JPS6035090A - Method for treating heavy mineral oil - Google Patents

Method for treating heavy mineral oil

Info

Publication number
JPS6035090A
JPS6035090A JP14248583A JP14248583A JPS6035090A JP S6035090 A JPS6035090 A JP S6035090A JP 14248583 A JP14248583 A JP 14248583A JP 14248583 A JP14248583 A JP 14248583A JP S6035090 A JPS6035090 A JP S6035090A
Authority
JP
Japan
Prior art keywords
oil
solvent
deasphalted
deasphalting
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14248583A
Other languages
Japanese (ja)
Inventor
Yukio Sekine
関根 幸生
Suetou Hayashida
林田 季任
Hiroshi Ishikawa
廣 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Association for Petroleum Alternatives Development
Original Assignee
Research Association for Petroleum Alternatives Development
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Association for Petroleum Alternatives Development filed Critical Research Association for Petroleum Alternatives Development
Priority to JP14248583A priority Critical patent/JPS6035090A/en
Publication of JPS6035090A publication Critical patent/JPS6035090A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain adventageously high-grade gas oil, deasphalted oil, etc., by hydrogenating heavy mineral oil to recover light distillates, thermally cracking the residual oil to recover gas oil distillate and deasphalting the residue with a small quantity of a low-molecular solvent. CONSTITUTION:Hydrogen 8 is mixed with heavy mineral oil 1 contg. residual oil and the mixture is introduced into a hydrogenator 4 and hydrogenated in the presence of a hydrogenation catalyst at 300-480 deg.C under a hydrogen pressure of 50-200kg/cm<2>. After hydrogen 7 and a light distillate component 12 are recovered in a gas-liquid separating device 6 and a distillation column 10, the residue is introduced into a croacker 15 and thermally cracked at 350-550 deg.C under a pressure of atmospheric pressure to 200kg/cm<2>, and a gas oil distillate, etc. 19 are recovered in a distillation stage 18. The residual oil is introduced into a solvent-deasphalting device 21 and a low-molecular solvent 22 such as propane, butane or pentane in a quantity of 1-6 times by volume that of the residual oil is added thereto to carry out a deasphating treatment, whereby deasphalted oil 27 and deasphalted asphalt 28 can be obtd.

Description

【発明の詳細な説明】 本発明は重質鉱油の処理方法に関し、待にアスファルテ
ン、硫黄分及び這輩属分を多量に含む重質鉱油から高収
率で夏金属分等の不純物の少ない軽質分を得る方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for processing heavy mineral oil, and is aimed at converting heavy mineral oil containing a large amount of asphaltenes, sulfur, and mineral elements into light oil with less impurities such as summer metals in a high yield. Regarding how to get minutes.

常圧残渣油あるいは減圧残渣油等の重質鉱油は、アスフ
ァルテン(ヘプタンに不溶でトルエンに可解な成分)、
硫黄分及び献金属等の不純物を多量に含むため、その利
用には限IWがある。また昨今の原油事[#から、これ
ら重゛雌鉱油の収率が増々旨くなる傾向さえある。
Heavy mineral oils such as atmospheric residual oil or vacuum residual oil contain asphaltenes (components that are insoluble in heptane and soluble in toluene),
Since it contains a large amount of impurities such as sulfur and donor metals, its use is limited. In addition, due to recent developments in crude oil, there is even a tendency for the yield of these heavy mineral oils to become even better.

かかる実1・Hに鑑み、a質鉱油を処理し、付加価値の
高い軽成燃料油再へのf、換JP#釈用@質燃料油の節
減がrT′r能なプロセスの開発が強く要望されている
In view of this fact, there is a strong need to develop a process that can process A-quality mineral oil and recycle it into high-value-added light synthetic fuel oil, thereby reducing the amount of high-quality fuel oil used for conversion. It is requested.

かかる重質鉱油の処理方法としては、水素化脱硫法、水
素化脱硫法、接触分解法、コーキング法、浴バ1lli
見歴法、同温部分酸化法あるいは熱分解法などのプロセ
スやこれらを組合わせたプロセスのいくつかが既に知ら
れている。これらのプロセスの義足は、所望する製品、
例えばガス、@質燃料、屯油あるいはコークス等のいづ
れを目的生成物と下るかによって主に行なわれる。いづ
れのプロセスもそれぞれの目的に応じた特長を有してい
るが、反問欠点もあシ、まだ改良すべき点を残している
。例えば水素化脱硫法によシ低硫黄燃料油を得るために
は高温、高圧の過酷な条件とそれに耐えつる設備が必要
であシ、しかも炭素吻′成、基金属類による触媒被虐の
ため運転期1t11や軽雌油収率が限定される。その1
ltlの接触分解法寺のプロセスでも同じような触媒被
毒の問題、あるいは操作方法の困難さ、さらには原料油
の制限等の問題が提起されている。
Treatment methods for such heavy mineral oil include hydrodesulfurization method, hydrodesulfurization method, catalytic cracking method, coking method, and bath bath method.
Some processes, such as the pyrolysis method, isothermal partial oxidation method, or thermal decomposition method, or a combination of these methods, are already known. These processes produce the desired product,
For example, it is mainly carried out depending on whether the target product is gas, fuel, oil, coke, etc. Each process has its own features that suit its purpose, but it also has some drawbacks and still has areas to improve. For example, in order to obtain low-sulfur fuel oil using the hydrodesulfurization method, harsh conditions such as high temperature and high pressure and equipment that can withstand such conditions are required.Moreover, the catalyst must be damaged due to carbon anastomosis and base metals, so the operation is difficult. Season 1t11 and light female oil yield are limited. Part 1
Similar problems such as catalyst poisoning, difficult operating methods, and limitations on feedstock oil have been raised in the LTL catalytic cracking process.

また溶4り脱歴法も良質の軽質燃料油を高収率で得るこ
とのできるプロセスの一つではあるが、反面装置の大型
化あるいは運転コストの割面等の間;川魚がある。
Furthermore, the deasphalting method is one of the processes that can obtain high-quality light fuel oil at a high yield, but on the other hand, it requires large-sized equipment and has low operating costs.

以下に従来の溶剤脱歴法について若干詳しく説明する。The conventional solvent deasphalting method will be explained in some detail below.

従来、脱歴溶剤としては炭素数が2〜7個のアルカンま
たはアルケン炭化水素またはこれらの混合物や、オレフ
ィン及び芳香族炭化水素を含まない十ホ発油、灯油ある
いは軽油等の石油留分が用いられている。これらの溶剤
の選択によシ脱歴油の収率、性状及び運転操作条件等を
ある程度任意に変化させることが可能である。例えば、
高品位の脱歴油が所望の場合は溶剤としてプロパンを用
いれば低収率ではあるが所望の高品位脱歴油が得られ、
またより粗悪な脱歴油を高収率で得るには通常ペンタン
、あるいはへブタン等のよシ高分子量の溶剤が用いられ
る。
Conventionally, the deasphalting solvent used is an alkane or alkene hydrocarbon having 2 to 7 carbon atoms, or a mixture thereof, or a petroleum fraction such as petroleum oil, kerosene, or light oil that does not contain olefins or aromatic hydrocarbons. It is being By selecting these solvents, it is possible to arbitrarily change the yield, properties, operating conditions, etc. of the deasphalted oil to some extent. for example,
If a high-grade deasphalted oil is desired, using propane as a solvent will yield the desired high-grade deasphalted oil, albeit in a low yield.
In order to obtain inferior deasphalted oil in high yield, a solvent with a higher molecular weight such as pentane or hebutane is usually used.

また、装置の運転面から見ると、低分子量の溶剤例えば
プロパンを使用する場合、脱歴の操作は50〜90℃の
比較的低温の温度領域で運転されるが、脱歴原料油に対
して6〜10倍谷という多量の溶剤が必要であシ、装置
の一層の大型化が余義なくされる。一方晶分子量の溶剤
、例えばヘプタンを使用する場合その溶剤量は脱歴原料
油に対して2〜4倍谷と比較的少なく装置規模はプロパ
ンの場合よシ小さくなる。
In addition, from the perspective of equipment operation, when using a low molecular weight solvent such as propane, the deasphalting operation is performed at a relatively low temperature range of 50 to 90°C, but A 6 to 10 times larger amount of solvent is required, and further enlargement of the apparatus is unavoidable. On the other hand, when using a solvent with a crystalline molecular weight, such as heptane, the amount of the solvent is relatively small, 2 to 4 times the amount of the deasphalted feedstock, and the scale of the equipment is smaller than in the case of propane.

しかし操作mL度は150〜220℃前後と高く運転コ
ストは割部となる。
However, the operating mL degree is high, around 150 to 220°C, and the operating cost is high.

このように溶剤の選択によシ、脱歴油の収率、注状、運
転条件あるいは装置規模等に相違が認められ、各々一長
一短がある。しかし一般に脱歴油の収率を潰先して溶剤
の選択が行なわれるため、潤滑油製造プロセス等の特殊
な場合を除いて低分子普醒刑は余シ1史用されないのが
現状である。
As described above, there are differences in the selection of solvent, yield of deasphalted oil, pouring conditions, operating conditions, equipment scale, etc., and each has its advantages and disadvantages. However, since solvents are generally selected based on the yield of deaspendable oil, low molecular dehydrogenation is not currently used except in special cases such as lubricating oil manufacturing processes. .

また熱分解処理と溶剤脱歴処理との組合せも時分11q
 54−22445号公報及び回57−11590号公
報で提案されている。この場合、脱歴効率の同上や脱歴
油中の匹金属量の低下寺の効果が認められるものの、そ
の反面熱分解処理油中のアスファルテン分や熱分解ガス
の生成量が熱分解率の上昇とともに増加するため、後続
の溶剤脱歴工程での脱歴油と熱分解軽油の合計収率が低
下したり、脱歴工程でのアス7アル5− トの収率かJw加する件の欠点が認められ、熱分解処理
条印が制約を受ける。
In addition, the combination of thermal decomposition treatment and solvent deasphalting treatment is also possible.
This method has been proposed in Publications No. 54-22445 and No. 57-11590. In this case, although it is recognized that the deasphalting efficiency is the same and the amount of metals in the deasphalted oil is reduced, on the other hand, the asphaltene content in the pyrolyzed oil and the amount of pyrolysis gas generated increase the pyrolysis rate. As a result, the total yield of deasphalted oil and pyrolyzed gas oil in the subsequent solvent deasphalting process decreases, and the yield of as7alt 5-ate in the deasphalting process decreases. is recognized, and the thermal decomposition treatment mark is restricted.

また水素化接触処理と浴剤脱歴処理との組合せも時分1
jf458−17793号公報及び凹58−26391
号公報で提案されている。しかしこの方法においては、
ヘキサン、ヘプタンのような比較的分子量の大きい溶剤
を使用し、また高い浴剤比を採用しないと金属分やアス
ファルテン分の少ない脱歴油を得ることが難しいという
難点がある。分子量の大きい溶剤を使用したり、尚い溶
剤比を用いると溶剤脱歴工程の運転コストが割部となる
という問題も生ずる。
In addition, the combination of hydrogenation contact treatment and bath agent deasphalting treatment is also possible.
jf458-17793 publication and concave 58-26391
It is proposed in the publication. However, in this method,
The problem is that it is difficult to obtain deasphalted oil with low metal and asphaltene content unless a solvent with a relatively large molecular weight such as hexane or heptane is used and a high bath agent ratio is employed. If a solvent with a large molecular weight is used or a solvent ratio is used, a problem arises in that the operating cost of the solvent deasphalting step becomes high.

本発明者等は重賞鉱油の処理にみられる上記したような
種々の問題点を解消することを目的として鋭意検討を続
けた結果、ここに効果の顕著な本発明に到達した。
The inventors of the present invention have continued to conduct intensive studies aimed at solving the above-mentioned various problems encountered in the treatment of highly prized mineral oils, and as a result, they have arrived at the present invention, which is highly effective.

即ち本発明は蒸留残油を含む直置鉱油を(1)水素化触
媒の存在下に反応温度約600〜480℃、水素圧約5
0〜20〇6一 に9/Cn1’ (ゲージ)で水素化処理し、(11)
この水素化処理生成(勿の少なくとも1611を反応温
rw約350〜550’C,分解圧力常圧〜200Ig
9/cm” (ゲージ)で熱分解処理し、さらにfil
+1この熱分解処理時の少なくとも、1部をプロパン、
ブタン、ペンタン又はこれら2を側スーヒの混合物を溶
剤として用い且つ溶剤/溶剤脱歴処理原料油比(容量)
約1〜6の条件で溶剤脱歴処理することを特1aとする
直質バ油の処理方法を提供するものである。
That is, the present invention deals with direct heating of mineral oil containing distillation residue (1) in the presence of a hydrogenation catalyst at a reaction temperature of about 600 to 480°C and a hydrogen pressure of about 5.
0-20〇6-1 was hydrogenated with 9/Cn1' (gauge), (11)
This hydrotreated product (at least 1611 of
9/cm” (gauge) and then filtrated.
+1 During this thermal decomposition treatment, at least a part is propane,
Using butane, pentane or a mixture of these two as a solvent and solvent/solvent deasphalting treatment raw oil ratio (volume)
The present invention provides a method for treating straight roasted oil, characterized in that it is subjected to solvent deasphalting treatment under conditions of about 1 to 6.

本発明は水素化処理と熱分解処理と溶剤脱歴工程とを組
合せることにより、従来技術の愕つ問題点を解消すると
共に新だな効果をも派生するという相乗効果を示すもの
である。
The present invention exhibits a synergistic effect by combining hydrogenation treatment, thermal decomposition treatment, and solvent deasphalting process to solve the problems of the prior art and to derive new effects.

本発明方法に従がうと、溶剤脱歴処理においてプロパン
等の低分子量溶剤を従来の高分子量溶剤にgけると同程
度の低溶41比(対原料油容量比)で用いることかり目
しであシ、しかもアスファルテン、硫黄分及び重金属量
の含有量・の少ない良質の脱歴油を高収率で得ることが
可能であシ、加えて脱歴装置の規模や運転コスト等の問
題点も同時に解決される。また溶剤脱歴工程でも硫黄分
や重金属量等の不純物が除去される結果、第1工程であ
る水素化処理工程での脱硫及び脱金属に対する負荷が軽
減され、よシ温和&i件下での運転が可能となると共に
触媒寿命が大巾に延長される。
According to the method of the present invention, it is possible to use a low molecular weight solvent such as propane in the solvent deasphalting treatment at a solubility ratio of 41 (volume ratio to feedstock oil) that is comparable to that of a conventional high molecular weight solvent. It is possible to obtain high-quality deasphalted oil with low content of asphaltenes, sulfur, and heavy metals at a high yield.In addition, there are problems such as the scale and operating cost of the deasphalting equipment. resolved at the same time. In addition, as impurities such as sulfur and heavy metals are removed in the solvent deasphalting process, the load on desulfurization and demetalization in the first hydrotreating process is reduced, allowing for operation under milder conditions. This makes it possible to significantly extend the life of the catalyst.

また本発明方法に従がうと、水素化処理油を熱分解処理
及び溶剤脱歴処理しても、同一の重金属量に対する脱歴
油と熱分解軽油の合計収率は、水素化処理油を単に溶剤
脱歴処理したよシも大幅に増加するという従来技術から
は予測し得ない効果を示す。さらに第1工程の水素化処
理を行なうことによシ、第2工程の熱分解条件が、従来
技術にgけるような厳しい制約をうけないで済むという
効果ももたらされる。
Furthermore, according to the method of the present invention, even if the hydrotreated oil is subjected to thermal cracking treatment and solvent deasphalting treatment, the total yield of deasphalted oil and pyrolyzed light oil for the same amount of heavy metals is simply The amount of waste treated with solvent deasphalting also increases significantly, an effect that could not be predicted from the conventional technology. Furthermore, by carrying out the hydrogenation treatment in the first step, there is also the effect that the thermal decomposition conditions in the second step are not subject to the severe restrictions as in the prior art.

次に本発明の構成について具体的に説明する。Next, the configuration of the present invention will be specifically explained.

本発明の対象となる重11駆油としては、原油、接頭原
油、原油の常圧残渣油または減圧残渣油または脱歴アス
ファルトあるいはオイルサンドやオイルジュールからの
高沸点留分等が挙げられる。これらの重質鉱油は硫黄、
窒素、重金属あるいはアスファルテン等の不純物を多量
に含んでいる。
Examples of the heavy 11 fuel oil to be used in the present invention include crude oil, prefixed crude oil, atmospheric residue oil or vacuum residue oil of crude oil, deasphalted asphalt, or high-boiling fractions from oil sands and oil joules. These heavy mineral oils contain sulfur,
Contains large amounts of impurities such as nitrogen, heavy metals, and asphaltene.

これらの重質鉱油は工業的に用いられている水素化処理
触媒によシ第1工程の水素化処理を受ける。水素化処理
触媒としては活性化されたアルミナや実質的に分解機能
の小さいシリカ・アルミナやシリカ・マグネシア触媒等
の多孔注担本上ニコハルトーモリブデン、ニッケルーモ
リブデン、ニッケルータングステンあるいは白金等の第
1族及び/又は第■族金属もしくは金属化合物よりなる
水素化金属成分を担持した触媒が用いられる。
These heavy mineral oils undergo a first step of hydrotreating using an industrially used hydrotreating catalyst. Hydrotreating catalysts include activated alumina, silica-alumina and silica-magnesia catalysts with substantially low decomposition function, and nicohalto-molybdenum, nickel-molybdenum, nickel-tungsten or platinum catalysts. A catalyst supporting a hydrogenation metal component consisting of a Group 1 and/or Group Ⅰ metal or metal compound is used.

水素処理工程にgける条件としては、反応温度約300
〜480’C1反応圧力約50〜20’Okg/c♂ 
(ゲージ)好ましくけ約75〜150119/C♂(ゲ
ージ)、液空曲速度約9− 01〜1ona 、好ましくは約0.2〜411RS 
また水素/油化、Il/1J100〜2,0OONノ/
ノの各領域の値がそれぞれ採用される。上記の水素住処
4!榮件は後続の熱分解処理時にアスファルテン蓋が大
幅に増加しないように選定することが好ましい。脱fi
&率を約60%以上時に約80〜98%とするか、また
は脱金属率を約60%以上特に約50〜95%とするこ
とが好ましい。第2工程の熱分解処理では管状反応器や
ソーカードラム等の一般に用いられる反応器が使用され
る。
The conditions for the hydrogen treatment step include a reaction temperature of approximately 300℃.
~480'C1 reaction pressure approximately 50-20'Okg/c♂
(gauge) preferably about 75-150119/C♂ (gauge), liquid air bending speed about 9-01-1ona, preferably about 0.2-411RS
Also, hydrogen/oil conversion, Il/1J100~2,0OOON/
The values of each area of are adopted respectively. Hydrogen home 4 above! The material is preferably selected so that asphaltene content does not increase significantly during the subsequent pyrolysis treatment. De-fi
It is preferable that the & ratio is about 80 to 98% when it is about 60% or more, or the metal removal rate is about 60% or more, especially about 50 to 95%. In the second step of thermal decomposition treatment, a commonly used reactor such as a tubular reactor or a soaker drum is used.

また熱分解処理待水素あるいは水蒸気社共存してもある
いは共存しなくともよく、特に制約されない。水蒸気の
共存下に熱分解処理する場合、原料油に対し約1〜50
ωt%、好ましくは約1〜10ωt%の水蒸気が添加さ
れる。また、水素共存のi合約10〜2,000容量倍
、好ましくは約10〜100d量倍の水素が使用される
。熱分解条件としては、反応器1ぜは約350〜550
″C1好ましくは約680〜50〇10− °C1分解圧力は常圧−200kg 7cm” (ゲー
ジ)、水LI7)ガスが存在しない場合には好ましくは
約10〜50に9/cm”(ゲージ)、存在する場合に
は好ましくは約10〜150に9/C♂、また反応器に
gける滞留時間は故十秒〜故時間、好ましくは数分〜数
十分の各領域がそれぞれ採用される。熱分解率(処理原
料油中の482℃以上の留分の減少率)は約3〜70%
、特に約5〜40%とするのが好ましい。
Further, the pyrolyzed hydrogen or steam may or may not coexist, and there is no particular restriction. When thermally decomposed in the coexistence of water vapor, about 1 to 50%
ωt %, preferably about 1 to 10 ωt % water vapor is added. Further, hydrogen is used in an amount of about 10 to 2,000 times the total volume of hydrogen coexisting, preferably about 10 to 100 times the amount of hydrogen. The thermal decomposition conditions are approximately 350 to 550 for one reactor.
"C1 preferably about 680-50〇10- °C1 decomposition pressure at normal pressure -200kg 7cm" (gauge), water LI7) preferably about 10-509/cm" (gauge) in the absence of gas , if present, preferably about 10 to 150 9/C♂, and the residence time in the reactor is in the range of 10 seconds to 10 hours, preferably several minutes to several tens of minutes. Thermal decomposition rate (reduction rate of fractions of 482°C or higher in treated feedstock oil) is approximately 3 to 70%.
, particularly preferably about 5 to 40%.

なg、第2工程の熱分解処理条件は第1工程の水素化処
理条件に応じて変動させることもできる。すなわち、水
素処理条件の過酷度、たとえば処理温度の上昇や液空間
速度の低下が進むにつれて、第2工程の熱分解はよシ温
和な条件で処理できる。温和な条件で処理しても、最終
の溶剤脱歴工程に3ける本発明の組合わせの特性は損な
われない。
Furthermore, the thermal decomposition treatment conditions in the second step can also be varied depending on the hydrogenation treatment conditions in the first step. That is, as the severity of the hydrogen treatment conditions increases, for example as the treatment temperature increases and the liquid hourly space velocity decreases, the thermal decomposition in the second step can be performed under milder conditions. Treatment under mild conditions does not impair the properties of the combination of the present invention in the final solvent deasphalting step.

第3工程の溶剤脱歴処理で用いる脱歴装置は接触塔型、
ミキサーセトラー型あるいはへイドロサイクロン型等が
使用でき、特に制約されない。
The deasphalting equipment used in the third step of solvent deasphalting treatment is a contact tower type;
A mixer-settler type or a hydrocyclone type can be used, and there are no particular restrictions.

脱歴溶剤としてはプロパン、ブタン、ペンタンあるいは
これらの混合物が用いられる。本発明の効果を最大限に
発揮するには低分子量のプロパンやブタンが好ましく、
また、その量は原料油に対して約1〜6容量倍好ましく
は1〜4容量倍の範囲で用いられる。溶剤の使用量が多
すぎると運転コストが高くつき、使用量が少なすぎると
脱歴処理がうまく行なえない。脱歴温度は使用溶剤の臨
界温度以下の領域、例えばプロパンを使用する場合的5
0〜90℃の領域で、また圧力は約5〜150に9/C
♂(ゲージ)、好ましくは約15〜60Jc9/cm”
 (ゲージ)の領域の値が各々採用される。またブタン
の場合的100〜140℃、約5〜150 kg 7c
m” (ゲージ)、ペンタンの場合的150〜190℃
、約5〜150Jc97cm” (ゲージ)の条件が好
ましい。
Propane, butane, pentane or a mixture thereof is used as the deasphalting solvent. In order to maximize the effects of the present invention, low molecular weight propane and butane are preferred;
The amount used is about 1 to 6 times the volume of the raw material oil, preferably 1 to 4 times the volume. If the amount of solvent used is too large, the operating cost will be high, and if the amount used is too small, the deasphalting process will not be carried out successfully. The deasphalting temperature is in the range below the critical temperature of the solvent used, for example when propane is used5.
In the range of 0-90℃, and the pressure is about 5-1509/C
♂ (gauge), preferably about 15-60Jc9/cm”
(gauge) area values are respectively adopted. In the case of butane, 100-140℃, about 5-150 kg 7c
m” (gauge), 150-190℃ for pentane
, about 5 to 150 Jc97 cm'' (gauge) is preferred.

なS1本発明の第1、第2及び第3の各工程から得られ
る熱分解軽油あるいは脱歴油等のアスファルトン及び重
金属を多量に含まない油は単独であるいは〃いに混合し
て接触分解や、水添分mあるいは改頁等の処理をした後
、あるいは未処理のままで消費される。第3工程の溶剤
脱歴工程から得られる脱歴アスファルトは亜油や舗装用
アスファルトあるいはニードルコークスやバインダーピ
ッチ等の基材として開用したシ、コーカーや部分ば化装
置等へ供給される。
S1 The oil that does not contain large amounts of asphaltone and heavy metals, such as pyrolyzed light oil or deasphalted oil obtained from each of the first, second and third steps of the present invention, is subjected to catalytic cracking alone or in combination. It is consumed after processing such as hydrogenation, page break, etc., or without processing. The deasphalted asphalt obtained from the third step, the solvent deasphalting step, is used as a base material for oil, paving asphalt, needle coke, binder pitch, etc., and is supplied to a coker, a partial asphaltizer, and the like.

また、各工程間すなわち第1工程と第2工程及び第2工
程と第3工程間には常圧蒸留装置や減圧蒸留装置を設は
軽質油を回収するとともに次工程での処理量の負担を軽
減することもできる。
In addition, atmospheric distillation equipment and vacuum distillation equipment are installed between each process, that is, between the first and second processes, and between the second and third processes, to recover light oil and reduce the burden of processing in the next process. It can also be reduced.

次に、本発明を図1及び2に示した工程図(1)及び(
2)を用いて更に説明する。しかし本発明はこれによっ
て限定されるものではない。
Next, the process diagrams (1) and (1) of the present invention are shown in FIGS. 1 and 2.
2) will be further explained. However, the present invention is not limited thereto.

図 1の工程図(1)にgいて原料瀘貞油はライン1を
通して13− 送られ、ライン8から供給される水素に唐むガスと混合
される。混合原料系はライン3を通して第1工程の水素
化処理装置4に送られる。水素処理条件 水素化等の反応を受けた生成物はライン5によシ気液分
離装置6に送られる。気液分離装置6では高温分4器等
により水素ガスに富む気体と液状生成物とに分離する。
In the process diagram (1) of FIG. 1, raw filtrate oil is sent through line 1 (13) and mixed with hydrogen gas supplied from line 8. The mixed raw material system is sent through a line 3 to a hydrotreating device 4 for the first step. Hydrogen treatment conditions The products that have undergone reactions such as hydrogenation are sent to a gas-liquid separator 6 through a line 5. In the gas-liquid separator 6, the gas is separated into a gas rich in hydrogen gas and a liquid product using four high-temperature components.

分離した気体は必要に応じて不純物を除去して循環ライ
ン7を通して、ライン2からの補充用の水素ガスと混合
され、ライン8により循環再使用される。
The separated gas removes impurities as necessary, passes through a circulation line 7, is mixed with hydrogen gas for replenishment from line 2, and is recycled and reused via line 8.

液状生成物はライン9によダ蒸留工程10に送られる。The liquid product is sent via line 9 to a distillation stage 10.

蒸留工程10では常圧蒸留及び/または減圧蒸留により
ナフサ留分から軽油留分または減lf@油留分までの軽
1itl′lI]留分がライン12よυ系外に回収され
る。常圧残渣油または減圧残渣油はライ第11によシ熱
分屏処理装置15に送られる。水素または水蒸気ガスの
共存下で熱分解処理する場合は、該ガス14− はライン13より供給される。熱分解時発生する硫化水
素等のガスや分解軽質油の一部はライン16よシ系外に
回収される。水素ガスを用いる場合、水素ガスはライン
14で1回収し必要にし6じて不純物を除去後循環再使
用される。熱分解生成物はライン17により蒸留工程1
日に送られ、常圧蒸留及び減圧蒸留される。熱分解によ
り生成した灯、怪油留分から減圧;tti ?IlI 
17分の各留分はライン19により回収される。熱分解
を受けた減圧残渣油はライン20によシ溶剤脱11占装
置21に供給される。同時に溶剤脱歴装置には循環使用
の脱歴#If411もライン22から加えられる。
In the distillation step 10, a light fraction from the naphtha fraction to a gas oil fraction or a reduced lf@oil fraction is recovered out of the υ system through a line 12 by atmospheric distillation and/or vacuum distillation. The residual oil under normal pressure or the residual oil under reduced pressure is sent to the thermal separation treatment device 15 through the first lie No. 11. When performing thermal decomposition treatment in the coexistence of hydrogen or steam gas, the gas 14- is supplied from the line 13. Gases such as hydrogen sulfide generated during thermal decomposition and a portion of cracked light oil are recovered outside the system through line 16. When hydrogen gas is used, the hydrogen gas is recovered once in the line 14 and recycled and reused after removing impurities as necessary. The pyrolysis products are passed through line 17 to distillation step 1.
It is sent to Japan and subjected to atmospheric distillation and vacuum distillation. Light produced by thermal decomposition, reduced pressure from strange oil fraction; tti? IlI
Each fraction of 17 minutes is collected via line 19. The vacuum residue oil that has undergone thermal decomposition is supplied to a solvent removal device 21 through a line 20. At the same time, deasphalting #If411 for circulation use is also added from line 22 to the solvent deasphalting device.

循環溶剤は溶剤回収工程25から得られるライン26の
回収溶剤とライン29から加えられる補充用のQ1規溶
剤とからなる。溶剤脱歴装置21から得られる溶剤を沈
んだ脱歴油相と脱歴アスファルト相は、各々ライン23
とライン24により溶剤回収工程25に送られ、脱溶剤
される。
The circulating solvent consists of the recovered solvent in line 26 obtained from the solvent recovery step 25 and the Q1 standard solvent added from line 29 for replenishment. A deasphalted oil phase and a deasphalted asphalt phase obtained from the solvent deasphalting device 21 are each passed through a line 23.
and is sent to a solvent recovery step 25 via a line 24, where the solvent is removed.

得られた脱歴油及び脱歴アスファルトはライン27.2
8から各々回収される。図2の工程図(2)はIJjt
科重質油は第1工程の反16姦4で水素化処理を受けた
後、気液分離装置を経ずただちに第2工程の熱分解工程
15に送られ、水素共存下で処理される例を示したもの
である。したがって水素ガスに富18が省略され、その
後の溶剤脱歴処理工程は図1の工程図(1)と同じであ
る。
The resulting deasphalted oil and deasphalted asphalt are transferred to line 27.2.
8, respectively. The process diagram (2) in Figure 2 is IJjt
An example in which heavy oil is subjected to hydrogenation treatment in the first step, 4, and then immediately sent to the second step, pyrolysis step 15, without passing through the gas-liquid separation device, where it is treated in the coexistence of hydrogen. This is what is shown. Therefore, the hydrogen gas enrichment 18 is omitted, and the subsequent solvent deasphalting treatment step is the same as the process diagram (1) in FIG.

本発明の特徴を、以上の実施列及び比較量で例証する。The features of the invention are illustrated in the above examples and comparative quantities.

実施例1は本発明の方法にしたがって処理した例である
。比較例1は従来の熱分解溶剤脱歴の組合せプロセスを
、また比較1+12は水素化処理溶剤脱歴の組合せプロ
セスを各々例示しである。なg、参考タリ1は減If残
渣油を何の前処理なしで溶剤脱歴処理した例である。
Example 1 is an example of processing according to the method of the present invention. Comparative Example 1 exemplifies a combined process of conventional pyrolysis solvent deasphalting, and Comparative Example 1+12 exemplifies a combined process of hydrotreating solvent deasphalting. Reference Tari 1 is an example in which the reduced If residual oil was subjected to solvent deasphalting treatment without any pretreatment.

〔実施例1〕 アスファルトン、重金属類を多−:に含む大−1のアラ
ビンヘビー系常圧残渣油を水素ガスに富むガスと混合し
た後固定床流通反応装置によシ水素化処理した。
[Example 1] Arabin heavy atmospheric residual oil containing large amounts of asphaltone and heavy metals was mixed with a gas rich in hydrogen gas and then subjected to hydrogenation treatment in a fixed bed flow reactor.

すなわち、500 cc/HRの流量のアラビンヘビー
系常圧残渣油を加熱、昇圧した陵、水素流量として4.
63Nj!/f(几となるように調節された水素ガスに
富むガスと混合し反応工6に送った。水素対油比は92
6N)/ノであった。
That is, 4. Assuming that the arabin heavy atmospheric residual oil with a flow rate of 500 cc/HR was heated and pressurized and the hydrogen flow rate was 4.
63Nj! The mixture was mixed with a gas rich in hydrogen gas adjusted to have a temperature of /f (literature) and sent to reactor 6.
6N)/ノ.

該反応工程では有効な表面漬と細孔分布を有するアルミ
ナゲルに担持したコバルト−モリブデン系の水素化脱硫
触媒を充填した固定床υ1EjlV1反L6塔に上記の
原料混合系を下降流にて通油し水素化処理した。反応系
は触媒床の半均温度が364°C1反応圧力が12 a
ja;t/cm” (’f −U ) KナルX、’#
14f/m保持されている。
In this reaction step, the above raw material mixture system is passed in a downward flow through a fixed bed υ1EjlV1 anti-L6 column filled with a cobalt-molybdenum hydrodesulfurization catalyst supported on alumina gel with effective surface soaking and pore distribution. and hydrogenated. The reaction system has a half-uniform temperature of the catalyst bed of 364°C and a reaction pressure of 12a.
ja;t/cm"('f - U) K naru X,'#
It is maintained at 14f/m.

該反応工程から得られた反応生成物は圧力が実質的に反
応17− 系と同じ高温分離器と低温分lI器及び圧力が反応系よ
シ実質的に低い低圧分離器からなる気液分離装置を経て
、水素ガスに富むガスと実質的に液体状の反応生成物に
分離される。分離した水素に富むガスはさらに軽質の炭
化水素油を分離した菌アミン洗浄装置によ)硫化水素、
アンモニア等の不純物が除去された。該ガスの水素濃度
を一定以上に保持するため、ガスの一部は系外へ排出さ
れ、残シのガスはメークアップ用水素が妥と混合して循
環使用する。
The reaction product obtained from the reaction step is processed into a gas-liquid separation device consisting of a high-temperature separator and a low-temperature separator whose pressure is substantially the same as that of the reaction system, and a low-pressure separator whose pressure is substantially lower than that of the reaction system. The reaction product is separated into a hydrogen-rich gas and a substantially liquid reaction product. The separated hydrogen-rich gas is further processed by a bacterial amine cleaning device that separates light hydrocarbon oil) into hydrogen sulfide,
Impurities such as ammonia were removed. In order to maintain the hydrogen concentration of the gas above a certain level, a portion of the gas is discharged to the outside of the system, and the remaining gas is mixed with make-up hydrogen and recycled for use.

低圧分離器より留出した液状生成物は常圧蒸留装置及び
減圧蒸留装置によシナフサ留分、灯軽油留分及び減圧軽
油留分等の沸点が約567℃よシ低い炭化水素油を留出
せしめ、表−1の減圧残渣油を198ee/HRの留出
速度で得た。
The liquid product distilled from the low-pressure separator is used to distill hydrocarbon oils with boiling points lower than approximately 567°C, such as sinafusa fraction, kerosene and gas oil fractions, and vacuum gas oil fractions, using atmospheric distillation equipment and vacuum distillation equipment. As a result, the vacuum residue oil shown in Table 1 was obtained at a distillation rate of 198ee/HR.

上記の水素化処理油の減圧残渣油は前型反応器を装着し
た流通式熱分PII装置で処理し、引き続きプロパンに
よる溶剤脱歴処理される。
The vacuum residue of the above-mentioned hydrotreated oil is treated in a flow-through type thermal PII apparatus equipped with a front-type reactor, and then subjected to solvent deasphalting treatment using propane.

18− すなわち、水素化処理油の減圧残渣油は予熱後1540
cc/■几の流量で外径が約15118の管型反応器へ
送られる。管型反応器は440℃に加熱保持され、残渣
油の分解@開領域にgける見かけの滞留時間は約15.
5分であった。反応系は分解圧力が10に9/C♂(ゲ
ージ)になるよう調節保持される。
18- That is, the vacuum residual oil of the hydrotreated oil is 1540 ℃ after preheating.
It is sent to a tubular reactor with an outside diameter of about 15118 mm at a flow rate of cc/cm. The tubular reactor was heated and maintained at 440°C, and the apparent residence time in the open zone for decomposition of residual oil was approximately 15°C.
It was 5 minutes. The reaction system is maintained at a decomposition pressure of 10 to 9/C♂ (gauge).

反応管を出た熱分解生成油は圧力が反応系よシも実質的
に低い低圧分1IIIlΔJで窒素ガスによシストリッ
ピングされ、実質的にガス状の生成物と実質的に液状の
生成物に分離される。ガス状の生成物はさらに冷却器に
より冷却されナフサ留分を主体とする軽質炭化水素油と
硫化水素やメタン等を主体とするガス状生成物に分離さ
れた。低圧分離器よシ留出した液状生成物は今回さらに
常圧蒸留装置によシ沸点が320℃以下のナフサ及び灯
軽油留分を留出せしめ表1の注状を有する熱分解帛圧残
渣油を得た。
The pyrolysis product oil leaving the reaction tube is stripped by nitrogen gas at a low pressure of 1III1ΔJ, where the pressure is substantially lower than that of the reaction system, resulting in a substantially gaseous product and a substantially liquid product. Separated. The gaseous product was further cooled by a cooler and separated into a light hydrocarbon oil mainly composed of naphtha fraction and a gaseous product mainly composed of hydrogen sulfide, methane, etc. The liquid product distilled from the low-pressure separator is then further passed through an atmospheric-pressure distillation device to distill naphtha and kerosene fractions with a boiling point of 320°C or less, resulting in a thermal cracking pressure residue oil having the notes shown in Table 1. I got it.

該熱分解常圧残渣前約259とその6倍容の液化プロパ
ンをステンレス製耐圧遠沈管に採取し、遠沈管を70°
Cに加熱保持しながら30分間光分に振とり攪拌した。
Approximately 259 liters of the pyrolysis atmospheric residue and 6 times the volume of liquefied propane were collected in a stainless steel pressure-resistant centrifuge tube, and the centrifuge tube was heated at 70°.
The mixture was shaken and stirred under a light beam for 30 minutes while being heated at a temperature of 100°C.

その後同様に70°Cに加熱保持した遠心分離器で脱歴
油(lと脱歴アスファルト相に遠心分離した。遠心管か
ら各分−相を抜き出した後、溶剤を除去し乾燥した。得
られた脱歴油収率は脱歴原料基準で7t8wt%であっ
た。また脱歴油中のアスファルテン量は0.2 w t
%、重金属量(V十N+)は5ppm以下、また硫黄含
有賃は0.66wt%でらった。該熱分解残油を同様に
溶剤比4.6:及び8で溶剤脱歴処理した時の脱歴油と
熱分解軽油の合計収率と重金属(V+N1)iiの関係
を図3に示す。
Thereafter, the deasphalted oil (l) and the deasphalted asphalt phase were centrifuged in a centrifugal separator heated and maintained at 70°C in the same manner. After extracting each phase from the centrifuge tube, the solvent was removed and dried. The yield of deasphalted oil was 7t8wt% based on the deasphalted raw material.The amount of asphaltene in the deasphalted oil was 0.2wt%.
%, the amount of heavy metals (V+N+) was 5 ppm or less, and the sulfur content was 0.66 wt%. FIG. 3 shows the relationship between the total yield of deasphalted oil and pyrolysis gas oil and heavy metals (V+N1) ii when the pyrolysis residual oil was similarly subjected to solvent deasphalting treatment at solvent ratios of 4.6: and 8.

またアラビアン〜ビー系常圧残渣油を上記と全く同じ方
法で水素化処理し、熱分解し、溶剤脱れき処理した。溶
剤脱歴工程にgける脱歴溶剤として3倍谷のn−ペンタ
ンを用い170”Cで処理する点のみ上記処理と異なる
In addition, Arabian-Bee atmospheric residual oil was hydrogenated, thermally decomposed, and solvent deasphalted in exactly the same manner as above. The only difference from the above process is that 3-fold n-pentane is used as the deasphalting solvent in the solvent deasphalting step and the treatment is carried out at 170''C.

得られた脱歴油収率は脱歴原料基準で85.1 wt%
であり、脱歴油中のアスファルテン量はo、4wt%、
重金属量CV+NOは8wtpyn、また硫黄含有率は
0.84wttiであった。溶剤比1.0 、2.0及
び2.5で溶剤脱歴した時の脱歴油と熱分解軽油の合計
収率と重金属CV+Ni)量を図3に示す。
The obtained deasphalted oil yield was 85.1 wt% based on the deasphalted raw material.
The amount of asphaltene in the deasphalted oil is o, 4wt%,
The heavy metal amount CV+NO was 8wtpyn, and the sulfur content was 0.84wtti. Figure 3 shows the total yield of deasphalted oil and pyrolysis gas oil and the amount of heavy metals (CV+Ni) when solvent deasphalting was carried out at solvent ratios of 1.0, 2.0, and 2.5.

−20’ − 〔比較例1〕 アラビアンヘビー系常圧残渣油から通常の減圧蒸留によ
り得られる表−2の減圧残渣油を実施例1と同じ方法に
て熱分解、蒸留した後、脱歴溶剤として3倍容のプロパ
ン及び3倍容のn−ペンタンを用いて実施例1と同じ方
法でそれぞれ溶剤脱歴した。該比較例1と実施例1とは
水素処理の有無のみが異なる。
-20' - [Comparative Example 1] The vacuum residue oil shown in Table 2 obtained from Arabian heavy atmospheric residue oil by ordinary vacuum distillation was thermally decomposed and distilled in the same manner as in Example 1, and then deasphalted solvent The solvent was deasphalted in the same manner as in Example 1 using 3 times the volume of propane and 3 times the volume of n-pentane. Comparative Example 1 and Example 1 differ only in the presence or absence of hydrogen treatment.

結果は以下の通りである。The results are as follows.

プロパン;脱歴油収率 29.2wt係脱歴油油性状 重金属1kCV+Ni) 2tntpprn以下アスフ
アルテン量 0.05wt係 22− 21− n−ペンタン;脱歴油収率 70.Owt%脱歴油脱歴 油盆状4i(V十Ni ) 20wtppmアスファル
テン量 0.6wt% 実施例1と比較例1とを対比してみると明らかなように
、従来技術の熱分解−溶剤脱歴処理1Mに本発明が促示
する水素化@理を行なうと、溶剤としてプロパンあるい
はn−ペンタンのいずれを1吏用しても、良質な脱歴油
が関収率で得られる。
Propane; Deasphalted oil yield 29.2 wt Deasphalted oil Oily heavy metals 1 kCV+Ni) 2 tntpprn or less Asphaltenes amount 0.05 wt 22- 21- n-Pentane; Deasphalted oil yield 70. Owt% Deasphalted oil Deasphalted oil basin type 4i (V + Ni) 20wtppm Asphaltene content 0.6wt% As is clear from comparing Example 1 and Comparative Example 1, the thermal decomposition-solvent desorption of the prior art When the hydrogenation process promoted by the present invention is carried out on 1M of asphalt treatment, a deasphalted oil of good quality can be obtained at a relatively high yield even if one portion of either propane or n-pentane is used as the solvent.

荷にプロパンを用いた噛合顕著であシ従米法の約2.5
倍もの高い値を示し、プロパンを使用しても経済的に十
分成立つことは明らかであシ、本発明の!優位性が示さ
れる。
Approximately 2.5% of the conventional method uses propane as the load.
It is clear that it is economically viable even when using propane, and the present invention! Superiority is demonstrated.

その他、n−ブタン及びn−ペンタンで溶剤脱歴処理し
たときの脱歴油と熱分解軽油の収率と重金属(V+Nl
)量の関係を1233に示す。脱歴条件は以下の通シ。
In addition, the yield of deasphalted oil and pyrolyzed gas oil when solvent deasphalted with n-butane and n-pentane and heavy metals (V + Nl
) quantity relationship is shown in 1233. The conditions for de-history are as follows.

溶 剤 n−ブタン n−ペンタン 23− 溶剤比 3.0 1.0〜5.0 i 1f140’C170’C 〔比較列2〕 実施例1で得た水素化処理油の減圧残渣油を実桶例1と
同じ方法で溶剤脱歴した。したがって、本tllと実1
血例1との相違点は熱分解処理の有無にある。結果は以
下のJ…シである。
Solvent n-butane n-pentane 23- Solvent ratio 3.0 1.0 to 5.0 i 1f140'C170'C [Comparison row 2] The vacuum residue of the hydrotreated oil obtained in Example 1 was poured into a real barrel. Solvent desaturation was carried out in the same manner as in Example 1. Therefore, book tll and real 1
The difference from Blood Example 1 lies in the presence or absence of thermal decomposition treatment. The result is the following J...C.

プロパン;脱歴油収率 72.2wt%脱歴油注状 重金属1iH(V+Ni) 16wtppmアヌファル
テン量 0.58wt% 硫黄分 0.67wt% n−ペンタン;脱歴油収率 84.2 wt%脱片油注
伏 11E金属1ii(V十Ni) 15wtppmアスフ
ァルテン量 0.42wt% 硫黄分 0.76wL% その他、プロパンで溶剤比4.6及び8、及びn−ペン
タンで溶剤比1.2及び2.5で同様に処理した時の各
脱歴油収率と脱歴油中の重金属量の関係を図3に示す。
Propane; deasphalted oil yield 72.2 wt% deasphalted oil pouring heavy metals 1iH (V+Ni) 16 wtppm annuphaltene amount 0.58 wt% sulfur content 0.67 wt% n-pentane; deasphalted oil yield 84.2 wt% flaking Oil pouring 11E metal 1ii (V + Ni) 15wtppm Asphaltene amount 0.42wt% Sulfur content 0.76wL% Other than that, propane with solvent ratio of 4.6 and 8, and n-pentane with solvent ratio of 1.2 and 2.5 Figure 3 shows the relationship between the yield of each deasphalted oil and the amount of heavy metals in the deasphalted oil when treated in the same manner.

比較ρす2に見られるように、水素化処理後熱分解なし
で直接溶剤脱歴する従来技術の場合、低溶剤比でのプロ
パンによる脱歴油収率は同じ溶剤比のn−ペンタンでの
脱歴油収率よシ約15%も低いにもかか゛わらず、両者
の脱歴油性状にはほとんど差異はなく、脱歴溶剤として
低溶剤比のプロパンを使用するメリットは全く認められ
ない。したがって従来技術の場合n−ペンタンあるいは
n−ヘプタン弄のよシ高分子量の溶剤を使用する方が好
ましくかつ工業的にも優位であると言える。
As seen in Comparison ρ2, in the case of the conventional technology of direct solvent deasphalting without thermal cracking after hydrotreating, the deasphalted oil yield with propane at a low solvent ratio is lower than that with n-pentane at the same solvent ratio. Although the yield of deasphalted oil is about 15% lower, there is almost no difference in the properties of the deasphalted oil between the two, and there is no perceived advantage of using propane with a low solvent ratio as the deasphalted solvent. Therefore, in the case of the prior art, it is preferable and industrially advantageous to use a solvent with a higher molecular weight than n-pentane or n-heptane.

一方体発明が提示するように水素化処理後熱分解し、溶
剤脱歴すると実施例1で明らかなように、脱歴油の性状
は脱歴溶剤としてn−へブタンあるいはプロパンを低溶
剤比で使用しても従来の水素化処理−溶剤脱歴プロセス
の場合よりも大幅に改善される。特にプロパンを1史用
した場合その効果は著るしく発揮される。すなわち、n
−ペンタンの溶剤比を増加してよシ高品位の脱歴油を得
るより、低溶剤比のプロパンを用いて高品位の脱歴油を
得る方が経済的にも工業的にもはるかに優れている。
On the other hand, when thermal decomposition is carried out after hydrotreating as proposed in the invention, and solvent deasphalting is performed, the properties of the deasphalted oil change as shown in Example 1. The use of this method is a significant improvement over conventional hydrotreating-solvent deasphalting processes. In particular, when propane is used for a period of time, the effect is remarkable. That is, n
-It is much better economically and industrially to obtain a high-grade deasphalted oil using a low solvent ratio of propane than to obtain a higher-grade deasphalted oil by increasing the solvent ratio of pentane. ing.

このように、重質鉱油を本発明の方法にしたがって処理
する場合、所望の脱歴油の性状あるいは収率に応じてプ
ロパン、ブタンあるいはn−ペンタン等の比較的低分子
量の溶剤を、低い溶剤比で任意に選択でき、かつその時
の脱歴油は尚収率で得ることができる。
Thus, when treating heavy mineral oil according to the method of the present invention, a relatively low molecular weight solvent such as propane, butane or n-pentane may be substituted with a lower molecular weight solvent, such as propane, butane or n-pentane, depending on the properties or yield of the desired deasphalted oil. The ratio can be arbitrarily selected, and the deasphalted oil can be obtained at a still high yield.

〔参考例1〕 表−2に示すアラビンヘビー系減圧残渣油をn−ブタン
及びれ−ペンタンを用いて溶剤脱歴した。その時の脱歴
油収率と脱歴油中の重金属(V+Ni)量を図3に示す
。脱歴粂件は26− 以Fの通りであった。
[Reference Example 1] Arabin heavy vacuum residue oil shown in Table 2 was solvent deasphalted using n-butane and pentane. Figure 3 shows the yield of deasphalted oil and the amount of heavy metals (V+Ni) in the deasphalted oil at that time. The cases of dereliction of records were as shown in 26-F.

心 刑 n−ブタン n−ペンタン 溶剤比 5.0及び7.0 1.0〜5,0温If 1
40’C170’C 図6は■溶剤脱歴処理単独(参考列1)、■熱分解−溶
剤説歴処理(比較列1)、■水素化処理−浴削脱ハL処
理(比較t112)と本発明の■水素化処理−熱分解−
溶剤悦献処4(実施例1)と各プロセスで得られる脱歴
油収率(ただし熱分解処理を廿むプロセスでは、熱分解
後の常圧または/及び減圧蒸留により留出する熱分解軽
油と脱歴油との合計収率)と該油中の重金属(V十N1
)iiOIA係を示すものである。
Heart punishment n-butane n-pentane solvent ratio 5.0 and 7.0 1.0-5.0 temperature If 1
40'C170'C Figure 6 shows ■Solvent deasphalting treatment alone (reference column 1), ■Pyrolysis-solvent deasphalting treatment (comparison column 1), and ■Hydrogenation treatment-bath cutting deasphalting treatment (comparison t112). ■Hydrotreatment of the present invention - thermal decomposition -
Solvent Pleasure Process 4 (Example 1) and Deasphalted Oil Yield Obtained in Each Process (However, in processes that involve pyrolysis treatment, pyrolysis gas oil distilled by normal pressure or/and vacuum distillation after pyrolysis) and deasphalted oil) and heavy metals in the oil (V + N1
)ii indicates the OIA staff.

ここで合計収率は谷プロセスの減圧蒸留残油を基準とす
る。
Here, the total yield is based on the vacuum distillation residue of the Tani process.

すなわちプロセス■、■で合計収率は溶剤脱れき処理原
料油を基準とし、プロセス■、■で合計収率は熱分#処
理原料油を基準とする。また図3L中01、C4、C6
はそれぞれ溶剤27一 脱れき処理工程で溶AIJとしてプロパン、n−ブタン
、n−ペンタンを使用したことを示す。
That is, in processes (1) and (2), the total yield is based on the solvent deasphalt treated feedstock, and in processes (2) and (2), the total yield is based on the thermal #treated feedstock. Also, 01, C4, C6 in Figure 3L
Solvent 27 indicates that propane, n-butane, and n-pentane were used as molten AIJ in the deasphalting process, respectively.

図から明らかな様に■溶剤脱歴プロセスと■熱分解処理
−溶剤脱歴の組合わせプロセスで得られる熱分#軽油と
脱歴油の同一の金属含量に対する脱歴油と熱分解軽油の
合st収率は両ブロセヌで#丘とんど変わらないか、む
しろ■熱分解処理−溶剤脱歴組合わせプロセスの方が少
ない値を示す。
As is clear from the figure, the thermal content obtained by the combined process of ■solvent deasphalting process and ■pyrolysis treatment-solvent deasphalting process is as follows: The st yield is almost the same in both cases, or rather shows a lower value in the combination process of thermal decomposition and solvent deasphalting.

一方、本発明の方法■では、水素化処理油を熱分解−溶
剤脱歴処理しても、同−嵐省属含量に対する脱歴油と熱
分解軽油の合計収率は、水素化処理油を単に溶剤脱歴処
理するよシも大幅に増加し、従来技術とは全く異なる挙
動を示している。
On the other hand, in method ① of the present invention, even if the hydrotreated oil is subjected to pyrolysis-solvent deasphalting, the total yield of deasphalted oil and pyrolyzed light oil relative to the same content is lower than that of the hydrotreated oil. The number of cases where the solvent is simply deasphalted has increased significantly, and the behavior is completely different from that of the conventional technology.

さらに■溶剤脱歴処理単独とは比較するまでもなく重金
属含量及び脱歴油の収率のいずれもがすぐれていること
は明白である。さらに本発明の方法は操作温度が低く、
しかも低溶剤比の溶剤脱歴によって他の諸プロセスよシ
も低い重金属量の28− C・・・・・・水素化処理−熱分解−溶剤脱歴処理(実
施例1)。
Furthermore, it is clear that both the heavy metal content and the yield of deasphalted oil are superior to (2) solvent deasphalting treatment alone. Furthermore, the method of the present invention has a low operating temperature;
Moreover, due to the solvent deasphalting at a low solvent ratio, the amount of heavy metals is lower than that of other processes. 28-C...hydrogenation-pyrolysis-solvent deasphalting treatment (Example 1).

脱歴油全高い収率で得ておシ、脱歴コスト、収率、脱歴
油の品質いずれの点においてもすぐれたプロセスである
It is an excellent process in terms of deasphalting oil with a high total yield, deasphalting cost, yield, and quality of deasphalting oil.

【図面の簡単な説明】[Brief explanation of drawings]

図1及び図2は本発明に係る方法の一態様をそれぞれブ
ロック略図として示したフローシートである。 図中、4・・・・・・水素化処理装置、6・・・・・・
気液分離装置、15・・・・・・熱分解処理装置、21
・・・・・・溶剤脱歴装置である。 図3は溶剤脱歴処理、熱分解−溶剤脱歴処理、水素化処
理−溶剤脱歴処理及び水素化処理−熱分解−溶剤脱歴処
理の各プロセスにおける、脱歴油収率(ただし熱分解処
理を含むプロセスでは、熱分解軽油と脱歴油との合計収
率をいう。)と核油中の重金属量との関係を示すグラフ
である。 図中、口・・・・・・溶剤脱歴処理(参考例1)、j・
・・・・・熱分解−溶剤脱歴処理(比較例1)、○・・
・・・・水素化処理−溶剤脱歴処理(比較例2)、29
− 特許出願人 新燃料油開発技術研究組合 2 、゛・、
ノ 一3〇− 手続補正書 昭和59年2月14日 特許庁長官 若 杉 和 夫 殿 1、事件の表示 昭和58年特許願第142485号 2、発明の名称 重質鉱油の処理方法 3、補正ケする者 事件との臥1優 特許出願人 名称 判灼料油開発技術研究組合 赤飯大成ビル(電話582−7161)ならびに願智−
に添付の図2 6、補正の内容 (1)明細書16頁12行の「熱分解溶剤脱歴」とある
の7「熱分解−溶剤脱歴」と補正する。 (2) 明細書16頁13行の「水素化処理溶剤脱歴」
とあるの會「水素化処理−溶剤脱歴」と補正する。 (3)明細書23頁6行の「熱分解=」とあるの?「熱
分解−」と補正する。 (4)明細書30頁1行の次に次の文?挿入する。 「また図3中下向きの矢印は重金属量がそれ以下である
ことケ示す。」 (5) 図2ヶ別紙の通り補正する。
FIGS. 1 and 2 are flow sheets each showing, as a block diagram, one embodiment of the method according to the invention. In the figure, 4...hydrogenation equipment, 6...
Gas-liquid separation device, 15...Pyrolysis treatment device, 21
・・・・・・This is a solvent deasphalting device. Figure 3 shows the deasphalted oil yield (with the exception of pyrolysis In a process including treatment, it is a graph showing the relationship between the total yield of pyrolysis gas oil and deasphalted oil) and the amount of heavy metals in kernel oil. In the figure,... Solvent deasphalting treatment (Reference example 1), j.
...Thermal decomposition-solvent deasphalting treatment (Comparative Example 1), ○...
... Hydrogenation treatment - Solvent deasphalting treatment (Comparative example 2), 29
- Patent applicant: New Fuel Oil Development Technology Research Association 2,゛・,
No. 130 - Procedural amendment February 14, 1980 Kazuo Wakasugi, Director General of the Patent Office 1, Indication of the case, Patent Application No. 142485, filed in 1982, 2, Name of the invention, Process for treating heavy mineral oil 3, Amendment Patent applicant name: Sekihan Taisei Building (telephone: 582-7161) and Ganchi-
Figure 2 6 attached hereto, contents of amendment (1) On page 16, line 12 of the specification, "thermolysis solvent deasphalting" is amended to 7 "pyrolysis - solvent deasphalting." (2) “Hydrotreating solvent deasphalting” on page 16, line 13 of the specification
Corrected to a certain meeting: ``Hydrotreating - Solvent deasphalting''. (3) Does it say "thermal decomposition =" on page 23, line 6 of the specification? Correct as “pyrolysis-”. (4) What is the next sentence after the first line on page 30 of the specification? insert. ``Also, the downward arrow in Figure 3 indicates that the amount of heavy metals is less than that.'' (5) Correct as shown in the attached sheet in Figure 2.

Claims (1)

【特許請求の範囲】[Claims] 蒸′d残油を含むぼ質鉱油をtl)水素化触媒の存在下
に反応温度約300−480’C1水素圧約50〜20
0119/Cm’ (ゲージ)で水素化処理し、(1り
この水素化処理生成物の少なくとも111Sを反応温度
約650〜550℃、分解圧力常圧〜200 kg 7
cm” (ゲージ)で熱分解処理し、さらに(Ill)
この熱分解生成物の少なくとも、1部をプロパン、ブタ
ン、ペンタン又はこれら2f/1以上の混合物を溶剤と
して用い且つ浴剤/溶剤脱歴処理原料油比(容量)約1
〜6の条件で溶剤脱歴処理することを時機とする重質鉱
油の処理方法。
The distilled mineral oil containing residual oil is heated in the presence of a hydrogenation catalyst at a reaction temperature of about 300-480'C1 hydrogen pressure of about 50-20
0119/Cm' (gauge), and at least 111S of this hydrogenated product was hydrogenated at a reaction temperature of about 650 to 550°C and a decomposition pressure of normal pressure to 200 kg.
cm” (gauge) and further (Ill)
At least a part of this thermal decomposition product is treated using propane, butane, pentane, or a mixture of these at a ratio of 2f/1 or more as a solvent, and the ratio of bath agent/solvent deasphalting feedstock oil (volume) is about 1.
A method for treating heavy mineral oil that is timed by solvent deasphalting treatment under the conditions of ~6.
JP14248583A 1983-08-05 1983-08-05 Method for treating heavy mineral oil Pending JPS6035090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14248583A JPS6035090A (en) 1983-08-05 1983-08-05 Method for treating heavy mineral oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14248583A JPS6035090A (en) 1983-08-05 1983-08-05 Method for treating heavy mineral oil

Publications (1)

Publication Number Publication Date
JPS6035090A true JPS6035090A (en) 1985-02-22

Family

ID=15316416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14248583A Pending JPS6035090A (en) 1983-08-05 1983-08-05 Method for treating heavy mineral oil

Country Status (1)

Country Link
JP (1) JPS6035090A (en)

Similar Documents

Publication Publication Date Title
US8197668B2 (en) Process and apparatus for upgrading steam cracker tar using hydrogen donor compounds
US4065379A (en) Process for the production of normally gaseous olefins
CN109593552B (en) Process for upgrading refinery heavy residues to petrochemicals
US8696888B2 (en) Hydrocarbon resid processing
US4454023A (en) Process for upgrading a heavy viscous hydrocarbon
US4686028A (en) Upgrading of high boiling hydrocarbons
US20080149534A1 (en) Method of conversion of residues comprising 2 deasphaltings in series
US5024750A (en) Process for converting heavy hydrocarbon oil
US4126538A (en) Process for the conversion of hydrocarbons
US5980732A (en) Integrated vacuum residue hydrotreating with carbon rejection
RU2005117790A (en) METHOD FOR PROCESSING HEAVY RAW MATERIALS, SUCH AS HEAVY RAW OIL AND CUBE RESIDUES
EP0434799A1 (en) Resid hydrotreating with solvent-extracted and desasphalted resins.
EP3577199A1 (en) A process for the preparation of a feedstock for a hydroprocessing unit and an integrated hydrotreating and steam pyrolysis process for the direct processing of a crude oil to produce olefinic and aromatic petrochemicals
CN101292013A (en) Hydrocarbon resid processing and visbreaking steam cracker feed
US4465587A (en) Process for the hydroliquefaction of heavy hydrocarbon oils and residua
CA1117058A (en) Process for the conversion of hydrocarbons
EP0082555B1 (en) Process for the production of hydrocarbon oil distillates
US4673485A (en) Process for increasing deasphalted oil production from upgraded residua
US4179355A (en) Combination residual oil hydrodesulfurization and thermal cracking process
US3926785A (en) Integrated distillation and hydrodesulfurization process for jet fuel production
CA2154313C (en) Process for producing a hydrowax
US11041129B2 (en) Processes for producing a fuel range hydrocarbon and a lubricant base oil
JPS6035090A (en) Method for treating heavy mineral oil
JPS5869290A (en) Manufacture of gasoline using hydrocarbon oil
WO2020043758A1 (en) Process for production of hydrocarbon fuels from two heavy feedstocks