JPS6035020B2 - How to make a model for flow test - Google Patents

How to make a model for flow test

Info

Publication number
JPS6035020B2
JPS6035020B2 JP54125906A JP12590679A JPS6035020B2 JP S6035020 B2 JPS6035020 B2 JP S6035020B2 JP 54125906 A JP54125906 A JP 54125906A JP 12590679 A JP12590679 A JP 12590679A JP S6035020 B2 JPS6035020 B2 JP S6035020B2
Authority
JP
Japan
Prior art keywords
model
shape
stock solution
foamed
foamed resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54125906A
Other languages
Japanese (ja)
Other versions
JPS5648534A (en
Inventor
理一 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP54125906A priority Critical patent/JPS6035020B2/en
Publication of JPS5648534A publication Critical patent/JPS5648534A/en
Publication of JPS6035020B2 publication Critical patent/JPS6035020B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば船舶試験水槽などにおいて試験や実験
に供される縮尺模型船、海洋構造物模型、模型舵といっ
たような流力試験用模型を製作する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to hydrodynamic test models such as scale model ships, marine structure models, and model rudders that are used for tests and experiments in, for example, ship test tanks. Concerning how to produce.

〔従釆の技術〕[Successful technology]

上記したような流力試験用模型は、その大きさ及び形状
における高い製作精度と対温度変形率が小さいこと等が
要求されるため、旧来は木またはアルミあるいはパラフ
ィンなどのうちから選択された単一材料を用いて製作さ
れるのが普通であったが、これらの材料自体が極めて高
価であるばかりで無く、その硬度および重量が大きいた
めに、材料運搬や模型の製作等に多大な労力と長い時間
を要すると共に、出来上がった模型も必然的に重くなっ
て試験や実験においても非常な労力を要する、といった
欠点があることから、最近では、比較的安価に入手でき
ると共に、非常に軽くて柔らかく、また、対温度変形率
も小さな発泡樹脂製のパネルを用いて流力試験用模型を
製作する方法が一般的になりつつある。
The above-mentioned hydraulic test model is required to have high manufacturing accuracy in its size and shape, and a low deformation rate with respect to temperature. Normally, these materials were manufactured using a single material, but not only were these materials themselves extremely expensive, but their hardness and weight were large, requiring a great deal of labor to transport the materials and make the models. It takes a long time and the finished model is necessarily heavy, which requires a lot of effort in testing and experimentation. In addition, it is becoming common to use panels made of foamed resin that have a small deformation rate with respect to temperature to produce models for flow tests.

上記発泡樹脂製のパネルを用いた流力試験用模型の製作
は、従来、次のような手順で行われている。
Conventionally, a flow test model using the above-mentioned foamed resin panel has been manufactured using the following procedure.

即ち、{i} 先ず、第2図イに示すように、合板など
の木材で芯体a(この例では船型試験用模型船製作用の
ものを示している)を作成し、(ii} 次に、第2図
口に示すように、市販されている比較的厚めの発泡樹脂
製パネルbから、所望の大きさ及び形状の模型船を製作
するに必要な大きさ及び形状の複数の発泡樹脂分割部材
c・・・を切り出し、風 続いて、第2図ハに示すよう
に、その切り出した各発泡樹脂分割部材c・・・を鞍着
材dを介して前記芯体aの表面に貼り付け、(iv}
そして、第2図二に示すように、前記接着剤dが硬化し
て全ての発泡樹脂分割部材c・・・が前記芯体aの表面
にしっかりと固着してから、その発泡樹脂分割部材c・
・・の表面を切削して所望の大きさ及び形状の模型原型
eに整形し、M その後、第2図木に示すように、前記
模型原型eの表面に硬化剤fを吹き付けまたは塗布によ
り含浸させてその表面を硬化させ、Ni} 最後に、第
2図へに示すように、その模型原型eの硬化表面を研磨
して精密仕上げする、という方法によっていた。
That is, {i} First, as shown in Figure 2 A, a core body a (this example shows a core body a for making a model ship for hull form testing) is made of wood such as plywood, and then (ii) As shown in Figure 2, a plurality of foamed resin panels of the size and shape necessary to manufacture a model ship of a desired size and shape are made from relatively thick foamed resin panels b available on the market. Then, as shown in FIG. 2C, each of the cut out foamed resin divided members c... is pasted on the surface of the core body a through the saddle adhesive d. Add, (iv}
Then, as shown in FIG. 2, after the adhesive d has hardened and all the foamed resin segmented members c... have firmly adhered to the surface of the core body a, the foamed resin segmented members c.・
The surface of . Finally, as shown in FIG. 2, the hardened surface of the model prototype e was polished for precision finishing.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記従来の発泡樹脂製流力試験用模型の
製作方法においても、旧来の木またはアルミあるいはパ
ラフィンなどのうちから選択された単一材料を用いて製
作する方法に比べれば、かなり安価に、また、比較的容
易かつ短時間で模型の製作を行えると共に、出来上がっ
た模型が軽くて試験や実験も少ない労力で容易に行える
利点があるとはいうものの、前記模型原型eを製作する
のになお相当の手間と時間を要しており、改善の余地が
大きい。
However, even in the above-mentioned conventional method of manufacturing a flow test model made of foamed resin, it is considerably cheaper than the conventional method of manufacturing using a single material selected from wood, aluminum, paraffin, etc. In addition, although the model can be manufactured relatively easily and in a short time, and the finished model is light, tests and experiments can be easily performed with little effort. This requires a considerable amount of effort and time, and there is considerable room for improvement.

即ち、前記手順‘i}の工程において芯体aを作成する
には、合板などの木材を所定の形状に切り出して組立て
る作業が必要であり、また、前記手順{ii)の工程に
おいては、市販の発泡樹脂製パネルbから必要形状の複
数の発泡樹脂分割部村c・・・を切り出す際にどうして
も半端な部材が出て無駄が多く、なお経済的な不利があ
ると共に、その切り出し作業の際には、切り出すべき発
泡樹脂分割部材c・・・の大きさや形状を誤らないよう
に細心の注意を払わねばならず、また、少なくとも芯体
aへの穣当面や発泡樹脂分割部材c・・・同士の援当面
だけは隙間が生じないように十分精密に仕上げる必要が
あるために、その作業にはやはり相当面倒で時間を要し
、更に、前記手順‘iiiーの工程においても、前記発
泡樹脂分割部材c・・・を芯体aへ隙間無く貼り付ける
のにかなりの手間を要する、という不利が残存している
。そして、かかる従来方法による各種の不利は、製作し
ようとする模型の形状が複雑であればある程大きなもの
となる。一方、如何なる方法で製作されるものであれ、
例えば船型試験用模型船に代表されるような流力試験用
模型は、特定の実物に対応した試験または実験のために
製作されるものであるから、一旦その試験または実験に
供された後は二度と用いられないのが普通であり、しか
も、その供試流力試験用模型の形状は高度な秘密を要す
るのが普通であることから、むやみに外部に廃棄するわ
けにもいかず、かなりの長時間に亘って、多数のしかも
良く似た大きさ及び形状の使用済み流力試験用模型が試
験場または実験場に山積みされて放置されている、とい
う現実がある。
That is, in order to create the core body a in the step 'i} above, it is necessary to cut out wood such as plywood into a predetermined shape and assemble it, and in the step {ii) above, When cutting out a plurality of foamed resin divided parts c... of the required shape from the foamed resin panel b of , there is a lot of waste as incomplete parts inevitably come out, and there is an economical disadvantage, and when the cutting work is carried out, In order to avoid mistakes in the size and shape of the foamed resin dividing member c... to be cut out, careful attention must be paid not to make mistakes in the size and shape of the foamed resin dividing member c... Since it is necessary to finish the parts that support each other with sufficient precision so that there are no gaps, this work is still quite troublesome and takes time. There remains the disadvantage that it takes a considerable amount of effort to attach the divided members c... to the core body a without any gaps. The various disadvantages of such conventional methods become greater as the shape of the model to be manufactured becomes more complex. On the other hand, no matter how it is produced,
For example, hydraulic test models such as ship type test model ships are manufactured for tests or experiments that correspond to specific actual objects, so once they have been used for that test or experiment, Since it is normal that it is never used again, and the shape of the test model for hydrodynamic testing is usually kept highly confidential, it cannot be discarded outside without thought, and it is kept for a long time. The reality is that a large number of used hydraulic test models of similar size and shape are left piled up in a test site or field for a long time.

このことは、ただ単に使用済み流力試験用模型の置き場
所や捨て場所に困るという問題のみならず、資材面での
大きな無駄という問題をも含んでいることが明白である
。本発明は、かかる実情に鑑みてなされたものであって
、その目的は、例えば使用済みで不要となった流力試験
用模型を有効に再生利用することにより、従来よりも格
段に容易かつ短時間でしかも経済性有利に所望の流力試
験用模型を製作できると共に、広い置き場所を必要とし
たり、大きな資材の無駄につながる廃棄流力試験用模型
の発生を極力少なくせんとすることにある。〔問題点を
解決するための手段〕 上記目的を達成するために、本発明は、所望の大きさ及
び形状を有する流力試験用模型を製作する方法において
、先ず、前記所望の大きさ及び形状と類似の大きさ及び
形状を有する不要となった流力試験用模型の表面を切削
することにより、前記所望の形状と類似の形状で且つ前
記所望の大きさよりも若干小さな芯体を作成し、次に、
樹脂原液に発泡剤を混合して成る発泡樹脂原液を、発泡
が完了しないうちに前記芯体の表面に付着させ、続いて
、前記発泡樹脂原液が前記芯体の表面において発泡固化
した後で、その発泡固化樹脂の表面を実質的に前記所望
の大きさ及び形状に整形して模型原型を製作し、その後
、前記模型原型の表面に硬化剤を含浸させてその表面を
硬化させ、最後に、前記模型原型の硬化表面を研磨して
精密仕上げする、という手順を採用している点に特徴が
ある。
It is clear that this problem involves not only the problem of simply having trouble finding a place to store or dispose of used hydraulic test models, but also the problem of large waste of materials. The present invention has been made in view of the above circumstances, and its purpose is to effectively recycle used and unnecessary hydraulic test models, thereby making it much easier and faster than before. The objective is to be able to manufacture a desired hydraulic test model in a timely and economical manner, and to minimize the generation of discarded hydraulic test models that require a large storage space and result in a large waste of materials. . [Means for Solving the Problems] In order to achieve the above object, the present invention provides a method for manufacturing a hydraulic test model having a desired size and shape. By cutting the surface of an unnecessary flow test model having a similar size and shape to the above, a core body having a similar shape to the desired shape and slightly smaller than the desired size is created, next,
A foamed resin stock solution made by mixing a foaming agent with a resin stock solution is attached to the surface of the core before foaming is completed, and then, after the foamed resin stock solution is foamed and solidified on the surface of the core, The surface of the foamed solidified resin is substantially shaped into the desired size and shape to produce a model prototype, then the surface of the model model is impregnated with a curing agent to harden the surface, and finally, It is characterized by the fact that it adopts a procedure in which the hardened surface of the model prototype is polished for precision finishing.

〔作 用〕かかる特徴構成故に発揮される作用は次の通
りである。即ち、風 前記従来の発泡樹脂製流力試験用
模型の製作方法においては合板などの木材を所定の形状
に切り出して芯体を組立ててし、たのに対して、その芯
体に相当する芯体を作成するに際して、本発明方法にお
いては、製作せんとする流力試験用模型と類似の大きさ
及び形状を有する不要となった流力試験用模型を有効利
用すると共に、その類似流力試験用模型の表面を切削す
るだけの非常に単純な手段を採用しているので、その芯
体の作成を、材料費を殆どかけること無く、しかも、極
めて容易かつ短時間で行うことができる。
[Effects] The effects achieved due to this characteristic configuration are as follows. In other words, in the conventional manufacturing method of the foamed resin model for flow test, a core body is assembled by cutting out wood such as plywood into a predetermined shape. When creating a hydraulic test model, in the method of the present invention, an unnecessary hydraulic test model having a similar size and shape to the hydraulic test model to be manufactured is effectively used, and a similar hydraulic test model is used. Since a very simple method of cutting the surface of the model is used, the core can be created with almost no material cost, and can be done extremely easily and in a short time.

‘Bー また、模型原型を製作するに際しても、前記従
来の発泡樹脂製流力試験用模型の製作方法におけるよう
に、市販の発泡樹脂製パネルから必要形状の複数の発泡
樹脂分割部村を注意深く切り出し形成すると共に、それ
らの複数の発泡樹脂分割部村を接着剤を用いて芯体の表
面に丹念に貼り付ける、といった面倒で材料の無駄も多
く出易い作業によるのでは無く、本発明方法においては
、前記のように類似流力試験用模型の表面を切削して作
成した芯体の表面に対して発泡樹脂原液を直接付着させ
て発泡固化させるだけの非常に単純な手段を採用してい
るので、その模型原型の製作も、無駄な材料を出すこと
無く、しかも、極めて容易かつ短時間で行うことができ
る。
'B-Also, when manufacturing the model prototype, as in the conventional manufacturing method of the foam resin flow test model described above, a plurality of foam resin segments of the required shape are carefully cut out from a commercially available foam resin panel. Instead of cutting out, forming, and carefully pasting the plurality of foamed resin segments onto the surface of the core using an adhesive, which is a laborious process that tends to result in a lot of material waste, the method of the present invention employs a very simple method of directly attaching the foamed resin stock solution to the surface of the core body, which was created by cutting the surface of a similar flow test model as described above, and allowing it to foam and solidify. Therefore, the model prototype can be produced extremely easily and in a short time without wasting materials.

(C} その上、上記のように発泡樹脂原液の付着対象
である前記芯体を、製作せんとする流力試験用模型の所
望の形状と類似の形状で且つ所望の大きさよりも若干小
さなものに作成するようにしているから、前記発泡樹脂
原液の使用量が非常に少なくて済み、この点からも材料
費の大幅な削減を達成できる。
(C} In addition, as mentioned above, the core body to which the foamed resin stock solution is attached should have a shape similar to the desired shape of the flow test model to be manufactured, and a size slightly smaller than the desired size. Since the foamed resin stock solution is prepared in a very small amount, the amount of the foamed resin stock solution used can be extremely small, and from this point of view as well, a significant reduction in material costs can be achieved.

‘D} 更にまた、前記のように芯体を作成するに際し
て、不要となった流力試験用模型を有効利用するように
しているので、資材面での大きな無駄やその置き場所や
捨て場所に困るといった従釆問題を効果的に解消できる
と共に、その不要となった流力試験用模型の高度な秘密
を要する形状が外部に漏れてしまうという危険も少なく
することができる。
'D} Furthermore, when creating the core body as mentioned above, we make effective use of the unnecessary flow test models, so there is a large amount of waste in terms of materials, and there is no need to store or dispose of them. It is possible to effectively solve the problems associated with the flow test, and also to reduce the risk that the highly confidential shape of the unnecessary fluid test model will be leaked to the outside.

〔実施例〕〔Example〕

以下、本発明の具体的実施例を図面に基いて説明する。 Hereinafter, specific embodiments of the present invention will be described based on the drawings.

第1図は本発明による流力試験用模型の製作方法を適用
して、所望の大きさ及び形状を有する船型試験用模型船
を製作する工程を示している。その手順は次の通りであ
る。1 先ず、第1図イに示すように、廃棄予定などで
不要となった船型試験用模型船の中から、製作せんとす
る船型試験用模型船の所望の大きさ及び形状と類似の大
きさ及び形状を有する船型試験用模型船1を選定準備す
る。
FIG. 1 shows the process of manufacturing a model ship for hull form testing having a desired size and shape by applying the method for manufacturing a model for hydrodynamic testing according to the present invention. The procedure is as follows. 1. First, as shown in Figure 1A, from among the ship test model ships that are no longer needed due to plans for scrapping, etc., select one that is similar in size and shape to the desired size and shape of the ship test model ship to be manufactured. Select and prepare a model ship 1 for ship type test having a shape and shape.

なお、この類似船型試験用模型船1としては発泡樹脂製
のものが望ましいが、木製のものであっても差支え無い
。0 次に、第1図口に示すように、前記流力試験用模
型1の表面を切削することにより、前記所望の形状と類
似の形状で且つ前記所望の大きさよりも若干小さな芯体
2を作成する。
The model ship 1 for testing similar ship types is preferably made of foamed resin, but it may also be made of wood. 0 Next, as shown in Figure 1, by cutting the surface of the hydraulic test model 1, a core body 2 having a shape similar to the desired shape and slightly smaller than the desired size is obtained. create.

m 続いて、第1図ハに示すように、樹脂原液Aの一例
としてのポリウレタン原液と発泡剤Bの一例としてのエ
ーテルとを混合して成る発泡樹脂原液Cの一例としての
発泡ポリウレタン原液を作る。
m Subsequently, as shown in FIG. 1C, a polyurethane stock solution as an example of resin stock solution A and ether as an example of foaming agent B are mixed to make a foamed polyurethane stock solution as an example of foamed resin stock solution C. .

W そして、第1図二に示すように、前記発泡樹脂原液
Cを、塗布または吹き付けにより、発泡が完了しないう
ちに前記芯体2の表面に適当量付着させる。
W Then, as shown in FIG. 12, an appropriate amount of the foamed resin stock solution C is deposited on the surface of the core body 2 by coating or spraying before foaming is completed.

V その後、第1図木に示すように、前記発泡樹脂原液
Cが前記芯体2の表面において発泡固化した後で、その
発泡固化樹脂の表面を実質的に前記所望の大きさ及び形
状に整形して模型原型3を製作する。
V Thereafter, as shown in FIG. 1, after the foamed resin stock solution C is foamed and solidified on the surface of the core body 2, the surface of the foamed and solidified resin is substantially shaped into the desired size and shape. Then, model prototype 3 is manufactured.

W 続いて、第1図へに示すように、前記模型原型3の
表面に硬化剤4を吹き付けまたは塗布により含浸させて
その表面を硬化させる。
W Subsequently, as shown in FIG. 1, the surface of the model master 3 is impregnated with a curing agent 4 by spraying or coating to harden the surface.

肌 そして最後に、第1図トに示すように、前記模型原
型の硬化表面を研磨して精密仕上げするのである。
Skin Finally, as shown in Figure 1, the hardened surface of the model prototype is polished for a precision finish.

なお、前記(0)の工程においては、後の(V)の工程
において前記発泡樹脂原液Cの発泡固化後の前記芯体2
表面への接着をより確実かつ強固にするために、その芯
体2の表面切削面が粗面となる状態に切削するのが望ま
しい。
In addition, in the step (0), the core body 2 after the foamed resin stock solution C is foamed and solidified in the subsequent step (V).
In order to ensure more reliable and strong adhesion to the surface, it is desirable to cut the surface of the core 2 so that the cut surface becomes a rough surface.

また、前記(m)の工程において、前記樹脂原液Aとし
てはポリウレタン原液以外のものを用いてもよく、前記
発泡剤Bについてもエーテル以外のものを用いてもよい
Further, in the step (m), the resin stock solution A may be other than a polyurethane stock solution, and the blowing agent B may be other than ether.

そして、前記樹脂原液Aと発泡剤Bとの混合割合も特に
限定されるものでは無く、製作せんとする模型の大きさ
や用途に応じて適宜加減すればよい。例えば、海流水槽
用の2の前後の発泡ポリウレタン製模型船の場合には、
発泡樹脂原液Cとして、発泡率(原体積に対する発泡後
の体積の倍率)が10〜2ぴ音程度の発泡ポリウレタン
原液を用いれば、適度の硬度のものが得られる。なお、
上記した本発明方法は、船型試験用模型船に限らず、海
洋構造物模型や模型舵あるいは模型翼などのような、試
験水槽や風洞等での試験に供される流力試験用模型一般
に適用することができる。
The mixing ratio of the resin stock solution A and the blowing agent B is not particularly limited, and may be adjusted as appropriate depending on the size and purpose of the model to be manufactured. For example, in the case of a model ship made of polyurethane foam before and after 2 for an ocean current aquarium,
If a foamed polyurethane stock solution having a foaming rate (the ratio of the volume after foaming to the original volume) of about 10 to 2 pm is used as the foamed resin stock solution C, a foamed polyurethane stock solution with appropriate hardness can be obtained. In addition,
The method of the present invention described above is applicable not only to model ships for ship type tests, but also to general models for hydrodynamic tests that are subjected to tests in test tanks, wind tunnels, etc., such as marine structure models, model rudders, model wings, etc. can do.

〔発明の効果〕〔Effect of the invention〕

以上詳述したところから明らかなように、本発明に係る
流力試験用模型の製作方法によれば、不要となった流力
試験用模型を芯体の作成に有効に再生利用するとともに
、その芯体の表面に対して発泡樹脂原液を直接付着させ
て発泡固化させるだけの非常に単純な手段により模型原
型を製作するようにしたから、従来方法の場合に比べて
格段に容易にかつ短時間でしかも経済性有利に所望の流
力試験用模型を製作できると共に、広い置き場所を必要
としたり、大きな資材の無駄につながる廃棄流力試験用
模型の発生を極力少なくできる、といった種々の優れた
効果が発揮される。
As is clear from the detailed description above, according to the method for manufacturing a hydraulic test model according to the present invention, an unnecessary hydraulic test model can be effectively recycled for producing a core body, and Since the model prototype is manufactured by a very simple method of directly applying the foamed resin stock solution to the surface of the core body and foaming and solidifying it, it is much easier and shorter than the conventional method. Moreover, it has various excellent features such as not only being able to manufacture the desired hydraulic test model economically, but also minimizing the generation of discarded hydraulic test models that require a large storage space and lead to a large waste of materials. The effect is demonstrated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イ〜トは本発明に係る流力試験用模型の製作方法
の具体的実施例の手順を示す工程図である。 −また、第2図イ〜へは従
来の流力試験用模型の製作方法の一例の手順を示す工程
図である。 1・・・・・・不要となった流力試験用模型、2・・・
・・・心体、3・・・・・・模型原型、4・・・・・・
硬化剤、A・・・・・・樹脂原液、B…・・・発泡剤、
C・・・・・・発泡樹脂原液。 第1図第2図
FIGS. 1A to 1E are process diagrams showing the steps of a specific embodiment of the method for manufacturing a hydraulic test model according to the present invention. -Furthermore, FIGS. 2A to 2A are process diagrams showing the steps of an example of a conventional method for manufacturing a hydraulic test model. 1... Model for fluid test that is no longer needed, 2...
...Mind-body, 3...Model prototype, 4...
Curing agent, A... Resin stock solution, B... Foaming agent,
C: Foamed resin stock solution. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 所望の大きさ及び形状を有する流力試験用模型を製
作する方法であつて、 先ず、前記所望の大きさ及び形
状と類似の大きさ及び形状を有する不要となつた流力試
験用模型の表面を切削することにより、前記所望の形状
と類似の形状で且つ前記所望の大きさよりも若干小さな
芯体を作成し、 次に、樹脂原液に発泡剤を混合して成
る発泡樹脂原液を、発泡が完了しないうちに前記芯体の
表面に付着させ、 続いて、前記発泡樹脂原液が前記芯
体の表面において発泡固化した後で、その発泡固化樹脂
の表面を実質的に前記所望の大きさ及び形状に整形して
模型原型を製作し、 その後、前記模型原型の表面に硬
化剤を含浸させてその表面を硬化させ、 最後に、前記
模型原型の硬化表面を研磨して精密仕上げする、という
手順によることを特徴とする流力試験用模型の製作方法
1. A method for manufacturing a hydraulic test model having a desired size and shape, which first involves manufacturing an unnecessary hydraulic test model having a similar size and shape to the desired size and shape. By cutting the surface, a core body having a shape similar to the desired shape and slightly smaller than the desired size is created, and then a foamed resin stock solution prepared by mixing a foaming agent with the resin stock solution is foamed. Then, after the foamed resin stock solution is foamed and solidified on the surface of the core, the surface of the foamed and solidified resin is substantially adjusted to the desired size and shape. A procedure of manufacturing a model prototype by shaping it into a shape, then impregnating the surface of the model prototype with a hardening agent to harden the surface, and finally polishing the hardened surface of the model prototype for precision finishing. A method of manufacturing a model for a flow test, characterized by:
JP54125906A 1979-09-28 1979-09-28 How to make a model for flow test Expired JPS6035020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54125906A JPS6035020B2 (en) 1979-09-28 1979-09-28 How to make a model for flow test

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54125906A JPS6035020B2 (en) 1979-09-28 1979-09-28 How to make a model for flow test

Publications (2)

Publication Number Publication Date
JPS5648534A JPS5648534A (en) 1981-05-01
JPS6035020B2 true JPS6035020B2 (en) 1985-08-12

Family

ID=14921829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54125906A Expired JPS6035020B2 (en) 1979-09-28 1979-09-28 How to make a model for flow test

Country Status (1)

Country Link
JP (1) JPS6035020B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6367418U (en) * 1986-10-23 1988-05-06
CN103640668A (en) * 2013-11-13 2014-03-19 上海诸光机械有限公司 Control method for connecting rod type horizontal plane planar motion mechanism

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958038A (en) * 1982-09-29 1984-04-03 Sekisui Plastics Co Ltd Manufacture of crosslinked foam
CN111017135A (en) * 2019-12-16 2020-04-17 华南理工大学 Water elasticity test ship model adopting U-shaped keel beam and design method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6367418U (en) * 1986-10-23 1988-05-06
CN103640668A (en) * 2013-11-13 2014-03-19 上海诸光机械有限公司 Control method for connecting rod type horizontal plane planar motion mechanism

Also Published As

Publication number Publication date
JPS5648534A (en) 1981-05-01

Similar Documents

Publication Publication Date Title
RU2623772C2 (en) Method for producing three-dimensional object of composite material
US6630093B1 (en) Method for making freeform-fabricated core composite articles
US5192469A (en) Simultaneous multiple layer curing in stereolithography
CN106903357A (en) The processing method in thin-walled honeycomb core Curve Machining type face
Teizer et al. Large scale 3D printing of complex geometric shapes in construction
CN101802391A (en) The manufacture method of wind vane
US4863663A (en) Method of making a model, prototype part, and mold
US4555836A (en) Method of making a prototype from concept drawings
JPS6035020B2 (en) How to make a model for flow test
DE2512152A1 (en) GRP surfboards with foam core - made by wrapping with inner laminate and using accurately dimensioned outer skin
JP2002067175A (en) Contour smoothening method by micro-slice forming
Peterson Recent innovations in additive manufacturing for marine vessels
Boiko et al. Hull parametric modeling of a small waterplane area twin hull ships
Kochan Rapid prototyping helps Renault F1 Team UK improve championship prospects
JPS5921692B2 (en) How to make a propeller wing model
EP3831578A1 (en) Method for the production of prototype models
CN101733640A (en) Processing method for integrated Fiber Reinforced Plastic (FRP) mould of rail headstock
WO2015124761A1 (en) Foam-filled turbine blade and method of manufacture
JP2883850B2 (en) Method of manufacturing FRP hull shell forming mold formed of paraffin
Ruttico et al. Development of a system for the production of disposable carbon fiber formworks
Iavecchia et al. Application of Additive Manufacturing to the production of RPAV components
GB1036226A (en) Method of making models, for example, for the automobile industry
Varela et al. Study on the Feasibility of Using Low-Cost Techniques and Tools to Manufacture a Scale Model of a Ship for Maneuvering Experiments
DE1433979C (en) Process for the production of cast models from foamed polystyrene, in particular for drawing, pressing and punching tools
JPS58157480A (en) Model ship