JPS6034787A - Electrodialytic water making device and operating process thereof - Google Patents

Electrodialytic water making device and operating process thereof

Info

Publication number
JPS6034787A
JPS6034787A JP58143665A JP14366583A JPS6034787A JP S6034787 A JPS6034787 A JP S6034787A JP 58143665 A JP58143665 A JP 58143665A JP 14366583 A JP14366583 A JP 14366583A JP S6034787 A JPS6034787 A JP S6034787A
Authority
JP
Japan
Prior art keywords
water
tank
electrodialysis
circulation
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58143665A
Other languages
Japanese (ja)
Other versions
JPH0330413B2 (en
Inventor
Tetsuyoshi Ishida
哲義 石田
Kenji Shibata
芝田 健二
Kunio Okiura
沖浦 邦夫
Mitsugi Nomura
野村 貢
Fumihiko Kanenobu
兼信 文彦
Takayoshi Yamamoto
隆義 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP58143665A priority Critical patent/JPS6034787A/en
Publication of JPS6034787A publication Critical patent/JPS6034787A/en
Publication of JPH0330413B2 publication Critical patent/JPH0330413B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Abstract

PURPOSE:To reduce installation cost and operation cost by providing >=2 circulation tank 5 in a desalting chamber to enable changeover operation at the stage of actuation of an electrodialytic cell, a stage for water discharge and supply alternately by a changeover valve provided to a circulation system in the desalting chamber. CONSTITUTION:Supply of raw water 12 to a tnak A is commenced by opening a raw water feed valve 34. After the water level is detected to have reached high level by a water gauge A44, a raw water feed valve A is closed and the operation is held in the waiting state until dialysis of raw water 39 in the tank B31 is completed. When the concn. of salt attains specified concn. by the dialysis, the passage of flow is changed again by an outlet changeover valve 32 and a return changeover valve 33 of a salt water circulation tank so as to flow the raw water 38 in the tank A through the passage. The dialysis of the raw water 38 in the tank A 30 is thus commenced again, and the process is transferred to the dialysis process of the raw water 39 in the tank B 31 when the dialysis of the raw water 38 is finished. By repeating this procedure, operation of the electrodialysis cell is continued without suspending actuation of the cell.

Description

【発明の詳細な説明】 本発明は電気透析式造水装置およびその運転方法に係り
、特に構造が簡単で設備費および運転コストの低減が可
能な電気透析式造水装置およびその運転方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrodialysis water generation device and a method of operating the same, and particularly relates to an electrodialysis water generation device that has a simple structure and can reduce equipment costs and operating costs, and a method of operating the same. It is.

陽極と陰極の間に陽イオン交換膜および陰イオン交換膜
を交互に配列し、通電によってこれらの間に脱塩室と濃
縮室を形成し、これらの室からそれぞれ脱塩水と濃縮水
を得る電気透析式造水装置の処理方法には、大別すると
回分処理と一過処理がある。
Cation exchange membranes and anion exchange membranes are arranged alternately between the anode and the cathode, and a demineralization chamber and a concentration chamber are formed between these membranes by applying electricity, and demineralized water and concentrated water are obtained from these chambers, respectively. The processing methods of dialysis water generators can be roughly divided into batch processing and transient processing.

第1図および第1表は、従来の回分処理方式の装置系統
図およびその運転タイムチャートを示すものである。図
において、原水12は原水供給弁7を経て脱塩水循環タ
ンク2内に供給され、満水後給水が停止され、また、濃
縮水循環タンク3へも原水13が供給される。次いで、
脱塩水循環ポンプ5および濃縮水ポンプ6を駆動し、通
電によって透析が開始される。透析槽1に入った原水1
4.15は脱塩および濃縮された後、それぞれ循環ポン
プ5および6により各々の脱塩水循環タンク2および濃
縮水循環タンク3に戻される。脱塩水循環タンク2内の
原水14は所定の濃度になるまで循環を繰り返す。脱塩
が完了した後は、脱塩水循環ポンプ5を停止し、脱塩水
循環クンク2の脱塩水は排出弁8を経て外部へ排出され
る。なお、図中9は塩濃度針、10ば、電圧計、11は
電流計を示す。
FIG. 1 and Table 1 show a system diagram of a conventional batch processing system and an operation time chart thereof. In the figure, raw water 12 is supplied into the desalinated water circulation tank 2 via the raw water supply valve 7, and after the water is filled, water supply is stopped, and raw water 13 is also supplied to the concentrated water circulation tank 3. Then,
The desalinated water circulation pump 5 and the concentrated water pump 6 are driven, and dialysis is started by applying electricity. Raw water 1 entering dialysis tank 1
4.15 is desalted and concentrated, and then returned to the respective desalted water circulation tank 2 and concentrated water circulation tank 3 by circulation pumps 5 and 6, respectively. The raw water 14 in the desalinated water circulation tank 2 is repeatedly circulated until it reaches a predetermined concentration. After the desalination is completed, the desalinated water circulation pump 5 is stopped, and the desalted water in the desalted water circulation pump 2 is discharged to the outside through the discharge valve 8. In the figure, 9 indicates a salt concentration needle, 10 indicates a voltmeter, and 11 indicates an ammeter.

第1表 上記従来方法では、透析槽への給水、透析および排水の
行程が繰返し行われるが、給水と排水の行程においては
透析槽への通電が停止されるため、実質上の造水量は低
下する。このため、従来の回分処理方式の電気透析式造
水装置には、装置の造水量より大きい造水能力を有する
透析槽が必要となり、またこの透析槽は主に高価なイオ
ン交換膜によって構成されているため、製作コストが高
くなるという欠点がある。
Table 1 In the above conventional method, the steps of water supply to the dialysis tank, dialysis, and drainage are repeated, but since the electricity to the dialysis tank is stopped during the water supply and drainage steps, the actual amount of water produced decreases. do. For this reason, conventional batch-processing electrodialysis water generation equipment requires a dialysis tank with a water generation capacity larger than the amount of water produced by the equipment, and this dialysis tank is mainly composed of an expensive ion exchange membrane. This has the disadvantage of increasing production costs.

次に第2〜4図は、従来の一過処理方式の電気透析装置
の系統図を示したもので、このうち第2図は部分循環−
過処理方式の装置系統図である。
Next, Figures 2 to 4 show system diagrams of conventional electrodialysis equipment using a transient treatment method, of which Figure 2 shows a partial circulation -
FIG. 2 is a system diagram of an over-processing system.

原水12は、循環する脱塩水16を内部に有する脱塩水
循環クンク2に雷時一定量供給され、脱塩水16と混合
され、この脱塩水16は脱塩水循環ポンプ5によって透
析槽1内へ移送され、透析処理によって脱塩される。こ
の脱塩された循環水から常時等量の水が抜き取られ、生
成水17が得られる。この部分循環−過処理方式では、
原水を希釈して脱塩するため、透析槽の電気抵抗が大き
くなり、したがって消費電力が大きく、運転コストが大
きいという欠点がある。
Raw water 12 is supplied in a constant amount during lightning to a desalinated water circulation pump 2 that has circulating desalinated water 16 inside, and is mixed with desalinated water 16, and this desalted water 16 is transferred into the dialysis tank 1 by a desalinated water circulation pump 5. and desalted by dialysis. An equal amount of water is always extracted from this desalted circulating water to obtain produced water 17. In this partial circulation-overtreatment method,
Since the raw water is diluted and desalted, the electrical resistance of the dialysis tank increases, resulting in high power consumption and high operating costs.

第3図は、従来の多段直列−過処理方式の系統図を示す
ものであるが、この方式の装置には複数個の透析槽18
〜20が設けられている。原水12は脱塩水と濃縮水の
2系統21.22に分けられて、これら透析槽18〜2
0を直列に流れる。
FIG. 3 shows a system diagram of the conventional multi-stage series-overtreatment system, and this system has a plurality of dialysis tanks 18.
~20 are provided. The raw water 12 is divided into two systems 21 and 22, desalinated water and concentrated water, and these dialysis tanks 18 to 2
0 in series.

最終の透析槽20を出るとき、脱塩水系統の原水は所定
の塩濃度まで脱塩された生成水17となる。
When leaving the final dialysis tank 20, the raw water in the desalinated water system becomes produced water 17 that has been desalted to a predetermined salt concentration.

この多段直列−過処理方式では、原水12の塩濃度、温
度、流量の制御を厳密に行なう必要があるため、運転が
困難である欠点を有している。また原水12が脱塩水系
統21と濃縮水系統22に分けられて、透析槽内の長い
流路を流れている間に、両系統21.22間に圧力差が
生じ、この圧力差によって透析槽18〜20内の透析膜
が移動することがある。この透析膜の移動が生じると水
分解が生じ、スケールトラブルが発生し、安定した運転
は困難となる。
This multistage series-overtreatment system has the disadvantage that it is difficult to operate because it is necessary to strictly control the salt concentration, temperature, and flow rate of the raw water 12. In addition, while the raw water 12 is divided into a desalinated water system 21 and a concentrated water system 22 and flows through a long channel in the dialysis tank, a pressure difference is created between the two systems 21 and 22, and this pressure difference causes a pressure difference in the dialysis tank. Dialysis membranes 18 to 20 may move. When this movement of the dialysis membrane occurs, water decomposition occurs, causing scaling problems and making stable operation difficult.

第4図は、多段直列と部分循環を組み合わせた一過処理
方式の系統図を示す。この組合せによる一過処理方式は
、第3図に示した多段直列方式の欠点である長い流路を
有することから生じるスケールトラブルを防ぐため、透
析槽毎に脱塩水循環タンク27〜29、脱塩水循環ポン
プ23〜25を追設したものであり、また、第2図に示
した部分循環式の透析槽電気抵抗が大きい欠点をも改善
するものである。しかし、この組合せによる−過処理方
式は、脱塩水循環ポンプ23〜25、脱塩水循環タンク
27〜29、配管等が多くなるため、装置コストが大き
いという欠点がある。
FIG. 4 shows a system diagram of a transient processing method that combines multi-stage series and partial circulation. In order to prevent scaling problems caused by the long flow path, which is a disadvantage of the multi-stage series system shown in Figure 3, this combination of temporary treatment systems uses desalinated water circulation tanks 27 to 29 for each dialysis tank, Circulation pumps 23 to 25 are additionally installed, and it also improves the drawback of the partial circulation type dialysis tank shown in FIG. 2, which has a large electrical resistance. However, this combination of over-treatment methods requires a large number of desalinated water circulation pumps 23 to 25, desalted water circulation tanks 27 to 29, piping, etc., and therefore has the disadvantage of high equipment cost.

本発明の目的は、上記した従来技術の欠点をなくし、比
較的簡単な構造で、運転効率の良好な電気透析式造水装
置およびその運転方法を提供することにある。
An object of the present invention is to eliminate the drawbacks of the prior art described above, and to provide an electrodialytic water generating apparatus and a method for operating the same, which have a relatively simple structure and good operating efficiency.

本発明は、回分処理方式の電気透析式造水装置において
、少なくとも2個以上の脱塩水循環タンクおよびこのタ
ンクを切替える弁を設け、一つの脱塩水循環タンク内の
原水の脱塩を完了すると即時に他の脱塩水循環タンク内
の原水の処理に移行することにより、透析槽を常時通電
状態で使用可能にしたものである。すなわち、本発明は
、陽極と陰極の間にイオン交換膜を介して脱塩室と濃縮
室とが形成される電気透析槽と、前記脱塩室と濃縮室に
原水を供給し、電気透析を行い、得られた脱塩水と濃縮
水をそれぞれの循環タンクに一時貯留した後、前記電気
透析槽に循環させる、脱塩水および濃縮水の循環系統と
を有する電気透析式造水装置において、前記脱塩室の循
環タンクを少なくとも2基設け、前記脱塩室の循環系統
に設けられた切替弁により電気透析槽の通電時および排
水、給水時に交互に切替え可能にしたことを特徴とする
The present invention provides a batch treatment type electrodialysis water generation device that is equipped with at least two desalted water circulation tanks and a valve for switching these tanks, and that immediately after desalination of raw water in one desalted water circulation tank is completed. By shifting to the treatment of raw water in another desalinated water circulation tank, the dialysis tank can be used with electricity constantly on. That is, the present invention provides an electrodialysis tank in which a desalination chamber and a concentration chamber are formed between an anode and a cathode via an ion exchange membrane, raw water is supplied to the desalination chamber and concentration chamber, and electrodialysis is performed. In an electrodialysis water generation apparatus, the desalination water and concentrated water are temporarily stored in respective circulation tanks and then circulated to the electrodialysis tank. At least two salt chamber circulation tanks are provided, and a switching valve provided in the circulation system of the desalination chamber is configured to alternately switch between energization of the electrodialysis tank, draining water, and water supply.

また本発明の電気透析装置の運転方法は、前記脱塩室循
環タンクの出口と入口にそれぞれ切替弁を設けた電気透
析装置の運転において、脱塩水が循環タンク内に残留し
ないように、前記出口切替弁と入口切替弁を一定時間ず
らして操作することを特徴とする。
Further, in the method of operating an electrodialysis apparatus of the present invention, when operating an electrodialysis apparatus in which switching valves are provided at the outlet and inlet of the demineralization chamber circulation tank, the outlet It is characterized by operating the switching valve and the inlet switching valve with a certain period of time shift.

以下、本発明を図面によりさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第5図は、本発明の一実施例を示す電気透析式造水装置
の系統図である。この実施例では、一台の透析槽に対し
て脱塩水循環タンクが2個(タンクA30、タンクB5
1)設置されている。透析槽1に通じる脱塩水循環タン
クAまたはB(以下、単にタンクA、Bと称する)を選
択するため、タンクの出口側には脱塩水循環タンク出口
切替弁32、戻り側に脱塩水循環タンク戻り切替弁33
が設置されている。原水の脱塩状態を検出するため、脱
塩水循環系統41には塩濃度針(または電導度計)9が
、また脱塩水循環タンク31.32には水位を検出する
ため水位計44.45が設置されている。なお、図中、
34.35はそれぞれタンクAおよびBの原水供給弁、
36.37はそれぞれタンクAおよびBに設けられた脱
塩水排出弁、38.39はタンクA、Bの原水、4oは
脱塩水系統、42.43は濃縮水系統、46は濃縮水を
示す。
FIG. 5 is a system diagram of an electrodialysis water generation apparatus showing one embodiment of the present invention. In this example, there are two demineralized water circulation tanks (tank A30, tank B5) for one dialysis tank.
1) It is installed. In order to select the desalinated water circulation tank A or B (hereinafter simply referred to as tanks A and B) leading to the dialysis tank 1, the desalinated water circulation tank outlet switching valve 32 is installed on the outlet side of the tank, and the desalinated water circulation tank is installed on the return side of the tank. Return switching valve 33
is installed. In order to detect the desalination state of raw water, a salt concentration needle (or conductivity meter) 9 is installed in the desalinated water circulation system 41, and a water level gauge 44.45 is installed in the desalinated water circulation tank 31.32 to detect the water level. is set up. In addition, in the figure,
34.35 are raw water supply valves for tanks A and B, respectively;
36.37 are desalinated water discharge valves provided in tanks A and B, respectively, 38.39 is raw water in tanks A and B, 4o is a desalinated water system, 42.43 is a concentrated water system, and 46 is concentrated water.

上記装置の運転方法を示すタイムチャートを第2表に示
す。
Table 2 shows a time chart showing how the above device is operated.

以下余白 第2表 星 この電気透析式造水装置の運転は、先ず、原水供給弁3
4を開き、原水12を脱塩水循環タンクA(タンクA)
30内に供給し、水位計A44によって高水位になった
ことを検出した後、原水供給弁A34を閉しる。また、
透析槽1内にタンクA内の原水38が流れるように、脱
塩水循環タンク出口切替弁32および脱塩水循環タンク
戻り切替弁33の流路を切替える。濃縮水系統において
は、水13を濃縮水循環タンク3内に供給し、供給相当
量の濃縮水26を排出する。次いで、脱塩水循環ポンプ
5、濃縮水循環ポンプ6等を駆動し、通電を開始する。
Table 2 in the margin below To operate this electrodialysis water generator, first, start with the raw water supply valve 3.
4 and transfer raw water 12 to desalinated water circulation tank A (tank A).
After detecting that the water level has reached a high level using the water level gauge A44, the raw water supply valve A34 is closed. Also,
The flow paths of the desalted water circulation tank outlet switching valve 32 and the desalted water circulation tank return switching valve 33 are switched so that the raw water 38 in the tank A flows into the dialysis tank 1. In the concentrated water system, water 13 is supplied into the concentrated water circulation tank 3, and an amount of concentrated water 26 corresponding to the supplied amount is discharged. Next, the desalinated water circulation pump 5, the concentrated water circulation pump 6, etc. are driven and energization is started.

これにより、タンクA30内の原水38は、脱塩水循環
クンク出゛口切替弁32を通り、透析槽1の脱塩室に導
入きれる。また濃縮水循環タンク3内の濃縮水46は透
析槽1のi槽室に導入される。透析槽1内に入った、原
水38および濃縮水46は透析され、原水38中の塩は
濃縮水46へ移動し、原水38の塩濃度が低下する。透
析槽1を出た原水38は、濃度計9によって塩濃度を測
定され、脱塩水循環タンク戻り切替弁33を通り、もと
のタンクA30内に入る。透析槽を出た濃縮水46は濃
縮水循環タンク3にもどる。タンクA30内の原水38
はこの透析槽1を循環することにより、徐々に塩濃度が
低下する。
As a result, the raw water 38 in the tank A30 can be completely introduced into the demineralization chamber of the dialysis tank 1 through the demineralized water circulation outlet switching valve 32. Further, the concentrated water 46 in the concentrated water circulation tank 3 is introduced into the i-tub chamber of the dialysis tank 1. The raw water 38 and concentrated water 46 that have entered the dialysis tank 1 are dialyzed, the salts in the raw water 38 move to the concentrated water 46, and the salt concentration of the raw water 38 is reduced. The raw water 38 leaving the dialysis tank 1 has its salt concentration measured by a concentration meter 9, passes through a desalinated water circulation tank return switching valve 33, and enters the original tank A30. The concentrated water 46 that has left the dialysis tank returns to the concentrated water circulation tank 3. Raw water 38 in tank A30
By circulating through this dialysis tank 1, the salt concentration gradually decreases.

タンクA30内の原水38が透析によって脱塩されてい
る間に、原水供給弁B35を開き、タンクB31内へ原
水12を供給し、水位計845が高水位を検出した後、
原水供給弁B35を閉じ、タンクA30内の原水の透析
が完了まで待機する。
While the raw water 38 in the tank A30 is being desalinated by dialysis, the raw water supply valve B35 is opened to supply the raw water 12 into the tank B31, and after the water level gauge 845 detects a high water level,
Close the raw water supply valve B35 and wait until the dialysis of the raw water in the tank A30 is completed.

タンクA30内の原水38の透析は、塩濃度低9の指示
が所定濃度に達するまで続けられる。所定濃度に達する
と、脱塩水循環タンクの出口切替弁32および戻り切替
弁33の流路をタンクB内の原水39が流れるように変
更する。この流路変更によって透析槽1内には、タンク
A30内の原水3】に代わってクンクB31内の原水3
9が流れ始め、この原水39も同様に透析処理され、塩
濃度を検出されて脱塩水循環タンク戻り切替弁33を通
った後、タンクB31に導入される。このタンクB31
内の原水39も、タンクA30内の原水38と同様に透
析槽1を循環することにより、徐々に塩濃度が低下する
。タンクB31内の原水39が透析によって脱塩されて
いる間に、タンクA30内の脱塩された生成水は、脱塩
水排出弁A36を開くことにより、この造水装置外へ排
出される。この脱塩水の排出により水位計A44が低水
位になったことを検出すると、脱塩水排出弁A36を閉
じる。次いで原水供給弁A34を開き、原水12をタン
クA30に供給し始め、水位計A44によって高水位に
なったことを検出した後、この原水供給弁A34を閉じ
、タンクB31内の原水39の透析が完了するまで待機
する。クンクB31内の原水39の透析は、塩濃度計9
の指示が所定濃度に達するまで続けられる。所定濃度に
達すると、脱塩水循環タンクの出口切替弁32および戻
り切替弁33の流路を再びタンクA30内の原水38が
流れるように変更する。この流路変更によって、再びタ
ンクA30内の原水38の透析を始め、透析が完了する
と、タンクB31内の原水39の透析に移行する。以下
、この操作を繰返して行なうことにより、電気透析槽の
通電を停止することなく、効率のよい運転が可能になる
The dialysis of the raw water 38 in the tank A30 continues until the low salt concentration 9 indication reaches a predetermined concentration. When a predetermined concentration is reached, the flow paths of the outlet switching valve 32 and the return switching valve 33 of the desalinated water circulation tank are changed so that the raw water 39 in the tank B flows. By changing the flow path, the raw water 3 in the tank B31 is replaced by the raw water 3 in the tank A30 in the dialysis tank 1.
9 begins to flow, this raw water 39 is also subjected to dialysis treatment, its salt concentration is detected, and after passing through the desalted water circulation tank return switching valve 33, it is introduced into tank B31. This tank B31
Similarly to the raw water 38 in the tank A30, the salt concentration of the raw water 39 in the tank A30 gradually decreases as it circulates through the dialysis tank 1. While the raw water 39 in the tank B31 is being desalinated by dialysis, the desalinated product water in the tank A30 is discharged to the outside of the water generator by opening the desalted water discharge valve A36. When the water level gauge A44 detects that the water level has become low due to the discharge of this desalinated water, the desalted water discharge valve A36 is closed. Next, the raw water supply valve A34 is opened and the raw water 12 starts to be supplied to the tank A30, and after the water level gauge A44 detects that the water level has reached a high level, the raw water supply valve A34 is closed and the raw water 39 in the tank B31 is dialyzed. Wait until it completes. Dialysis of the raw water 39 in Kunku B31 is performed using a salt concentration meter 9.
This instruction continues until the predetermined concentration is reached. When the predetermined concentration is reached, the flow paths of the outlet switching valve 32 and return switching valve 33 of the desalinated water circulation tank are changed so that the raw water 38 in the tank A30 flows again. By changing the flow path, the dialysis of the raw water 38 in the tank A30 is started again, and when the dialysis is completed, the process shifts to the dialysis of the raw water 39 in the tank B31. Thereafter, by repeatedly performing this operation, efficient operation is possible without stopping the electricity supply to the electrodialysis tank.

上記実施例によれば、第1図の回分処理方式と比較して
、透析槽1は審時通電状態にできるため、実質上の造水
量の低下がなくなり、したがって、透析槽を大きくする
必要がなくなる。また装置に関しては、脱塩水タンクの
個数が1個から2個に増加するが、高価なイオン交換膜
の増加がないため、全体として装置コストを低減するこ
とができる。
According to the above embodiment, compared to the batch processing method shown in FIG. 1, the dialysis tank 1 can be energized at the same time, so there is no substantial decrease in the amount of water produced, and therefore there is no need to increase the size of the dialysis tank. It disappears. Regarding the apparatus, although the number of demineralized water tanks increases from one to two, there is no increase in the number of expensive ion exchange membranes, so the overall cost of the apparatus can be reduced.

第2図の部分循環−過処理方式と比較して、原水12を
脱塩水16に混合して透析することがないので、透析槽
の電気抵抗が増加せず、したがって運転コストを低減す
ることができる。
Compared to the partial circulation-overtreatment method shown in FIG. 2, the raw water 12 is not mixed with the desalinated water 16 for dialysis, so the electrical resistance of the dialysis tank does not increase, thus reducing operating costs. can.

さらに第4図の多段直列と部分循環を組み合わせた一過
処理方式と比較して、設置する脱塩水循環タンク、脱塩
水循環タンクの員数を減少できるため、装置コストを低
減できる効果が得られる。
Furthermore, compared to the one-time treatment system that combines multi-stage series and partial circulation as shown in FIG. 4, the number of desalted water circulation tanks and desalted water circulation tanks to be installed can be reduced, resulting in the effect of reducing equipment costs.

本発明の他の実施例としては、第6図に示すように、脱
塩水循環タンクA、Bの出口切替弁32および戻り切替
弁33の代わりに、各々のタンクA、Bに脱塩水循環タ
ンクの出口弁A47、同B48、および戻り弁A49、
同B50を設け、同様に脱塩水循環タンクA30内の原
水を交互に透析処理することができる。すなわち、タン
クA30の原水を透析するときは、脱塩水循環タンクの
出口弁A47および戻り弁A49を開き、出目弁848
および戻り弁A50を閉じることにより、第5図の切替
弁32.33と同様な効果が得られる。なお、塩濃度針
9として、第5図の実施例では液の電導度を測定する計
器を使用したが、これは、電導度を検出する原理のもの
以外に液の比重、粘度、光透過度等の物性を測定する計
器でもよい。
As another embodiment of the present invention, as shown in FIG. 6, instead of the outlet switching valve 32 and return switching valve 33 of the desalinated water circulation tanks A and B, a desalinated water circulation tank is installed in each tank A and B. outlet valves A47, B48, and return valves A49,
By providing the same B50, the raw water in the desalinated water circulation tank A30 can be alternately subjected to dialysis treatment in the same way. That is, when dialyzing raw water in tank A30, open outlet valve A47 and return valve A49 of the desalinated water circulation tank, and open outlet valve 848.
By closing the return valve A50, an effect similar to that of the switching valves 32 and 33 in FIG. 5 can be obtained. In addition, as the salt concentration needle 9, in the embodiment shown in FIG. It may also be an instrument that measures physical properties such as

第5図および第2表に示した実施例において、脱塩水循
環タンクの出口切替弁32と戻り切替弁33の流路変更
を同時に行なわず、戻り切替弁33の流路変更時間を一
定時間遅らせることにより、脱塩水系統(透析槽内の脱
塩室および脱塩水系統40.41)内の脱塩完了した水
をそれだけ多く回収でき、これにより運転コストを低減
できる効果が得られる。この脱塩水循環タンク出口切替
弁32の流路変更は、塩濃度針917!指示が所定の濃
度に達した信号を用い、脱塩水循環タンク戻り切替弁3
3の流路変更は、塩濃度針9の指示が急激に高い塩濃度
へ変化する信号等を用いることが好ましい。脱塩水循環
タンクの出口切替弁32と戻り切替弁33間の保有水量
は、−回の透析時間が2時間の装置においては脱塩水循
環タンクの保有水量の約10%に達し、脱塩水を毎回こ
れだけ多く回収できることは運転コスト上極めて有利で
ある。なお、この弁の切替を同時に行なう場合は、この
切替弁32.33間の脱塩完了水は、次に透析処理する
原水に混合され、原水を希釈することになるが、このよ
うな希釈は、透析槽の印加電流を減少できるものの、電
気抵抗を増加させることになるため、消費電力が大きく
なる。
In the embodiment shown in FIG. 5 and Table 2, the flow path change of the outlet switching valve 32 and the return switching valve 33 of the desalted water circulation tank is not performed at the same time, and the flow path change time of the return switching valve 33 is delayed for a certain period of time. As a result, more desalinated water in the desalinated water system (the desalinated chamber in the dialysis tank and the desalted water system 40.41) can be recovered, which has the effect of reducing operating costs. The flow path change of this desalinated water circulation tank outlet switching valve 32 is performed using the salt concentration needle 917! Using the signal that the indication reaches a predetermined concentration, the desalination water circulation tank return switching valve 3
For the flow path change in step 3, it is preferable to use a signal or the like in which the indication of the salt concentration needle 9 suddenly changes to a higher salt concentration. The amount of water held between the outlet switching valve 32 and the return switching valve 33 of the desalinated water circulation tank reaches approximately 10% of the amount of water held in the desalted water circulation tank in a device in which the -times of dialysis time is 2 hours. Being able to recover this much amount is extremely advantageous in terms of operating costs. Note that if these valves are switched at the same time, the desalinated water between these switching valves 32 and 33 will be mixed with the raw water that will be subjected to the next dialysis treatment, diluting the raw water, but such dilution will Although it is possible to reduce the current applied to the dialysis tank, it increases the electrical resistance, which increases power consumption.

上述のように、脱塩水循環タンクの出口切替弁32と戻
り切替弁33の流路変更時間をずらすことにより、脱塩
完了水の回収量を増加することができ、一段と運転コス
トを低減できる効果が得られる。
As mentioned above, by shifting the flow path change times of the outlet switching valve 32 and return switching valve 33 of the desalinated water circulation tank, the amount of recovered desalted water can be increased, which has the effect of further reducing operating costs. is obtained.

上記実施例において、脱塩水循環タンク戻り弁、33の
流路変更の信号には、塩濃度針9の指示値の上昇以外に
、透析槽における印加電流の増加、脱塩水のpHの変化
等を信号に用いることができる。すなわち、透析槽の印
加電流は、運転は通常一定電圧で行われるため、透析槽
の脱塩水の塩濃度が変化すると電気抵抗が変化し、電流
値が変わる。従って、脱塩完了後、新たに塩濃度が高い
原水が透析槽に流れると電流値が増加する。この電流値
の変化を脱塩水循環タンク戻り弁33の流路変更の信号
に使用することにより、濃度検出の場合と同様に脱塩完
了水の回収率を高めることができる。また脱塩水のpH
は、脱塩完了水と原水のpHが異なる場合に、塩濃度の
変化と同様に脱塩水循環タンク戻り弁33の流路変更の
信号として使用することができる。さらに脱塩水の循環
量が一定であれば、脱塩完了水が押し出される時間をめ
ることができるため、脱塩水循環タンク出目弁32と脱
塩水循環タンク戻り弁33の流路変更時間差を定めるこ
とができる。従ってタイマーによって脱塩水循環タンク
戻り弁32の流路変更時間を脱塩完了の信号の一定時間
後に設定することができ、同様の効果が得られる。
In the above embodiment, the signal for changing the flow path of the demineralized water circulation tank return valve 33 includes, in addition to an increase in the indicated value of the salt concentration needle 9, an increase in the applied current in the dialysis tank, a change in the pH of the demineralized water, etc. Can be used for signals. That is, since the current applied to the dialysis tank is normally operated at a constant voltage, when the salt concentration of the desalinated water in the dialysis tank changes, the electrical resistance changes and the current value changes. Therefore, after completion of desalination, when raw water with a high salt concentration newly flows into the dialysis tank, the current value increases. By using this change in current value as a signal for changing the flow path of the desalinated water circulation tank return valve 33, it is possible to increase the recovery rate of desalinated water as in the case of concentration detection. Also, the pH of desalinated water
can be used as a signal for changing the flow path of the desalted water circulation tank return valve 33 in the same way as a change in salt concentration when the pH of the desalted water and the raw water are different. Furthermore, if the circulation amount of desalinated water is constant, the time for desalinated water to be pushed out can be set, so the difference in flow path change time between the desalted water circulation tank outlet valve 32 and the desalted water circulation tank return valve 33 can be adjusted. can be determined. Therefore, the flow path change time of the desalinated water circulation tank return valve 32 can be set after a certain period of time after the desalination completion signal using the timer, and the same effect can be obtained.

さらに本発明においては、例えば第5図の脱塩水循環タ
ンク30.31の構造を、透析処理後の戻り液がタンク
内の液と混合しないように構成することにより、透析槽
1の電気抵抗を減少することができる。第7図は、タン
ク内の液の混合を防止する脱塩水循環タンクの構造例を
示したもので、脱塩水タンク2を流れに対して直角方向
に仕切板51によって複数個に分割したものである。仕
切板がない場合には、透析槽からの戻り液によって脱塩
水循環タンク2内の液が希釈されるが、仕切板51を設
置することにより、脱塩水循環タンク2内の液の希釈が
防止され、前述のように透析槽1の電気抵抗を減少させ
ることができる。例えば、海水からT、D、3.500
 ppm の生活用水を一回分2時間で製造する電気透
析式造水装置においては透析槽の電気抵抗を30%減少
することができる。
Furthermore, in the present invention, the electrical resistance of the dialysis tank 1 can be reduced by configuring the structure of the demineralized water circulation tanks 30 and 31 in FIG. can be reduced. FIG. 7 shows an example of the structure of a desalinated water circulation tank that prevents mixing of liquids in the tank, in which the desalinated water tank 2 is divided into a plurality of parts by a partition plate 51 in a direction perpendicular to the flow. be. If there is no partition plate, the liquid in the demineralized water circulation tank 2 will be diluted by the liquid returned from the dialysis tank, but by installing the partition plate 51, dilution of the liquid in the demineralized water circulation tank 2 is prevented. As described above, the electrical resistance of the dialysis tank 1 can be reduced. For example, T, D, 3.500 from seawater
In an electrodialysis water generator that produces 2 ppm of domestic water per batch in 2 hours, the electrical resistance of the dialysis tank can be reduced by 30%.

この脱塩水循環タンク内の戻り液による希釈を防止する
方法としては、仕切板を設ける代わりに、第8図に示す
ように、タンク自体を長い管52で構成してもよく、一
段と良好な結果を得ることができる。
As a method of preventing dilution due to the return liquid in this desalinated water circulation tank, instead of providing a partition plate, the tank itself may be constructed with a long pipe 52 as shown in FIG. 8, and even better results can be obtained. can be obtained.

以上、本発明によれば、脱塩水循環タンクを少なくとも
2基設け、これらを交互に仕切替えて原水の供給、排出
および脱塩水の循環を行なう配管系統としたことにより
、電気透析槽の運転を連続的に行い、運転効率を向上さ
せるとともに、設備費を軽減することができる。
As described above, according to the present invention, by providing at least two desalted water circulation tanks and creating a piping system in which these tanks are alternately partitioned to supply and discharge raw water and circulate desalted water, the operation of the electrodialysis tank can be controlled. This can be done continuously, improving operational efficiency and reducing equipment costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の電気透析式造水装置の回分処理方式の
系統図、第2図は従来の部分循環−過処理方式の系統図
、第3図は、従来の多段直列−過処理方式の系統図、第
4図は、従来の多段直列と部分循環を組み合わせた一過
処理方式の系統図、第5図は、本発明の一実施例を示す
電気透析式造水装置の系統図、第6図は、上記実施例に
おける切替弁の他の実施例を示す系統図、第7図は、本
発明に用いる脱塩水循環タンクの一実施例を示す断面図
、第8図は、管形状の脱塩水循環タンクを示す説明図で
ある。 1・・・透析槽、2・・・脱塩水循環タンク、3・・・
濃縮水循環タンク、4・・・直流電源、5・・・脱塩水
循環ポンプ、6・・・循給水循環ポンプ、7・・・原水
供給弁、8・・・脱塩水排出弁、9・・・塩濃度針、1
0・・・電圧針、11・・・電流針、12.13.14
.15・・・原水、16・・・脱塩水、17・・・生成
水、30・・・脱塩水循環タンク(タンクA)、31・
・・脱塩水循環タンク(タンクB)、32・・・脱塩水
循環タンク出口切替弁、33・・・脱塩水循環タンク戻
り切替弁、34・・・原水給水弁A、35・・・原水給
水弁B、36・・・脱塩水排出弁A、37・・・脱塩水
排出弁B、38.39・・・原水、40.41・・・脱
塩水系統、42.43・・・濃縮水系統、46・・・濃
縮水。 代理人 弁理士 川 北 武 長 第1図 第3図 第4図 第5図 第6図 第7図 第8図
Figure 1 is a system diagram of a conventional electrodialysis water generation system in batch processing mode, Figure 2 is a system diagram of a conventional partial circulation-overtreatment system, and Figure 3 is a system diagram of a conventional multi-stage series-overtreatment system. FIG. 4 is a system diagram of a conventional one-time treatment system that combines multi-stage series and partial circulation, and FIG. 5 is a system diagram of an electrodialysis water generator showing an embodiment of the present invention. Fig. 6 is a system diagram showing another embodiment of the switching valve in the above embodiment, Fig. 7 is a sectional view showing an embodiment of the desalinated water circulation tank used in the present invention, and Fig. 8 is a pipe shape FIG. 2 is an explanatory diagram showing a desalinated water circulation tank. 1... Dialysis tank, 2... Desalinated water circulation tank, 3...
Concentrated water circulation tank, 4... DC power supply, 5... Desalinated water circulation pump, 6... Circulating water circulation pump, 7... Raw water supply valve, 8... Desalinated water discharge valve, 9... Salt concentration needle, 1
0... Voltage needle, 11... Current needle, 12.13.14
.. 15... Raw water, 16... Desalinated water, 17... Produced water, 30... Desalinated water circulation tank (tank A), 31...
...Demineralized water circulation tank (tank B), 32...Demineralized water circulation tank outlet switching valve, 33...Demineralized water circulation tank return switching valve, 34...Raw water supply valve A, 35...Raw water supply Valve B, 36...Demineralized water discharge valve A, 37...Demineralized water discharge valve B, 38.39...Raw water, 40.41...Demineralized water system, 42.43...Concentrated water system , 46... Concentrated water. Agent Patent Attorney Takenaga KawakitaFigure 1Figure 3Figure 4Figure 5Figure 6Figure 7Figure 8

Claims (1)

【特許請求の範囲】 (1)陽極と陰極の間にイオン交換膜を介して脱塩室と
濃縮室とが形成される電気透析槽と、前記脱塩室と濃縮
室に原水を供給し、電気透析を行い、得られた脱塩水と
濃縮水をそれぞれの循環タンクに一時貯留した後、前記
電気透析槽に循環させる、脱塩水および濃縮水の循環系
統とを有する電気透析式造水装置において、前記脱塩室
の循環タンクを少なくとも2基設け、前記脱塩室の循環
系統に設けられた切替弁により電気透析槽の通電時およ
び排水、給水時に交互に切替え可能にしたことを特徴と
する電気透析式造水装置。 (2、特許請求の範囲第1項において、前記脱塩水用循
環タンク内に、複数の直疎流路部を複数の屈曲流路部で
連結して形成した流路を設けたことを特徴とする電気透
析式造水装置。 (3)陽極と陰極の間にイオン交換膜を介して脱塩室と
濃縮室とが形成される電気透析槽と、前記脱塩室と濃縮
室に原水を供給し、電気透析を行い、得られた脱塩水と
濃縮水をそれぞれの循環タンクに一時貯留した後、前記
電気透析槽に循環させる、脱塩水および濃縮水の循環系
統とを有するものであって、前記脱塩室の循環タンクは
少なくとも2基設けられ、かつ電気透析槽の通電時およ
び排水、給水時に交互に切替え可能なように、前記脱塩
室循環タンクの出口と入口にそれぞれ切替弁が設けられ
た電気透析式遣水装置の運転において、前記切替弁の操
作時に脱塩水が循環タンク内に残留しないように、前記
脱塩室循環タンクの出口切替弁と入口切替弁の操作を一
定時間ずらして行なうことを特徴とする電気透析式造水
装置の運転方法。 (4)特許請求の範囲第3項において、前記切替弁の操
作は、脱塩水の塩濃度またはそれに対応する物性値の計
測信号によって行なうことを特徴とする電気透析式造水
装置の運転方法。
[Scope of Claims] (1) An electrodialysis tank in which a demineralization chamber and a concentration chamber are formed via an ion exchange membrane between an anode and a cathode, and raw water is supplied to the demineralization chamber and concentration chamber, In an electrodialysis water generation apparatus having a circulation system for desalinated water and concentrated water, which performs electrodialysis, temporarily stores the obtained desalted water and concentrated water in respective circulation tanks, and then circulates them to the electrodialysis tank. , characterized in that at least two circulation tanks are provided in the demineralization chamber, and a switching valve provided in the circulation system of the demineralization chamber can be alternately switched when energizing the electrodialysis tank and when draining and supplying water. Electrodialysis water generator. (2. Claim 1, characterized in that the demineralized water circulation tank is provided with a flow path formed by connecting a plurality of straight and convergent flow path portions with a plurality of bent flow path portions. (3) An electrodialysis tank in which a demineralization chamber and a concentration chamber are formed via an ion exchange membrane between an anode and a cathode, and raw water is supplied to the demineralization chamber and concentration chamber. and a circulation system for desalinated water and concentrated water that performs electrodialysis, temporarily stores the obtained desalted water and concentrated water in respective circulation tanks, and then circulates them to the electrodialysis tank, At least two circulation tanks are provided in the demineralization chamber, and switching valves are provided at the outlet and inlet of the demineralization chamber circulation tank, respectively, so that switching can be performed alternately when the electrodialysis tank is energized, drained, and water is supplied. In the operation of the electrodialysis type water supply device, the operation of the outlet switching valve and the inlet switching valve of the desalination chamber circulation tank is shifted by a certain period of time so that desalinated water does not remain in the circulation tank when the switching valve is operated. (4) In claim 3, the operation of the switching valve is performed based on a measurement signal of the salt concentration of desalinated water or a physical property value corresponding thereto. 1. A method of operating an electrodialysis water generator, characterized in that:
JP58143665A 1983-08-08 1983-08-08 Electrodialytic water making device and operating process thereof Granted JPS6034787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58143665A JPS6034787A (en) 1983-08-08 1983-08-08 Electrodialytic water making device and operating process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58143665A JPS6034787A (en) 1983-08-08 1983-08-08 Electrodialytic water making device and operating process thereof

Publications (2)

Publication Number Publication Date
JPS6034787A true JPS6034787A (en) 1985-02-22
JPH0330413B2 JPH0330413B2 (en) 1991-04-30

Family

ID=15344082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58143665A Granted JPS6034787A (en) 1983-08-08 1983-08-08 Electrodialytic water making device and operating process thereof

Country Status (1)

Country Link
JP (1) JPS6034787A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006129567A1 (en) * 2005-05-30 2009-01-08 パイオニア株式会社 Wet processing apparatus and method for manufacturing display panel
JP2012239965A (en) * 2011-05-18 2012-12-10 Japan Organo Co Ltd Electric deionized water producing apparatus
JP2015226910A (en) * 2015-08-12 2015-12-17 オルガノ株式会社 Electric deionized water production apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021176567A1 (en) * 2020-03-03 2021-09-10 三菱電機株式会社 Transformer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006129567A1 (en) * 2005-05-30 2009-01-08 パイオニア株式会社 Wet processing apparatus and method for manufacturing display panel
JP4608543B2 (en) * 2005-05-30 2011-01-12 パナソニック株式会社 Wet processing apparatus and display panel manufacturing method
US7959816B2 (en) 2005-05-30 2011-06-14 Panasonic Corporation Wet-processing apparatus and method of fabricating display panel
JP2012239965A (en) * 2011-05-18 2012-12-10 Japan Organo Co Ltd Electric deionized water producing apparatus
JP2015226910A (en) * 2015-08-12 2015-12-17 オルガノ株式会社 Electric deionized water production apparatus

Also Published As

Publication number Publication date
JPH0330413B2 (en) 1991-04-30

Similar Documents

Publication Publication Date Title
JP3273718B2 (en) Method for treating water to be treated by electrodeionization and apparatus used for the method
RU2494971C2 (en) Installation for water softening by reverse osmosis
EP2487138B1 (en) Water treatment device and water heater
KR102351744B1 (en) Electrochemical System Using Concentrate Recirculation in Periodic Batch Mode
JPS6034787A (en) Electrodialytic water making device and operating process thereof
CN213475482U (en) Alkaline electrolytic ion water machine
JP4518826B2 (en) Electrolytic wastewater treatment system, electrolysis control device, electrolytic wastewater treatment method, program, and storage medium
CN211338901U (en) Full-automatic electroplating nickel waste water zero discharge equipment
CN210656509U (en) Automatic control system for operation and protection of electrodialysis system
WO2020148961A1 (en) Pure water production apparatus, and method for operating same
US10994245B2 (en) Method and system for liquid treatment
Audinos et al. Electrodialysis
JPS6336893A (en) Method for operating desalination apparatus by means of electrodialysis
JP6158681B2 (en) Deionized water production system and operation method thereof
JP3570350B2 (en) Electrodeionization equipment and pure water production equipment
JP5516309B2 (en) Hot water quality measuring device
CN219950598U (en) Reverse osmosis water treatment system
US20230071797A1 (en) Wastewater treatment system and method for semiconductor fabrication process
RU2770078C1 (en) Method for electrodialysis water desalization
US20230406730A1 (en) Desalination system and method
JP4026385B2 (en) Control method of electrodeionization apparatus
JP6720428B1 (en) Pure water production apparatus and operating method thereof
JPS5936506A (en) Method for controlling operation of electrodialysis type water producing equipment
KR20140050979A (en) A backwash method for a reverse osmosis membrane and a system for the same
CN217756970U (en) Dish tubular reverse osmosis membrane subassembly integrated system