JPS603508A - Method and device for sounding in reclaiming and dredging work - Google Patents

Method and device for sounding in reclaiming and dredging work

Info

Publication number
JPS603508A
JPS603508A JP11242083A JP11242083A JPS603508A JP S603508 A JPS603508 A JP S603508A JP 11242083 A JP11242083 A JP 11242083A JP 11242083 A JP11242083 A JP 11242083A JP S603508 A JPS603508 A JP S603508A
Authority
JP
Japan
Prior art keywords
work
sounding
reclamation
water
sound wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11242083A
Other languages
Japanese (ja)
Inventor
Kenichi Kataoka
片岡 建一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11242083A priority Critical patent/JPS603508A/en
Publication of JPS603508A publication Critical patent/JPS603508A/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/90Component parts, e.g. arrangement or adaptation of pumps
    • E02F3/907Measuring or control devices, e.g. control units, detection means or sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/38Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Oceanography (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To execute exactly a measurement without causing a disturbance of a sound wave by forming a sound wave path using a clean water in the vidinity of the outside of a work area. CONSTITUTION:A running spreader 2 repeats an advance and a retreat on a work ship 1, and also after the advance or the retreat, the work ship 1 itself is shifted in parallel by an operation of a winch mechanism 6 by 5-7m each of a prescribed width of scatter, by which a reclaiming work is executed by performing continuously a plane- like thin layer scatter of a prescribed layer thickness. By keeping pace with the reclaiming work, a clean water placed near the water surface is absorbed and discharged through an underwater pump 8, fed to a sounding cylinder 14 placed as a work depth direction in the vicinity of the outside of a work area through a penstock 11, etc., and the clean water is jetted out as what is called ''jet water'' from a water discharge nozzle 20 attached to the lower end of the sounding cylinder 14. In this way, a fresh water pillar E in the a work depth direction is formed, and a measurement can be executed in a state that there is no disturbance of a transmitting sound wave from a transmitter and receiver 19, and a bottom face reflected sound wave, by utilizing this fresh water pillar E as a sound wave path.

Description

【発明の詳細な説明】 本発明は、海底、湖底、河川底等の埋立、浚渫作業にお
いて、深度を測定する測深方法および測深装置に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sounding method and a sounding device for measuring depth in reclamation and dredging work of seabeds, lakebeds, riverbeds, etc.

例えば、フローティングスプレッダによって、海底、湖
底等の埋立工法が実施されており、この埋立工事におい
て、埋立深度を測定することは、A 3 土砂投入量の制御、埋立管理とスプレッダの位置自動制
御による自動埋立を実施する上で重要である。
For example, floating spreaders are used to reclaim the seabed, lakebed, etc., and in this reclamation work, measuring the depth of the reclamation is a method that requires automatic control of the amount of soil input, reclamation management, and automatic spreader position control. This is important in carrying out land reclamation.

斯る観点から超音波発振によって埋立深度の測定が実施
されているが、土砂投入直後に測定することは不可能で
あった。
From this point of view, the depth of reclamation has been measured using ultrasonic oscillations, but it has been impossible to measure immediately after soil is added.

即ち、土砂投入による濁水および気泡発生によって反射
波が撹乱され、計測不能であった。
In other words, the reflected waves were disturbed by the turbid water and bubbles caused by the addition of earth and sand, making it impossible to measure them.

従って、従来では土砂投入後、数時間後に濁水気泡が消
去してから測探している。
Therefore, conventionally, after soil and sand are added, measurement and searching are carried out after the turbid water bubbles have disappeared several hours later.

しかし、この従来例によると、埋立作業中の深度確保が
できないため、埋立精度が悪くかつ海中における後から
深度修正は不可能に近く、土砂の薄層散布による粘性土
封じ込めなど、特に、正確を要する工事ができないもの
であった。
However, according to this conventional method, it is not possible to secure the depth during the reclamation work, so the accuracy of the reclamation is poor, and it is almost impossible to correct the depth later in the ocean. The necessary construction work could not be done.

以上のことは、浮遊式連続埋立工法のみでなくあらゆる
埋立作業、浚渫作業においても同様である。
The above applies not only to the floating continuous landfill method, but also to all types of landfill work and dredging work.

そこで本発明は、上記従来例の問題点乃至不具合点を解
決せんために案出されたものであり、その第1の特徴点
は海底、湖底、河川底等の埋立、浚渫作業において、埋
立、浚渫作業に並行してその作業領域近傍外方における
水中に、清水柱による音波経路を作業深さ方向に造成し
、前記音波経路内で音波の発信受信を交換して作業深さ
を測定するにある。また、本発明の第2の特徴点は、海
底、湖底、河川底等の埋立、浚渫作業において、埋立、
浚渫作業機の作業具の外方近傍に、下端に放水ノズルを
有する測深筒が作業深さ方向として取付けられており、
前記測深筒内に音波送受波器が内蔵され、前記放水ノズ
ルに清浄水が前記測深筒を介して送水される清浄水送液
手段が測深筒に連通して取付けられ、前記音波受波器と
作業機側の測深制御器とが連係されている点にある。
Therefore, the present invention was devised to solve the problems and inconveniences of the above-mentioned conventional methods, and its first feature is that it can be used for reclamation and dredging of seabeds, lakebeds, riverbeds, etc. In parallel with the dredging work, a sound wave path using a clear water column is created in the water outside the vicinity of the work area in the direction of the work depth, and the sound wave transmission and reception are exchanged within the sound wave path to measure the work depth. be. In addition, the second feature of the present invention is that in reclamation and dredging work of seabeds, lakebeds, riverbeds, etc.
A sounding cylinder with a water discharge nozzle at the lower end is installed near the outside of the work tool of the dredging work equipment in the direction of the working depth.
A sonic wave transmitter/receiver is built in the sounding tube, and a clean water sending means for sending clean water to the water discharge nozzle via the sounding tube is installed in communication with the sounding tube, and the sonic wave receiver and The point is that it is linked to the depth sounding controller on the work equipment side.

以下、本発明の一実施例をフローティングスプレッダに
よる連続埋立工法として詳述する。
Hereinafter, one embodiment of the present invention will be described in detail as a continuous landfill method using a floating spreader.

第1図、第2図は設備の平面図と側面図をそれぞれ示し
ているが、これら各図において、(i) l−1:台 
1玖 船であυ、海、湖、河川等の水面上に浮遊されており、
アンカー用ウィンチ機構(6)によって移動円5 定自在である。
Figures 1 and 2 show a plan view and a side view of the equipment, respectively. In each of these figures, (i) l-1:
It is a one-meter boat that is suspended on the water surface of the sea, lake, river, etc.
The movable circle 5 can be fixed freely by the anchor winch mechanism (6).

(2)は走行スプレッダであり、第1図で示す如く、台
船(1)上をその船長方向に符号りの如く往復移動自在
であるとともに、符号Aの如く旋回自在である。
(2) is a running spreader, which, as shown in FIG. 1, is capable of reciprocating movement on the barge (1) in the direction of the ship's length as indicated by the symbol A, and is also freely pivotable as indicated by the symbol A.

走行スプレッダ(2)はスプレッドコンベア(3)ト土
砂拡散器で示されている作業具(5)を備えた俯仰ブー
ム(7)を備え、トリッパコンベア(4)を介して搬送
された土砂等はスプレッドコンベア(3)の送出端下方
に設けられた下方拡大形状の作業具(5)を介して海底
、湖底、河川底等の底(B) K埋立可能とされている
The traveling spreader (2) is equipped with a spreading conveyor (3) and an elevating boom (7) equipped with a working tool (5), which is indicated by a soil spreader, so that the soil, etc. transported via the tripper conveyor (4) is It is possible to reclaim the bottom (B) of the seabed, lake bed, river bed, etc. via a downwardly expanding work tool (5) provided below the delivery end of the spread conveyor (3).

第3図、第4図を参照すると、ブーム(7)の先端で作
業具(5)の両側外方に測深装置(0)が設けられてい
る。
Referring to FIGS. 3 and 4, sounding devices (0) are provided at the tip of the boom (7) on both sides of the working tool (5).

即ち、ブーム(7)の先端には摺動ガイド筒αGが下方
拡大の傾斜姿勢で取付けられ、該ガイド筒αGのそれぞ
れには測深筒α滲が摺動自在に挿嵌されている。
That is, a sliding guide cylinder αG is attached to the tip of the boom (7) in an inclined position expanding downward, and a sounding cylinder α is slidably fitted into each of the guide cylinders αG.

測深筒αψのそれぞれには下端に放水ノズル(イ)が6 設けられておシ、該ノズル翰の上方で測深筒αa内には
超音波の送受波器09が第5図、第6図で示す支持パイ
プ(イ)を介して内蔵されている。
Each of the sounding tubes αψ is provided with 6 water discharge nozzles (A) at the lower end, and an ultrasonic transducer 09 is installed in the sounding tube αa above the nozzle head as shown in FIGS. 5 and 6. It is built in through the support pipe (A) shown.

支持パイプ(イ)内には送受波ケーブル01)が挿支さ
れ、図示省略したスプレッダ(2)に設置された測深制
御器、記録器と送受波器09をケーブル←ηで連係され
ている。
A wave transmitting/receiving cable 01) is inserted into the support pipe (A), and a sounding controller, a recorder, and a wave transmitting/receiving device 09 installed on a spreader (2) (not shown) are linked by a cable ←η.

ブーム(7)の先端にはやぐら(2)が立設されており
、ブーム(7)上の電動ウィンチαDと前記支持パイプ
(イ)とをワイヤ(17A)でシーブ(至)を介して連
結することによって、測深筒αΦが作業具(5)の両側
外方近傍において作業機側、即ち、スプレッダ(2)側
に昇降自在にされている。
A tower (2) is erected at the tip of the boom (7), and the electric winch αD on the boom (7) and the support pipe (A) are connected via a sheave (to) with a wire (17A). By doing so, the sounding cylinder αΦ can be freely raised and lowered toward the working machine side, that is, the spreader (2) side, in the vicinity of both outer sides of the working tool (5).

前記放水ノズル(イ)には清浄水が送液可能であり、該
清浄水送液手段■はブーム(7)の下面に金具(ハ)を
介して取付けられた導水管α刀を有し、該導水管αDの
一端にアーム(9)を介して支持されフレキシブルチュ
ーブO2が接続され、該チューブ(至)のエンドに水中
ポンプ(8)が取付けられている。
Clean water can be sent to the water discharge nozzle (A), and the clean water sending means (2) has a water conduit pipe attached to the lower surface of the boom (7) via a metal fitting (C), A flexible tube O2 supported via an arm (9) is connected to one end of the water conduit αD, and a submersible pump (8) is attached to the end of the tube.

導水管αDの他端はブーム(7)の先端において第4A
7 図で示す如く1字形分岐部(11A)を有し、該分岐部
(11A)の両端と左右の測深筒α滲の中途とが回転接
手09を有するフレキシブルチューブ03により連通さ
れてなる。
The other end of the water conduit αD is connected to No. 4A at the tip of the boom (7).
7 As shown in the figure, it has a single-shaped branch part (11A), and both ends of the branch part (11A) and the middle of the left and right sounding tubes α are communicated by a flexible tube 03 having a rotary joint 09.

なお、水中ポンプ(8)は電動ウィンチ0Qおよびワイ
ヤー(10A)を介して第3図の矢示方向に作動可能で
あり、こぐに、水中ポンプ(8)を水面上に投出可能と
している。
The submersible pump (8) can be operated in the direction of the arrow in FIG. 3 via the electric winch 0Q and the wire (10A), so that the submersible pump (8) can be thrown onto the water surface.

而して、上記構成の作用を説明しつつ埋立作業と並行し
た測深要領を説明する。
The operation of the above configuration will be explained, and the procedure for sounding in parallel with the reclamation work will be explained.

本例のフローティングスプレッダは、台船(1)上を走
行スプレッダ(2)が走行しながら台船(1)上のトリ
ッパコンベア(4)から運ばれてくる土砂はスプレッド
コンベア(3]で走行スプレッダ(2)の先端まで移送
し、土砂拡散器で示す作業具(5)を介して土砂の散布
幅を5〜7mに拡幅して海底面上に層厚0.5〜1.0
mの薄層散布を連続的に行なうことに々る。
In the floating spreader of this example, the spreader (2) runs on a barge (1), and the earth and sand carried from the tripper conveyor (4) on the barge (1) is transported to the spreader (3) by the spreader conveyor (3). (2), spread the soil using a work tool (5) indicated by a soil spreader to spread the soil to a width of 5 to 7 m, and spread the soil to a layer thickness of 0.5 to 1.0 meters on the seabed surface.
It is effective to continuously apply a thin layer of 500 m.

従って、走行スプレッダ(2)は台船(1)上の前進、
後退を繰返しながらかつ前進又は後退後に散布所定幅5
〜7mずつ台船(1)自体をウィンチ機構(6)の操作
によって平行的にずらせることにより、所定層厚の平面
的薄層散布を連続的に施工してここに埋立作業がなされ
ている。
Therefore, the traveling spreader (2) moves forward on the barge (1),
Spreading predetermined width 5 while repeating retreat and after moving forward or retreating
By shifting the barge (1) itself in parallel by ~7m by operating the winch mechanism (6), the reclamation work is carried out by continuously distributing a thin planar layer of a predetermined thickness. .

而して、埋立作業において、深度を測定することが土砂
供給量制御、等の見地から重要でこのさい、音波を発振
返送することが用いられる。
Therefore, in reclamation work, it is important to measure the depth from the viewpoint of controlling the amount of earth and sand supplied, and in this case, oscillating and returning sound waves is used.

ところで、作業具(5)を介して投入された土砂はその
作業領域においては、土砂中の微粒子による濁水と、土
砂中に混入す、る気泡が発生し、音波発受信は撹乱され
て海底面の正確な測深が困難となる。
By the way, in the working area, the earth and sand thrown in through the work tool (5) generates turbid water due to the fine particles in the earth and sand, and air bubbles mixed in the earth and sand, and the transmission and reception of sound waves are disturbed and the sound waves reach the seabed surface. Accurate sounding becomes difficult.

又、実験によれば、前記の撹乱が消去され、測深が可能
な距離は走行スプレッダ(2)の進行方向の前側では1
0〜15m以上、後側では15〜20m以上も土砂投下
地点より離れた位置で音波発信等をすれば可能となつな
か、これでは、機構上非常に大きくかつ重量が増加し、
困難であるし、作業領域よυ離れすぎてしまっているた
めに必要部分の深度 1測定との狂いを招く。
Also, according to experiments, the above-mentioned disturbance is eliminated and the distance that can be measured is 1 on the front side in the direction of travel of the traveling spreader (2).
Although it would be possible to transmit sound waves at a distance of 0 to 15 m or more, or 15 to 20 m or more on the rear side from the earth and sand dumping point, this method would be extremely large and heavy due to its mechanism.
It is difficult, and because it is too far away from the work area, it leads to errors in measuring the depth of the required area.

而して、斯る場合、本発明の実施例にあってば9 埋立作業と並行して水面近くの清浄水を水中ポンプ(8
)を介して吸引吐出して導水管α刀等を介して作業領域
の外方近傍に作業深さ方向として配置された測深筒α4
にそれぞれ送液せしめ、測深筒α滲の下端に取付けられ
た放水ノズル翰から清浄水を所謂ジェット水として噴出
させることによって、第4図で示す如く作業深さ方向の
清水柱(E)を造成し。
In such a case, according to the embodiment of the present invention, clean water near the water surface is pumped by a submersible pump (8) in parallel with the landfill work.
) is sucked and discharged through a water conduit α4, which is placed near the outside of the working area in the working depth direction.
A column of clean water (E) is created in the working depth direction as shown in Fig. 4 by sending clean water to each area and jetting clean water as so-called jet water from the water nozzle installed at the lower end of the sounding tube α. death.

この清水柱(E)を音波経路として利用して送受波器α
1からの発信音波、底面反射音波の撹乱のない状態での
測定が可能となされるのである。
Using this clear water column (E) as a sound wave path, the transducer α
This makes it possible to measure the sound waves emitted from 1 and the sound waves reflected from the bottom surface without any disturbance.

而して、本実施例では測深筒α4のそれぞれは電動ウィ
ンチ07)、シーブα印等を介して独立して昇降自在で
あることから、清水柱(E)内で音波の発信受信を交換
させるとき、音波の最適距離を保持できるのであり、又
、埋立の進行に伴って変化する水深に対応させることが
できるのである。
In this embodiment, since each of the sounding tubes α4 can be raised and lowered independently via the electric winch 07), the sheave α mark, etc., the transmission and reception of sound waves are exchanged within the clean water column (E). In this case, it is possible to maintain the optimum distance for the sound waves, and it is also possible to adapt to the water depth, which changes as the reclamation progresses.

更に、測深筒α→はこれを下方拡大状の傾斜として配置
されており、これによって、海中に拡散散布された土砂
の海底部における影響を受けない位置に、ノズル(イ)
等を位置できることになる。
Furthermore, the sounding tube α→ is arranged with an inclination that expands downward, which allows the nozzle (A) to be placed at a position on the seabed where it will not be affected by the sediment that has been dispersed into the sea.
etc. can be located.

10 なお、上述例において、作業具(5)はこれを浚渫用パ
ケットであってもよく、砕石機であってもよく、又、作
秦機としてはスプレーダの他、埋立機でもよく、ここに
、埋立作業の他、浚渫作業にも適用できることになる。
10 In the above example, the working tool (5) may be a dredging packet or a stone crusher, and the quarrying machine may be a landfill machine in addition to a sprayer. In addition to reclamation work, it can also be applied to dredging work.

以上、要するに本発明は、埋立作業等に並行して音波に
よる深度を測定するに、作業領域外方近傍で清浄水によ
る音波経路を造成して測定するものであるから、音波の
撹乱はなく正確な測定ができる。
In summary, the present invention measures the depth using sound waves in parallel with land reclamation work, etc., by creating a sound wave path using clean water near the outside of the work area, so there is no disturbance of the sound waves and the measurement is accurate. measurements can be made.

又、本発明の装置によれば、測深筒下端に放水ノズルが
設けられ、該ノズルに清浄水供給手段からの清浄水が噴
出され、水中に清水柱が形成できるとともに、測深筒に
清水柱を経路とする音波送受波器が設けられ、この送受
波器と測定制御器とを連係していることから、例えば、
土砂投入進行方向の前後の深度を自動測定し、進行方向
の前方測定値はスプレッダの走行制御装着に指令し、埋
立前の測定深度と埋立所定深度の差による埋立量を自動
的に算出して土砂運搬量に伴うスプレッダ^11 の走行速度を自動制御することもできる。また、進行方
向の後方測定深度はその時点における散布埋立深度の確
認と更にはスプレッダの位置座標に相対するメモリ一番
地に記憶せしめ、埋立全区画における埋立管理とスプレ
ッダの位置自動制御による自動埋立を実施することがで
きる等の利点がある。
Further, according to the device of the present invention, a water discharge nozzle is provided at the bottom end of the sounding tube, and clean water from the clean water supply means is spouted into the nozzle to form a column of clean water in the water. Since a sound wave transducer is provided as a path, and this transducer and measurement controller are linked, for example,
It automatically measures the depth before and after the direction in which earth and sand is being fed, and sends a command to the spreader travel control installation to use the measured value in the forward direction, and automatically calculates the amount of reclaimed material based on the difference between the measured depth before reclamation and the predetermined reclaimed depth. It is also possible to automatically control the traveling speed of the spreader ^11 depending on the amount of soil transported. In addition, the depth measured backward in the direction of travel can be used to confirm the spreading landfill depth at that point in time, and to store it in the first memory location relative to the spreader position coordinates, allowing automatic landfilling to be performed through automatic landfill management and automatic control of the spreader position in all landfill sections. It has advantages such as being able to be carried out.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一例を示し、第1図は全体概要の平面図
、第2図は同じく側面図、第3図は測深装置要部の側面
図、御4図は同じく正面図、第5図は測深筒詳細な縦断
正面図、第6図は同一部断面の側面図である。 (2)・・・作業機(走行スプレッダ) 、 (5)・
・・作業具(土砂拡散器’1.(14)・・・測深筒、
09・・・音波送受波器。 (イ)・・・ノズル、(財)・・・清浄水送液手段。 第6図 特開昭GO−3508(6) $5図
The drawings show an example of the present invention, and Fig. 1 is a plan view of the overall outline, Fig. 2 is a side view, Fig. 3 is a side view of the main parts of the sounding device, Fig. 4 is a front view, and Fig. 5 6 is a detailed longitudinal sectional front view of the sounding tube, and FIG. 6 is a side view of the same partial section. (2)...Work equipment (traveling spreader), (5)...
・・Working tools (soil diffuser '1. (14) ・・Sounding tube,
09...Sonic wave transducer. (a)...Nozzle, (Foundation)...Clean water delivery means. Fig. 6 JP-A-Sho GO-3508 (6) $5 Fig.

Claims (1)

【特許請求の範囲】 1、海底、湖底、河川底等の埋立、浚渫作業において、
埋立、浚渫作業に並行してその作業領域近傍外方におけ
る水中に、清水柱による音波経路を作秦深さ方向に造成
し、前記音波経路内で音波の発信受信を交換して作柴深
さを測定することを特徴とする埋立、浚渫作業における
測深方法。 2、海底、湖底、河川底等の埋立、浚渫作業において、
埋立、浚渫作業機の作業具の外方近傍に、下端に放水ノ
ズルを有する測深筒が作某深さ方向として取付けられて
おり、前記測深筒内に音波送受波器が内蔵され、前記放
水ノズルに清浄水が前記測深筒を介して送水される清浄
水送液手段が測深筒に連通して取付けられ、前記音波受
波器と作業機側の測深制御器とが連係されて扁 2 いることを特徴とする埋立、浚渫作業における測深装置
。 3、作業具が下方拡大の土砂拡散器であり、該土砂拡散
器の両側外方に下方拡大する傾斜姿勢で測深筒が作業機
側に昇降自在に取付けられていることを特徴とする特許
請求の範囲第2項記載の埋立、浚渫作業における測深装
置。 4、清浄水送液手段が作業領域近傍の海面、湖面、河川
面等の水面に出没自在な水中ポンプと、該水中ポンプと
測深筒とを連通自在に接続する可焼性を有するホースと
、から構成されていることを特徴とする特許請求の範囲
第2項記載の埋立、浚渫作業における測深装置。
[Claims] 1. In the reclamation and dredging work of seabeds, lakebeds, riverbeds, etc.
In parallel with the reclamation and dredging work, a sound wave path using a clear water column is created in the water outside the vicinity of the work area in the direction of the depth of the land, and the transmission and reception of sound waves are exchanged within the sound wave path to increase the depth of the land. A depth sounding method for reclamation and dredging work, which is characterized by measuring. 2. In the reclamation and dredging work of seabeds, lakebeds, riverbeds, etc.
A sounding tube having a water discharge nozzle at the lower end is installed near the outside of the work tool of the reclamation and dredging work machine in a certain depth direction, and a sound wave transducer is built in the sounding tube, and the water discharge nozzle A clean water sending means for sending clean water through the sounding tube is installed in communication with the sounding tube, and the sonic wave receiver and a sounding controller on the work equipment side are linked. A sounding device for reclamation and dredging work featuring: 3. A patent claim characterized in that the working tool is a downwardly expanding sediment diffuser, and a sounding cylinder is attached to the working machine side in an inclined position expanding downwardly to the outside of both sides of the sediment diffuser so as to be able to rise and fall freely. A sounding device for reclamation and dredging work as described in item 2. 4. A submersible pump whose clean water delivery means can freely appear on the surface of the sea, lake, river, etc. in the vicinity of the work area, and a flammable hose that freely connects the submersible pump and the sounding tube; A sounding device for reclamation and dredging work according to claim 2, characterized in that it is comprised of:
JP11242083A 1983-06-21 1983-06-21 Method and device for sounding in reclaiming and dredging work Pending JPS603508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11242083A JPS603508A (en) 1983-06-21 1983-06-21 Method and device for sounding in reclaiming and dredging work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11242083A JPS603508A (en) 1983-06-21 1983-06-21 Method and device for sounding in reclaiming and dredging work

Publications (1)

Publication Number Publication Date
JPS603508A true JPS603508A (en) 1985-01-09

Family

ID=14586200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11242083A Pending JPS603508A (en) 1983-06-21 1983-06-21 Method and device for sounding in reclaiming and dredging work

Country Status (1)

Country Link
JP (1) JPS603508A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251010A (en) * 1988-08-12 1990-02-21 Kajima Corp Water jet type ultrasonic distance measuring method
US5080330A (en) * 1989-06-15 1992-01-14 Tokai Rubber Industries, Ltd. Fluid-filled cylindrical elastic mount having axially extending and diametrically opposite thin-walled elastic portions
WO2013042148A1 (en) * 2011-09-22 2013-03-28 Ing. Sarti Giuseppe & C. - Impresa Costruzioni - S.P.A Method for the requalification, construction and restoration of submerged and/or partially submerged beds of lagoons, shores and the like

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251010A (en) * 1988-08-12 1990-02-21 Kajima Corp Water jet type ultrasonic distance measuring method
US5080330A (en) * 1989-06-15 1992-01-14 Tokai Rubber Industries, Ltd. Fluid-filled cylindrical elastic mount having axially extending and diametrically opposite thin-walled elastic portions
WO2013042148A1 (en) * 2011-09-22 2013-03-28 Ing. Sarti Giuseppe & C. - Impresa Costruzioni - S.P.A Method for the requalification, construction and restoration of submerged and/or partially submerged beds of lagoons, shores and the like

Similar Documents

Publication Publication Date Title
US3462963A (en) Apparatus for pipelaying and trenching operations in a body of water
US5765965A (en) Apparatus for in situ installation of underground containment barriers under contaminated lands
US3952532A (en) Underwater trenching and cable laying apparatus
US3222876A (en) System and apparatus to place flexible pipes and cables under ground below water
GB2071182A (en) Digging trenches
US4714378A (en) Apparatus and method for trenching subsea pipelines
US5957624A (en) Apparatus and method for in Situ installation of underground containment barriers under contaminated lands
US8083437B2 (en) Underwater trenching apparatus
US10604911B2 (en) Underwater pipeline burying apparatus and method
US4114390A (en) Burying a conduit in the bottom of a body of water
US3505826A (en) Apparatus for embedding a pipeline into a water bed
JPH07231528A (en) Submarine cable laying machine
JP5359070B2 (en) Dredge excavator and dredging system using the dredger for dredging
JPS603508A (en) Method and device for sounding in reclaiming and dredging work
US4585274A (en) Mineral and metal particle recovery apparatus and method
CN216564303U (en) Formula pipe cable is laid and is buried machine is spouted in hank
JP2017048623A (en) Water bottom leveling device for pump dredger and water bottom leveling method of using the same
AU2022369806A1 (en) Dredging system and method for dredging
JP2004204440A (en) Underwater walking type working machine and working method therefor
KR102117631B1 (en) Develop Soil Pumping Discharge Method for Reclamation and its Equipment
JP2009249956A (en) Sediment input ship and sediment input method
CN114837119A (en) Suspended river control sand stirring boat and suspended river control system
US3975784A (en) Marine structure
CN114498456A (en) Formula pipe cable is laid and is buried machine is spouted in hank
KR100366609B1 (en) Spray reclaming apparatus for reinforcing soft ground of sea bottom and method thereof