JPS6035091Y2 - mental arithmetic practice tool - Google Patents
mental arithmetic practice toolInfo
- Publication number
- JPS6035091Y2 JPS6035091Y2 JP12652482U JP12652482U JPS6035091Y2 JP S6035091 Y2 JPS6035091 Y2 JP S6035091Y2 JP 12652482 U JP12652482 U JP 12652482U JP 12652482 U JP12652482 U JP 12652482U JP S6035091 Y2 JPS6035091 Y2 JP S6035091Y2
- Authority
- JP
- Japan
- Prior art keywords
- mental arithmetic
- abacus
- mental
- practice tool
- card
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Electrically Operated Instructional Devices (AREA)
Description
【考案の詳細な説明】
本考案は、初心者に珠算式暗算を指導する際に使用する
ための暗算練習具に関するものである。[Detailed Description of the Invention] The present invention relates to a mental arithmetic practice tool for use in instructing beginners in mental arithmetic.
暗算を迅速に行なう能力があるか否かは日常生活をはじ
め算数教育においても重大な影響を及ぼすことが知られ
ておりその重要性が叫ばれている。It is known that the ability to quickly perform mental arithmetic has a significant impact not only on daily life but also on mathematics education, and its importance is being emphasized.
一方珠算練習過程においても暗算は重要であり、暗算検
定制度も制定され運用されつつある。On the other hand, mental arithmetic is also important in the process of abacus practice, and a mental arithmetic test system has been established and is being put into operation.
暗算には、筆算と同様の思考過程を頭の中に想起しなが
ら暗算を行なう筆算式暗算と、そろばん珠を頭の中に描
いておき、しかるべき珠を布教しながら暗算を行なう珠
算式暗算とがある。There are two types of mental arithmetic: written mental arithmetic, in which you perform mental arithmetic while recollecting the same thought process as in your head, and abacus-based mental arithmetic, in which you picture the abacus beads in your head and perform mental arithmetic while evangelizing the appropriate beads. There is.
迅速さおよび正確さの点から珠算式暗算が勝ることが知
られているが、初心者にとっては容易に体得できない欠
点がある。Although it is known that mental arithmetic is superior in terms of speed and accuracy, it has drawbacks that beginners cannot easily master.
本考案は、このように有利な珠算式暗算を初心者に対し
て指導する際に有意義な暗算練習具を提供するとを目的
とする。The purpose of the present invention is to provide a useful mental arithmetic practice tool for teaching beginners the advantageous method of mental arithmetic.
この目的は、実用新案登録請求の範囲に記載された構成
を有する暗算練習具によって遠戚される。This object is distantly related to the mental arithmetic practice tool having the structure described in the claims of the utility model registration.
本考案にかかる暗算練習具を用いることによって、初心
者をして珠算式暗算に習熟させることができ、比較的短
時間にこの練習具を使用しない珠算式暗算に移行させる
ことができる。By using the mental arithmetic practice tool of the present invention, beginners can be made proficient in abacus-based mental arithmetic, and can be transferred to abacus-based mental arithmetic that does not require this practice tool in a relatively short period of time.
珠算式暗算に十分慣れることによって、珠算の上達も期
待し得る効果がある。By becoming sufficiently familiar with abacus-style mental arithmetic, you can expect to improve your abacus skills.
以下添付図を参照しながら本考案を詳述する。The present invention will be described in detail below with reference to the accompanying drawings.
第1図は珠算式暗算がどのような過程によって行なわれ
るかを示す説明図である。FIG. 1 is an explanatory diagram showing the process by which mental arithmetic is performed.
例えば、8+2+3+2の暗算を行なう場合、まず第1
図aのように布教腰次いで2を加算することによって図
すのように10を布教し以下順に図Cのように13X図
dのように15を得るものである。For example, when doing mental arithmetic of 8+2+3+2, first
By adding 2 as shown in figure a, we proselytize 10 as shown in the figure, and then in order to obtain 13 as shown in figure C and 15 as shown in figure d.
この15は上記問題の答である。This number 15 is the answer to the above question.
このような珠算式暗算を十分に会得すれば、暗算に際し
常にそろばん珠が脳裏に描かれ、読上げ問題または見取
り問題を暗算できることになるが、初心者にとっては困
難である。Once you have mastered this kind of abacus-based mental arithmetic, you will always have the abacus beads in your mind when doing mental arithmetic, and you will be able to mentally calculate problems that are read aloud or that are based on what you see, but this is difficult for beginners.
そのため、机上に第2図のようにそろばん珠を図示した
カードを置き、これを見詰め乍ら数字を布教する状態を
順次想像しつつ暗算を進行させるものである。For this reason, students place a card with a diagram of an abacus bead on their desk as shown in Figure 2, and as they stare at it, they sequentially imagine the state of evangelizing numbers as they progress through mental arithmetic.
これは、読上げられた問題の聴覚の刺激を−たんそろば
ん珠によって想像的に布教しながら演算するため過誤も
少なく迅速に暗算が行なわれることを意味する。This means that the auditory stimulation of the problem read aloud is imaginatively propagated through calculations using abacus beads, resulting in quick mental calculations with fewer errors.
さらに、数字として描かれた一連の式を自身の目で追い
ながら暗算が行なわれることを意味する。Furthermore, it means that mental arithmetic is performed while following a series of equations drawn as numbers with one's own eyes.
さらに、数字として描かれた一連の式を自身の目で追い
ながら暗算を行なう、いわゆる見取り暗算の場合も、見
取った数値を頭脳中に想起されたそろばん珠に布教しな
がら暗算を行なうものである。Furthermore, in the case of so-called mental arithmetic, where you perform mental arithmetic while following a series of formulas drawn as numbers with your own eyes, you perform mental arithmetic while evangelizing the observed numbers to the abacus beads that are remembered in your mind. be.
この場合、第2図の複数列のそろばん珠を図示したカー
ドを座右に置き暗算を行なう際に頭脳中でまた要すれば
指を使って布教するのを助けることができる。In this case, a card showing the multiple rows of abacus beads shown in Figure 2 can be placed on the right side of the seat to help spread the word in the mind and, if necessary, with the fingers when doing mental arithmetic.
この場合、第3図のように実線で描かれたそろばん珠列
と破線で描かれたそろばん珠列との間に見取り暗算問題
が記載されているとさらに効果がある。In this case, it would be even more effective if a mental arithmetic problem is written between the abacus beads drawn in solid lines and the abacus beads drawn in broken lines as shown in FIG.
しかしながらかかるカードは問題毎に必要となり習熟す
るまでに多くのカードを用意しなければならない。However, such cards are required for each problem, and many cards must be prepared before the player becomes proficient.
第4図aは本考案にかかる暗算練習具のためのカードを
示すもので、第3図のカードで暗算問題の記載された部
分に細長い数字観察窓W1を設けたものである。FIG. 4a shows a card for the mental arithmetic practice tool according to the present invention, which is the same as the card shown in FIG. 3 but has an elongated number observation window W1 in the area where the mental arithmetic problem is written.
さらに下方に等用観察窓W2を設けてもよい。Further, an observation window W2 may be provided below.
一方図すは図aの数字観察窓W1よりもや)小さ目の配
置で暗算問題群を印刷した見取り暗算問題用紙である。On the other hand, the figure shows a mental arithmetic question sheet in which a group of mental arithmetic questions are printed in a smaller layout (than the number observation window W1 in figure a).
適宜問題数を縦長に配列し最下方には答が印刷される。The appropriate number of questions are arranged vertically, and the answers are printed at the bottom.
第4図a、bに示した暗算練習具を使用するにあたって
は、図すの適宜問題が図aの数字観察窓W1を通して観
察できるように両者を重畳し、順次暗算練習を行なわせ
る。When using the mental arithmetic practice tools shown in FIGS. 4a and 4b, the two are superimposed so that appropriate problems in the figure can be observed through the number observation window W1 in FIG.
また、図aのカードを白紙等の上に置けば、読上げ暗算
練習用として使用することができる。Furthermore, by placing the card in Figure a on a blank sheet of paper, it can be used to practice mental arithmetic aloud.
第4図aのカードはかなりの期間にわたって使用される
から、耐久性を考慮し、腰の強い紙にビニール被覆を施
したものまたは適当なプラスチック等を使用すると好適
であるが、や)厚手の紙を使用してもよい。The card shown in Figure 4a will be used for a considerable period of time, so in consideration of durability, it is preferable to use strong paper with a vinyl coating or suitable plastic. Paper may also be used.
また等用観察窓W2と同じ働きはカードを移動させるこ
とによって得られるため設けなくともよい。Further, since the same function as the observation window W2 can be obtained by moving the card, it is not necessary to provide it.
第4図すの問題集は通常の用紙に印刷したもので差支え
なく、単に問題配置が前記要件に合致すればよい。The question collection shown in Figure 4 may be printed on regular paper, and it is only necessary that the question arrangement meets the above requirements.
本考案にかかる暗算練習具によって、初心者に対して見
取り暗算、読上げ暗算等の珠算式暗算を短期間で確実に
会得させることができる。By using the mental arithmetic practice tool of the present invention, it is possible for beginners to reliably master abacus-based mental arithmetic, such as visual mental arithmetic and aloud mental arithmetic, in a short period of time.
第1図a”−dは珠算式暗算の基本を示す説明図である
。
第2図は読上暗算用カードの例である。第3図は見取暗
算用のカードの例である。
第4図a、 bは暗算練習具のカードおよび暗算問題用
紙の例である。
図中、W□は数字観察窓、W2は等用観察窓である。Figures 1 a" to d are explanatory diagrams showing the basics of mental arithmetic. Figure 2 is an example of a card for reading mental arithmetic. Figure 3 is an example of a card for reading mental arithmetic. Figures 4a and b are examples of mental arithmetic exercise cards and mental arithmetic question sheets. In the figure, W□ is a number observation window, and W2 is an equal observation window.
Claims (1)
の間に少なくとも1つの数字観察窓が設けられたカード
と、 前記カードの数字観察窓に適合する数字群が印刷された
暗算問題用紙と、 の組合わせから成ることを特徴とする暗算練習具。[Claims for Utility Model Registration] A card in which a plurality of rows of abacus beads are illustrated, and at least one number observation window is provided between the rows of abacus beads, and a group of numbers that match the number observation windows of the card. A mental arithmetic practice tool characterized by consisting of a combination of a mental arithmetic question sheet on which is printed and .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12652482U JPS6035091Y2 (en) | 1982-08-20 | 1982-08-20 | mental arithmetic practice tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12652482U JPS6035091Y2 (en) | 1982-08-20 | 1982-08-20 | mental arithmetic practice tool |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5930173U JPS5930173U (en) | 1984-02-24 |
JPS6035091Y2 true JPS6035091Y2 (en) | 1985-10-18 |
Family
ID=30287670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12652482U Expired JPS6035091Y2 (en) | 1982-08-20 | 1982-08-20 | mental arithmetic practice tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6035091Y2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0720750Y2 (en) * | 1991-07-03 | 1995-05-15 | 有限会社ひらまつ | Abacus |
-
1982
- 1982-08-20 JP JP12652482U patent/JPS6035091Y2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5930173U (en) | 1984-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Peterson et al. | Using knowledge of how students think about mathematics | |
Cass et al. | Effects of manipulative instruction on solving area and perimeter problems by students with learning disabilities | |
Lloyd | Academic instruction and cognitive behavior modification: The need for attack strategy training | |
Miller | Writing to learn mathematics | |
Moch | Manipulatives work! | |
Huber | A closer look at SQ3R | |
Fueyo et al. | Using number line procedures and peer tutoring to improve the mathematics computation of low‐performing first graders | |
Carroll et al. | Invented strategies can develop meaningful mathematical procedures | |
US3934357A (en) | Teaching method and apparatus | |
JPS6035091Y2 (en) | mental arithmetic practice tool | |
Schumm et al. | Are they getting it? How to monitor student understanding in inclusive classrooms | |
James | Are four minds better than one? A study on the efficacy of group work | |
Anghileri | A study of progression in written calculation strategies for division | |
Wiebe | Manipulating percentages | |
Anthony et al. | Problem-solving processes of fifth grade arithmetic pupils | |
US7537454B1 (en) | Numerical multiplication teaching method | |
McIntosh | Guide students to better comprehension of word problems | |
Rakes et al. | Strengthening comprehension and recall through the principle of recitation | |
Rochford | Helping ESL Students Get their Acts Together: Preparing Students for the ACT Writing Skills Test. | |
Rachlin | Reflections on Practice: Learning to See the Wind | |
HARRISON | Immediacy of Feedback: Its Effects on Academic Performance | |
Meyers et al. | Yes you can… plan appropriate instruction for learning disabled students | |
Willard | AN INVESTIGATION OF THE EFFECTS OF COOPERATIVE LEARNING AND COGNITIVE STYLE IN TEACHING WORD PROCESSING SKILLS TO ADULTS. | |
Glazzard | Training students to work independently in the classroom | |
Gibney | Multiplication for the slow learner |