JPS6034882B2 - Method for separating organic substances dissolved in water - Google Patents

Method for separating organic substances dissolved in water

Info

Publication number
JPS6034882B2
JPS6034882B2 JP4791082A JP4791082A JPS6034882B2 JP S6034882 B2 JPS6034882 B2 JP S6034882B2 JP 4791082 A JP4791082 A JP 4791082A JP 4791082 A JP4791082 A JP 4791082A JP S6034882 B2 JPS6034882 B2 JP S6034882B2
Authority
JP
Japan
Prior art keywords
adsorbent
water
magnesia
organic substances
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4791082A
Other languages
Japanese (ja)
Other versions
JPS58163408A (en
Inventor
俶将 猪狩
正一郎 横山
柳太郎 板矢
恒雄 大熊
啓介 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunimine Industries Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Kunimine Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Kunimine Industries Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP4791082A priority Critical patent/JPS6034882B2/en
Priority to BR8301433A priority patent/BR8301433A/en
Publication of JPS58163408A publication Critical patent/JPS58163408A/en
Publication of JPS6034882B2 publication Critical patent/JPS6034882B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

【発明の詳細な説明】 本発明は、マグネシア系吸着剤を用いて水中に溶解する
有機物質を該吸着剤に吸着させて水中から分離する方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for separating organic substances dissolved in water from water by adsorbing them to the adsorbent using a magnesia-based adsorbent.

従来、水中に含まれる有機物質や無機物質を分離除去す
るために、吸着処理剤としてマグネシア系吸着剤を用い
ることは知られている。
Conventionally, it has been known to use a magnesia-based adsorbent as an adsorption treatment agent to separate and remove organic and inorganic substances contained in water.

例えば、特関昭53−4835〆烏公報にはマグネシア
系吸着剤を用いて有機物質を吸着除去することが示され
、特開昭53一114791号公報にはマグネシア系吸
着剤を用いて無機物質を吸着除去することが示され、特
開昭53−114792号公報にはマグネシア系吸着剤
を用いて界面活性剤を吸着分離する方法が示され、特関
昭53−45054号公報には、マグネシア系吸着剤を
用いて、吸着工程、吸着分離工程及び吸着剤再生工程を
含む一連の結合された工程で無機及び有機物質を含む排
水を処理する方法が示されている。さらに、マグネシア
系吸着剤は、糠液やステビア抽出液中から着色不純物を
除去するための吸着剤としても適用されている。ところ
で、前記のようにマグネシア系吸着剤を用いて原水中に
溶解状で含まれる有機物質を除去する場合に、該有機物
質の含有量が高くなると、吸着効率が悪化すると共に、
吸着処理後の吸着剤のロ過性が悪く、吸着剤を水中から
ロ週により分離する場合に、ロ液がケーキ中を通液する
のが困難になるとともに、有機物を吸着したo過ケーキ
が時間の経過と共に著しい発熱を生じて硬化反応をおこ
し、再生使用に困難を生ずる。
For example, in Tokusei Publication No. 53-4835, it is shown that organic substances are adsorbed and removed using a magnesia-based adsorbent, and in JP-A-53-114791, inorganic substances are removed using a magnesia-based adsorbent. JP-A No. 53-114792 discloses a method of adsorbing and separating surfactants using a magnesia-based adsorbent, and Tokusei No. 53-45054 discloses that magnesia A method is presented for treating wastewater containing inorganic and organic substances using a system adsorbent in a series of coupled steps including an adsorption step, an adsorption separation step and an adsorbent regeneration step. Furthermore, magnesia-based adsorbents are also used as adsorbents for removing colored impurities from rice bran liquid and stevia extract. By the way, when removing organic substances contained in dissolved form in raw water using a magnesia-based adsorbent as described above, when the content of the organic substances becomes high, the adsorption efficiency deteriorates, and
The filtration properties of the adsorbent after adsorption treatment are poor, and when the adsorbent is separated from water by filtration, it becomes difficult for the filtrate to pass through the cake, and the filtration cake that has adsorbed organic matter becomes As time passes, significant heat is generated and a curing reaction occurs, making recycling difficult.

本発明者らは、マグネシア系吸着剤を用いて、比較的多
量の有機物が溶解する原水を吸着処理する際に見られる
前記問題を鱗決すべ〈鋭意研究を重ねた結果、意外にも
、吸着処理温度を30〜75ooという特定の範囲に設
定することにより、吸着効率が著しく改善されると共に
、吸着処理後に吸着剤をロ過分雛する際のロ過効率も著
しく改善されることを見出し、本発明を完成するに到っ
た。
The present inventors have attempted to solve the above-mentioned problems that occur when using a magnesia-based adsorbent to adsorb raw water in which a relatively large amount of organic matter is dissolved. We have discovered that by setting the treatment temperature in a specific range of 30 to 75 oo, the adsorption efficiency is significantly improved, and the filtration efficiency when filtration of the adsorbent after the adsorption treatment is also significantly improved. He has completed his invention.

即ち、本発明によれば、有機物質を少なくとも0.5重
量%熔解する水中から該有機物質をマグネシア系吸着剤
に吸着させて分離する方法において、該有機物質に対し
てマグネシア系吸着剤を0.5〜2重量倍の割合で用い
ると共に、該マグネシァ系吸着剤に対する有機物質の吸
着を、30〜75℃の温度で行うことを特徴とする水中
に溶解する有機物質の分離方法が提供される。本発明に
おいて用いるマグネシア系吸着剤は前記したように公知
であり、水酸化マグネシウムや、炭酸マグネシウム、塩
基性炭酸マグネシウム(ヒドロオキシ炭酸マグネシウム
)などの熱分解によりマグネシア形成可能のマグネシウ
ム化合物を400〜70000で熱分解して形成される
マグネシアを吸着剤主成分として含むものである。
That is, according to the present invention, in a method for separating an organic substance from water in which at least 0.5% by weight of the organic substance is dissolved by adsorbing the organic substance to a magnesia-based adsorbent, 0% of the magnesia-based adsorbent is added to the organic substance. Provided is a method for separating organic substances dissolved in water, characterized in that the magnesia-based adsorbent is used at a ratio of .5 to 2 times by weight, and the adsorption of organic substances to the magnesia-based adsorbent is carried out at a temperature of 30 to 75°C. . The magnesia-based adsorbent used in the present invention is publicly known as described above, and it is a magnesium compound that can form magnesia by thermal decomposition such as magnesium hydroxide, magnesium carbonate, and basic magnesium carbonate (magnesium hydroxy carbonate). The adsorbent contains magnesia, which is formed by thermal decomposition, as the main component.

即ち、このようなマグネシア単独からなるもの及びこの
マグネシアに対してアルミナ、シリカ、カオリン、酸化
第2鉄、酸化カルシウム、パーラィト、ゼオラィト、ベ
ントナィト、ケィソウ士などの無機微粒子を適当量、通
常、5の重量%以下配合したものを用いることができる
。マグネシア系吸着剤は粉末、一般には、粒度30〜2
00メッシュ、好ましくは60〜90メッシュで用いら
れるが、必要に応じて、ベレット状で用いることもでき
る。マグネシア系吸着剤を用いて水中に含まれる有機及
び/又は無機物質を吸着分離するには、原水をマグネシ
ァ系吸着剤と接触させればよい。
That is, inorganic fine particles such as alumina, silica, kaolin, ferric oxide, calcium oxide, perlite, zeolite, bentonite, diatomaceous material, etc. are added to the magnesia in appropriate amounts, usually 5%. It is possible to use a mixture containing % by weight or less. Magnesia-based adsorbents are powders, generally with a particle size of 30 to 2.
00 mesh, preferably 60 to 90 mesh, but can also be used in pellet form if necessary. In order to adsorb and separate organic and/or inorganic substances contained in water using a magnesia-based adsorbent, raw water may be brought into contact with the magnesia-based adsorbent.

この場合の接触法としては、カラム法なども採用される
が、一般的には、原水に対して吸着剤粉末を添加混合す
る方法が採用される。この場合、吸着剤は粉末のま)添
加することができる他、5〜5の重量%のスラリーとし
て添加することができる。本発明においては、前記吸着
処理を行うに際し、水中に溶解する有機物質に対し、マ
グネシァ系吸着剤を0.5〜2重量倍の割合で用いると
共に、吸着処理温度を30〜75oo、好ましくは40
〜60℃の範囲に特定する。従来のマグネシァ系吸着剤
を用いる廃水処理等においては、吸着処理は通常、常温
で行われ、また、溶解する有機物質に対するマグネシア
系吸着剤の量も、通常、2重量情以上用いられており、
本発明におけるように高濃度の有機物質を含む原水に対
し、前記したような低められた吸着剤量で30〜75q
0という特定の温度条件で吸着処理を行うことは知られ
ていない。もちろん、吸着剤量は、前記範囲よりも多量
用いることは可能であるが、この場合には、吸着剤消費
量が大きくなり、吸着効率が悪くなると共に、ロ過装置
などの装置規模も大きくなるため、プロセス経済性の観
点から好ましいことではない。なお、本発明においてい
う溶解状の有機物質量は、試料水を105ooで恒量に
なるまで乾燥させてその固形分量Aを測定した後、その
固形物を600℃(土20oo)で焼成してその残澄量
Bを測定し、固形分量Aから残造量Bを差引いた値であ
る。本発明を実施する場合、原水の種類によっては、必
要に応じて、凝集剤を添加するのがよい。この場合、凝
集剤としては、慣用のもの、例えば、高分子凝集剤が適
用され、その量は、通常、吸着剤に対して重量で1/1
0000〜1′500の範囲である。吸着処理は、バッ
チ方式及び連続方式にいずれも採用することができ、ま
た一段又は多段方式で行うことができる。吸着処理後の
吸着剤は、吸着剤濃度5〜5広重量%のスラリー状で処
理水から分離されるが、このものは、必要に応じ、その
一部を吸着工程へ循環することができる。
As the contact method in this case, a column method or the like may be employed, but generally a method of adding and mixing adsorbent powder to raw water is employed. In this case, the adsorbent can be added as a powder or as a slurry of 5 to 5% by weight. In the present invention, when performing the adsorption treatment, the magnesia-based adsorbent is used at a ratio of 0.5 to 2 times the weight of the organic substance dissolved in water, and the adsorption treatment temperature is set at 30 to 75 oo, preferably 40 oo.
Specify within the range of ~60°C. In wastewater treatment using conventional magnesia-based adsorbents, the adsorption treatment is usually carried out at room temperature, and the amount of magnesia-based adsorbent used is usually 2 weight or more relative to the dissolved organic substance.
For raw water containing a high concentration of organic substances as in the present invention, 30 to 75 q
It is not known to perform adsorption treatment under a specific temperature condition of 0. Of course, it is possible to use a larger amount of adsorbent than the above range, but in this case, the amount of adsorbent consumed will increase, the adsorption efficiency will deteriorate, and the scale of equipment such as filtration equipment will also increase. Therefore, this is not preferable from the viewpoint of process economics. In addition, the amount of dissolved organic substances in the present invention is determined by drying sample water at 105°C until it reaches a constant weight, measuring the solid content A, and then calcining the solid matter at 600°C (20°C) and calculating the remaining amount. The clear amount B is measured and is the value obtained by subtracting the residual amount B from the solid content amount A. When carrying out the present invention, a flocculant may be added as necessary depending on the type of raw water. In this case, a commonly used flocculant such as a polymer flocculant is used, and the amount thereof is usually 1/1 by weight relative to the adsorbent.
The range is from 0000 to 1'500. The adsorption treatment can be carried out in either a batch or continuous manner, and can be carried out in a single stage or in a multistage manner. The adsorbent after the adsorption treatment is separated from the treated water in the form of a slurry with an adsorbent concentration of 5 to 5% by weight, but a portion of this can be recycled to the adsorption step if necessary.

処理水から分離されたスラリー状吸着剤は、ロ過や遠心
分離等の固液分離手段により脱水処理し、含水率30〜
7の重量%、好ましくは30〜5の雲量%のケーキ状物
となした後、必要に応じて再生炉へ搬送され、ここで4
00〜700午0、好ましくは500〜650ooで焼
成し、再生される。この再生における焼成は、空気中で
実施することもできるが、好ましくは、最初の10〜3
0分は酸素が少ない雰囲気中(酸素濃度0〜10容量%
)、次いで酸素が充分な雰囲気(酸素濃度10〜25容
量%)で各々10〜30分間焼成することが望ましい。
このようにして再生された吸着剤は、使用前の状態にほ
ぼ完全に復帰したものである。この再生された吸着剤は
冷却機、貯留ホッパーを経て、再び吸着剤として再使用
される。本発明において吸着処理後の吸着剤スラリーを
ロ過や遠心により脱水し、ロ過ケーキとする場合、その
ロ過率は著しく高められる。
The slurry-like adsorbent separated from the treated water is dehydrated by solid-liquid separation means such as filtration or centrifugation, and the water content is reduced to 30-30.
After forming a cake with a cloud content of 7% by weight, preferably 30-5% by weight, it is transported to a regeneration furnace as required, where 4% by weight is formed.
00 to 700 o'clock, preferably 500 to 650 o'clock, and recycled. The calcination in this regeneration can be carried out in air, but preferably the first 10 to 3
0 minutes is in an atmosphere with little oxygen (oxygen concentration 0 to 10% by volume)
) and then firing for 10 to 30 minutes each in an atmosphere with sufficient oxygen (oxygen concentration 10 to 25% by volume).
The adsorbent thus regenerated has almost completely returned to its state before use. This regenerated adsorbent passes through a cooler and a storage hopper and is reused as an adsorbent. In the present invention, when the adsorbent slurry after adsorption treatment is dehydrated by filtration or centrifugation to form a filtration cake, the filtration rate is significantly increased.

即ち、従来の方法により、高濃度で有機物質を含む原水
を処理する場合には、長時間反応させて(4〜6時間)
吸着剤は有機物質と十分な吸着反応を行わないうちにそ
の吸着活性を低下し、相当量(通常10〜3の重量%)
の未反応部分を残したまま原水から分離され、脱水処理
されていたために、脱水処理工程では、生成するロ過ケ
ーキが透水性の悪いロ過ケーキとなりロ週が困難となる
のみならず、時間と伴に著しい発熱を生じた。その結果
、ケーキを脱水乾燥後焼成により再生を行う場合でも発
熱硬化した板状のものの再生は破砕に時間を要し、焼成
も不十分になりやすかった。しかしながら、未発明の場
合では、前記した特定の条件で吸着処理を行うため、吸
着剤は有機物質との間で十分な吸着反応を行い、その未
反応部分は著しく減少されている。その結果、前記のよ
うな発熱の問題は生じなく、円滑な脱水操作が可能とな
る。本発明において、吸着処理へ供給する原水としては
、比較的高濃度で溶解状有機物質を含む原水が有利に適
用される。
That is, when treating raw water containing high concentrations of organic substances using conventional methods, it is necessary to react for a long time (4 to 6 hours).
The adsorbent reduces its adsorption activity before performing a sufficient adsorption reaction with the organic substance, and a considerable amount (usually 10 to 3% by weight)
In the dehydration process, the resulting filtration cake becomes a filtration cake with poor water permeability, which not only makes cleaning difficult but also takes time. This was accompanied by a significant fever. As a result, even when the cake was dehydrated and dried and then recycled by firing, it took time to crush the exothermically hardened plate-shaped cake and the firing was likely to be insufficient. However, in the case of the uninvented method, since the adsorption treatment is performed under the above-mentioned specific conditions, the adsorbent performs a sufficient adsorption reaction with the organic substance, and the unreacted portion is significantly reduced. As a result, the problem of heat generation as described above does not occur, and smooth dehydration operation becomes possible. In the present invention, raw water containing dissolved organic substances at a relatively high concentration is advantageously applied as the raw water to be supplied to the adsorption treatment.

もちろん、低濃度の有機物質を含む原水に対しても適用
可能であるが、このような原水に対しては従来の方法で
も十分経済的に処理することが可能であり、本発明の方
法は特に必要とされない。本発明は、一般的には、溶解
状有機物質を少なくとも0.5重量%、殊に1.の重量
%以上含有する原水又は有機物質濃縮水に対して適用さ
れる。このような原水又は有機物質濃縮水としては、パ
ルプ蒸解廃液やパルプさらし廃液、高濃度パルプ洗浄水
、等の廃液や糠密の浄化処理、ステビア葉抽出液の処理
等の不純物除去処理における有機物質含有被処理液が挙
げられる。次に本発明を実施例によりさらに詳細に説明
する。実施例 1 原水として、シラカバ材をSCP法により蒸解処理して
得らる蒸解廃液に対して、0.牙音量の水を加えて希釈
したものを用いた。
Of course, it is also applicable to raw water containing low concentrations of organic substances, but conventional methods can also be used to treat such raw water economically, and the method of the present invention is particularly applicable. Not needed. The present invention generally comprises at least 0.5% by weight of dissolved organic material, especially 1.5% by weight. Applicable to raw water or concentrated water containing organic substances in an amount of % by weight or more. Such raw water or organic substance concentrated water includes waste liquids such as pulp cooking waste liquid, pulp bleaching waste liquid, highly concentrated pulp washing water, and organic substances used in impurity removal processes such as rice bran purification treatment and stevia leaf extract treatment. The containing liquid to be treated can be mentioned. Next, the present invention will be explained in more detail with reference to Examples. Example 1 As raw water, 0.0% was added to the cooking waste obtained by cooking birch wood using the SCP method. A diluted solution was used by adding a large amount of water.

この原水は、溶解状有機物質4.5重量%を含むもので
あった。次に、この原水に対し、軽焼マグネシア(焼成
温度50000)を8重量%(溶解状有機物質に対して
1.8重量倍)を添加し、0〜9000の温度で60分
間燈杵することによって吸着処理を行った。次に得られ
た処理水を沈降処理し、吸着剤を下層のスラリ−(スラ
リー濃度15〜2の重量%)として回収し、処理水を上
層の液相として回収し、その有機物質含量を調べた。次
に、前記のようにして回収された吸着剤スラリーを、ロ
過により、含水率50〜6の重量%のケーキ状に脱水し
た。
This raw water contained 4.5% by weight of dissolved organic substances. Next, 8% by weight (1.8 times the weight of the dissolved organic substance) of lightly calcined magnesia (firing temperature: 50,000℃) is added to this raw water, and the mixture is heated at a temperature of 0 to 9,000℃ for 60 minutes. Adsorption treatment was performed using Next, the obtained treated water is subjected to sedimentation treatment, the adsorbent is recovered as a slurry in the lower layer (slurry concentration 15-2% by weight), and the treated water is recovered as a liquid phase in the upper layer, and its organic substance content is examined. Ta. Next, the adsorbent slurry recovered as described above was dehydrated by filtration to form a cake having a moisture content of 50 to 6% by weight.

次に、処理水の着色有機物除去率(457nm吸光色度
成分の除去率)及び脱水工程における吸着剤のロ過性の
評価結果を吸着処理温度との関係で第1表に示す。
Next, Table 1 shows the evaluation results of the removal rate of colored organic matter (removal rate of 457 nm absorption chromatic component) of the treated water and the filtration property of the adsorbent in the dehydration process in relation to the adsorption treatment temperature.

第1表 また比較のために、従来法に従い、処理温度として常温
(2000)を採用し、吸着剤を、原水中の有機物質量
に対して1重量借用し、た以外は前記と同様にして実験
を行った。
Table 1 For comparison, experiments were conducted in the same manner as above, except that according to the conventional method, room temperature (2000) was adopted as the treatment temperature, and one weight of adsorbent was borrowed for the amount of organic matter in the raw water. I did it.

その結果を本発明の結果と関連させて第2表に示す。な
お、第2表において、吸着効果は吸着剤1夕当りの有機
物吸着量を示す。
The results are shown in Table 2 in relation to the results of the present invention. In Table 2, the adsorption effect indicates the amount of organic matter adsorbed by the adsorbent per night.

第2表に示された結果から、本発明の場合は、吸着剤使
用量が少ないにもかかわらず、有機物除去率、吸着効率
及びロ過性のいずれにおいても著しくすぐれていること
が明らかである。
From the results shown in Table 2, it is clear that in the case of the present invention, despite the small amount of adsorbent used, it is significantly superior in terms of organic matter removal rate, adsorption efficiency, and filtration performance. .

殊に、ロ過性に関しては、比較例の場合は、相当悪く、
またロ過ケーキの発熱は大きく、その温度は最高120
00にまで上昇したが、本発明の場合、ロ過ケーキの発
熱は小さく、その温度はわずかに1〜2℃程度上昇した
だけであった。第2表 実施例 2 ステビア葉の絶乾物2009もこ水3〆を加えて、60
00で5時間振とう抽出し、液を分離後、残簿に水2.
6夕加え60ooで2時問振とう抽出し、液を分離後、
3回目の抽出を水2.6夕、6000で1時間糠とう抽
出した。
In particular, in terms of filtration properties, the comparative examples were quite poor;
In addition, the filtration cake generates a large amount of heat, with a maximum temperature of 120°C.
However, in the case of the present invention, the heat generation of the filtration cake was small, and the temperature rose only by about 1 to 2°C. Table 2 Example 2 Absolutely dried Stevia leaves 2009 Add 3 liters of Moko water, 60
Extract with shaking at 0.00°C for 5 hours, separate the liquid, and add 2.0ml of water to the residue.
After adding for 6 nights and shaking and extracting at 60oo for 2 hours, after separating the liquid,
For the third extraction, rice bran was extracted for 1 hour at 6,000 yen with water at 2.6 pm.

これらの抽出液を合わせて、4000の減圧下で濃縮し
、有機物濃度2.0%の暗褐色母液を得た。この液にマ
グネシア系吸着剤を加えて、ステビア類の甘味物質以上
の不純物を吸着除去した。最適添加量は溶存有機物量と
は)、同量の添加割合で良い。この際のかき混ぜ速度は
1時間、マグネチックス夕−ラ一による強混合とした。
得られたロ液についてその着色性不純物の測定を行った
These extracts were combined and concentrated under a reduced pressure of 4,000 °C to obtain a dark brown mother liquor with an organic matter concentration of 2.0%. A magnesia-based adsorbent was added to this liquid to adsorb and remove impurities greater than the sweet substances of Stevia. The optimal addition amount is the amount of dissolved organic matter), and the addition ratio may be the same amount. The stirring speed at this time was 1 hour, and strong mixing was performed using a magnetic roller.
The coloring impurities in the obtained filtrate were measured.

なお、この場合の着色性不純物の測定は、純水を対象液
とし、JIS・Z8727による10度視XYZ系によ
る色差(△E)法で行った。この場合、測定時の溶液p
H‘ま7.0±0.10に統一した。その結果を次表に
示す。なお、吸着処理前の原液の色差(△E)は81.
96であった。第3表
The measurement of colored impurities in this case was carried out using pure water as a target liquid and a color difference (ΔE) method using a 10-degree XYZ system according to JIS Z8727. In this case, the solution p at the time of measurement
H'ma was standardized to 7.0±0.10. The results are shown in the table below. The color difference (ΔE) of the stock solution before adsorption treatment was 81.
It was 96. Table 3

Claims (1)

【特許請求の範囲】[Claims] 1 有機物質を少なくとも0.5重量%溶解する水中か
ら該有機物質をマグネシア系吸着剤に吸着させて分離す
る方法において、該有機物質に対してマグネシア系吸着
剤を0.5〜2重量倍の割合で用いると共に、該マグネ
シア系吸着剤に対する有機物質の吸着を、30〜75℃
の温度で行うことを特徴とする水中に溶解する有機物質
の分離方法。
1. A method for separating organic substances from water in which at least 0.5% by weight is dissolved by adsorbing the organic substances to a magnesia-based adsorbent, in which the magnesia-based adsorbent is used in an amount of 0.5 to 2 times the weight of the organic substance. At the same time, adsorption of organic substances to the magnesia-based adsorbent is controlled at 30 to 75°C.
A method for separating organic substances dissolved in water, which is carried out at a temperature of .
JP4791082A 1982-03-25 1982-03-25 Method for separating organic substances dissolved in water Expired JPS6034882B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4791082A JPS6034882B2 (en) 1982-03-25 1982-03-25 Method for separating organic substances dissolved in water
BR8301433A BR8301433A (en) 1982-03-25 1983-03-22 WATER PURIFICATION METHOD CONTAINING ORGANIC CONTAMINANTS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4791082A JPS6034882B2 (en) 1982-03-25 1982-03-25 Method for separating organic substances dissolved in water

Publications (2)

Publication Number Publication Date
JPS58163408A JPS58163408A (en) 1983-09-28
JPS6034882B2 true JPS6034882B2 (en) 1985-08-12

Family

ID=12788523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4791082A Expired JPS6034882B2 (en) 1982-03-25 1982-03-25 Method for separating organic substances dissolved in water

Country Status (2)

Country Link
JP (1) JPS6034882B2 (en)
BR (1) BR8301433A (en)

Also Published As

Publication number Publication date
JPS58163408A (en) 1983-09-28
BR8301433A (en) 1983-11-29

Similar Documents

Publication Publication Date Title
GB1567960A (en) Process for working up waste fly dusts into zeolites of type
CN112044403A (en) Preparation method and application of sepiolite-based formaldehyde adsorbent
JP4035084B2 (en) Method for purifying crude polyether and adsorbent
JPS58880B2 (en) A mixture of granular activated carbon and bone charcoal that has a high ability to remove colored substances from sugar solution
GB1567964A (en) Process for working up waste fly dusts into zeolites
CN112808247B (en) Composite mercury removal material and preparation method and application thereof
US3442798A (en) Oxidation and reclamation process
US4024087A (en) Method of preparing coagulant for purification of water from mechanical admixtures
CN114405062A (en) Method for reducing acid value in benzaldehyde by using composite filler column
KR20020005495A (en) Process for the preparation of agglomerated zeolites x and lsx exchanged with lithium
CA1150517A (en) Method of decreasing the organic substance of alum earth production cycle performed according to the bayer technology
JP2969182B1 (en) Method for producing high-purity amorphous silicic acid
US4264373A (en) Method of refining beet juice
JPS61274787A (en) Method for purifying treatment of colored organic impurity-containing aqueous solution
JPS6034882B2 (en) Method for separating organic substances dissolved in water
JPS6041006B2 (en) Recovery method of sodium thiocyanate
US5270278A (en) Alumina coated with a layer of carbon as an absorbent
CN112808246B (en) Wastewater mercury removal agent and preparation method and application thereof
US3944687A (en) Method of preparing purifying agents consisting of activated siliceous porous mineral substances
US5093092A (en) Purification of bayer process liquor with alumina coated with a layer or carbon
CN101249966A (en) Method for removing harmful elements Pb, Hg, As from aluminium magnesium silicate inorganic gel
JP3291994B2 (en) How to remove arsenate ions
CN112808248B (en) Adsorption material applied to mercury removal of wastewater and preparation method and application thereof
CN112808249B (en) Mercury adsorption material and preparation method and application thereof
US4250155A (en) Method of purifying phosphoric acid after solvent extraction