほ
ぼ同じ量である。
Further, b indicates the current difference between the two electron beams according to the present invention and the hot electron beam, and the color appears normal, and is approximately the same amount as a.

このことから本考案のものではT7′より図の右側は正
常に見える範囲であり、従来のものよりも安定する時間
が早いことが分り、画面の色が正常に見える状態に戻る
までの経過時間を短縮することができる。
From this, it can be seen that with the device of the present invention, the area on the right side of the figure from T7' can be seen normally, and the stabilization time is faster than with the conventional device, and the elapsed time until the screen color returns to a normal visible state. can be shortened.

実験によれば、G1/K = 0.15mm、 G1/
G2 = 0.40鴫で第1グリッドl−1第2グリツ
ド■を同一形状にしたものでは第1グリツド業主及び第
2グリツド24の安定時の温度差とG□/に、 G1/
G2の比によって最適値を求めると約2倍となり、これ
に近い部材としては第1グリツド業主の部材が鉄(膨張
係数12X10−6)で第2グリツド旦の部材がアルミ
ニウム(膨張係数23X10−6)が最適であった。
According to experiments, G1/K = 0.15mm, G1/
G2 = 0.40 In the case where the first grid l-1 and the second grid ■ have the same shape, the stable temperature difference between the first grid operator and the second grid 24 and G□/, G1/
If the optimum value is determined by the ratio of G2, it will be about twice as much.As for the parts that are close to this, the members of the first grid operator are iron (coefficient of expansion 12X10-6), and the members of the second grid operator are aluminum (coefficient of expansion 23X10-6). ) was optimal.

またGt/に=0.15mmt Gl/G2=0.3−
では最適値は約1.皓となりこれを満足させるのには第
1グリツド23の部材がステンレス(膨張係数16×1
O−6)第2グリツド旦の部材がアルミニウム(膨張係
数23X 10−’)が最適であった。
Also, Gt/=0.15mmt Gl/G2=0.3-
So the optimal value is about 1. In order to satisfy this requirement, the first grid 23 should be made of stainless steel (coefficient of expansion 16 x 1).
O-6) Aluminum (expansion coefficient 23 x 10-') was optimal for the second grid member.

前記実施例は本考案の代表的なものであり、第1グリツ
ドと第2グリッド平板状電極本体を異形にしたり、また
側壁部の高さを異なるようにするなど種々変形例が考え
られるのは勿論である。
The above-mentioned embodiment is a typical example of the present invention, and various modifications are possible, such as making the first grid and second grid flat electrode bodies different shapes, and making the side wall portions different in height. Of course.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電子銃構体の側断面図、第2図は第1図
のX−X’線に沿って切断して見た断面図、第3図aは
第1グリツドの斜視図、第3図すは第2グリツドの斜視
図、第4図aは第1グリツドのみが熱膨張した状態を示
す説明図、第4図すは第1グリツド、第2グリツドが共
に熱膨張した状態を示す説明図、第5図は第1グリツド
及び第2グリツドの温度上昇及び伸びと時間との関係を
示す曲線図、第6図は中央及び両側の電子ビーム電流の
変化と時間との関係を示す曲線図、第7図は本考案の電
子銃構体の第1の実施例の側断面図、第8図は第7図の
Y−Y’線に沿って切断して見た断面図、第9図は第1
グリツド及び第2グリツドの温度上昇及び伸びと時間と
の関係を示す曲線図、第10図は本実施例と従来の共に
中央及び両側の電子ビーム電流と時間との関係を示す曲
線図である。 3、h、2主・・・・・・第1グリツド、4.ハ924
・・・・・・第2グリツド、3□、4□・・・・・・側
壁部、33.43・・・・・・植設部。
Fig. 1 is a side sectional view of a conventional electron gun assembly, Fig. 2 is a sectional view taken along line XX' in Fig. 1, Fig. 3a is a perspective view of the first grid, Figure 3 is a perspective view of the second grid, Figure 4a is an explanatory diagram showing a state in which only the first grid has thermally expanded, and Figure 4 shows a state in which both the first and second grids have thermally expanded. Figure 5 is a curve diagram showing the relationship between the temperature rise and elongation of the first and second grids and time, and Figure 6 is a curve diagram showing the relationship between changes in electron beam current at the center and both sides and time. 7 is a side sectional view of the first embodiment of the electron gun assembly of the present invention; FIG. 8 is a sectional view taken along line Y-Y' in FIG. 7; The figure is the first
FIG. 10 is a curve diagram showing the relationship between the temperature rise and elongation of the grid and the second grid versus time, and FIG. 10 is a curve diagram showing the relationship between the center and both sides of the electron beam current versus time for both the present embodiment and the prior art. 3, h, 2nd main... 1st grid, 4. Ha924
...Second grid, 3□, 4□...Side wall part, 33.43...Eplanted part.

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] (1)一列配設された3個の陰極にそれぞれ相対設され
、かつ中央及び両側の電子ビーム通過孔部を有する一体
形成された少くとも第1グリツド、第2グリツド及び第
3グリツドからなり、前記第1グリツド及び第2グリツ
ドが平板状電極本体と側壁部を介して段差を持つ植設部
を有し、前記植設部が前記平板状電極本体間の間隔より
大となるように絶縁支持棒に植設されると共に前記第2
グリツドを形成する部材の熱膨張率が前記第1グリツド
を形成する部材の熱膨張率より大とされていることを特
徴とする電子銃構体。
(1) Consisting of at least a first grid, a second grid, and a third grid, each integrally formed with three cathodes arranged in a row, each having an electron beam passing hole in the center and on both sides, and facing each other, The first grid and the second grid have a planted part having a step between the flat electrode body and the side wall part, and the planted part is insulated and supported so that the gap is larger than the interval between the flat electrode bodies. The second
An electron gun assembly characterized in that the coefficient of thermal expansion of the member forming the grid is greater than the coefficient of thermal expansion of the member forming the first grid.
(2)第1グリツドと第2グリツドを同一形状とし、そ
れぞれのグリッドを形成する部材の熱膨張率の比を1
: 1.47”7至1:2.0としたことを特徴とする
実用新案登録請求の範囲第1項記載の電子銃構体。
(2) The first grid and the second grid have the same shape, and the ratio of the thermal expansion coefficients of the members forming each grid is set to 1.
: 1.47"7 to 1:2.0. The electron gun assembly according to claim 1 of the utility model registration claim.
JP16312378U 1978-11-29 1978-11-29 electron gun structure Expired JPS6035163Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16312378U JPS6035163Y2 (en) 1978-11-29 1978-11-29 electron gun structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16312378U JPS6035163Y2 (en) 1978-11-29 1978-11-29 electron gun structure

Publications (2)

Publication Number Publication Date
JPS5580855U JPS5580855U (en) 1980-06-04
JPS6035163Y2 true JPS6035163Y2 (en) 1985-10-19

Family

ID=29159482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16312378U Expired JPS6035163Y2 (en) 1978-11-29 1978-11-29 electron gun structure

Country Status (1)

Country Link
JP (1) JPS6035163Y2 (en)

Also Published As

Publication number Publication date
JPS5580855U (en) 1980-06-04

Similar Documents

Publication Publication Date Title
US4071803A (en) Electron gun assembly
JPS6035163Y2 (en) electron gun structure
US4251746A (en) Direct-heated cathode structure
US5552661A (en) Electron gun for cathode tube
US4900978A (en) Electron gun having blackened grids used in-line type color CRT, and color CRT using the same
KR970003297Y1 (en) In line type electron gun for crt
US4782263A (en) Inline electron gun having at least one modified cathode assembly
KR910000755B1 (en) Electron gun of cathode ray tube
JPS6238300Y2 (en)
KR100339372B1 (en) electron gun for cathode ray tube
JP2646837B2 (en) Electron gun assembly for cathode ray tube
JPS6331334Y2 (en)
KR100405751B1 (en) A electron gun for cathode tube
KR900000345B1 (en) Electrode assembly of electron gun
JPH0527793Y2 (en)
KR0131936Y1 (en) Electron gun for cathode ray tube
KR930009359B1 (en) Shadow mask frame assembler for cathode-ray tube
JP2604735B2 (en) Electron gun for cathode ray tube
KR920005827Y1 (en) Electron gun structure
KR200187024Y1 (en) An electron gun of color cathode ray tube
KR0158472B1 (en) Electron gun for cathode ray tube
JP2699840B2 (en) Cathode structure of color cathode ray tube
KR910005219Y1 (en) Electrode of electron gun
KR100408004B1 (en) Gun for Cathode Ray Tube
KR200147969Y1 (en) Electron gun for cathode ray tube