JPS6034718B2 - Method for separating volatile fission products from radioactive nuclear fuel - Google Patents

Method for separating volatile fission products from radioactive nuclear fuel

Info

Publication number
JPS6034718B2
JPS6034718B2 JP53008985A JP898578A JPS6034718B2 JP S6034718 B2 JPS6034718 B2 JP S6034718B2 JP 53008985 A JP53008985 A JP 53008985A JP 898578 A JP898578 A JP 898578A JP S6034718 B2 JPS6034718 B2 JP S6034718B2
Authority
JP
Japan
Prior art keywords
fuel
fission products
volatile fission
tritium
nuclear fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53008985A
Other languages
Japanese (ja)
Other versions
JPS5399196A (en
Inventor
レイン・エ−・ブレイ
アライン・エル・ボルト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Framatome ANP Richland Inc
Original Assignee
Exxon Nuclear Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Nuclear Co Inc filed Critical Exxon Nuclear Co Inc
Publication of JPS5399196A publication Critical patent/JPS5399196A/en
Publication of JPS6034718B2 publication Critical patent/JPS6034718B2/en
Expired legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/26Drilling without earth removal, e.g. with self-propelled burrowing devices
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/42Reprocessing of irradiated fuel
    • G21C19/44Reprocessing of irradiated fuel of irradiated solid fuel
    • G21C19/48Non-aqueous processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D9/00Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D9/14Control devices for the reciprocating piston
    • B25D9/26Control devices for adjusting the stroke of the piston or the force or frequency of impact thereof
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B4/00Drives for drilling, used in the borehole
    • E21B4/06Down-hole impacting means, e.g. hammers
    • E21B4/14Fluid operated hammers
    • E21B4/145Fluid operated hammers of the self propelled-type, e.g. with a reverse mode to retract the device from the hole
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Automation & Control Theory (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】 本発明は、放射ずみの燃料べレットから、N02又は、
N02とその分解生成物、すなわち02とN02との混
合物により、揮発性核分裂生成物を分離する方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for extracting N02 from radiated fuel pellets or
The present invention relates to a method for separating volatile fission products using N02 and its decomposition products, ie, a mixture of O2 and N02.

放射すみ核燃料の再加工に生ずる問題点の一つは、再加
工工程の反応溶液から揮発性核分裂生成物を分離するこ
とが極めて困難であるということである。
One of the problems that arises in the reprocessing of radioactive nuclear fuel is that it is extremely difficult to separate volatile fission products from the reaction solution of the reprocessing process.

このことは、トリチウムアイソトープ(三重水素)を水
溶液から分離することが極めて困難であるという点にお
いて、トリチウム除去に関して特に重要である。水素ア
イソトープであるトIJチウムは12,26王の半減期
を有し、燃料1トン当り1オンスの約1/1000とい
う微小量で生成する三元核分裂生成物である。しかし、
西歴2000年中に世界が必要とする電力量を満足させ
るために生産されると思われる放射ずみ燃料の予想量を
考えると生成するトリチウムの量は膨大なものとなろう
。従来の設計の核燃料再加工工場でトリチゥムを回収す
ることは、燃料トン当りのトリチウムの量が非常に少な
いので実際的ではない。トリチウムはトリチウム化水(
tritiaにdwater)の形で、工場内で数千ガ
。ンの処理水と完全に混合されるようになる。この大量
の水からトリチウムを同位元素分離することが、水を液
体又は蒸気として分離する前に必要となるであろう。こ
のような大量の水の中のトリチウムを同位元素分離する
ことは実際的でないので水性再加工の前に放射ずみ燃料
から揮発性核分裂生成物を除去する技術を開発する必要
がある。放射すみ燃料から揮発性核分裂生成物を除去す
ることの問題は放射すみ二酸化ウラニウム燃料および/
又は、放射ずみ酸化物、例えばU02およびPu02の
混合物を再加工するときに遭遇する。
This is particularly important with respect to tritium removal, in that tritium isotopes (tritium) are extremely difficult to separate from aqueous solutions. The hydrogen isotope tri-IJ tium has a half-life of 12.26K and is a ternary fission product produced in minute amounts of about 1/1000 of an ounce per ton of fuel. but,
Considering the amount of radioactive fuel expected to be produced to meet the world's electricity needs in the year 2000, the amount of tritium produced will be enormous. Recovering tritium in nuclear fuel reprocessing plants of conventional design is impractical because the amount of tritium per ton of fuel is very low. Tritium is tritiated water (
In the form of tritium and dwater), thousands of pounds were produced in the factory. completely mixed with treated water. Isotopic separation of the tritium from this large amount of water will be required before the water can be separated as a liquid or vapor. Since isotopic separation of tritium in such large quantities of water is impractical, it is necessary to develop techniques to remove volatile fission products from radioactive fuel prior to aqueous reprocessing. The problem of removing volatile fission products from radioactive fuels is particularly important when removing volatile fission products from radioactive uranium dioxide fuels and/or
Alternatively, it is encountered when reprocessing radioactive oxides, such as mixtures of U02 and Pu02.

この揮発性核分裂生成物を除去するときの問題は、揮発
性核分裂生成物が放射ずみ燃料の結晶格子中に落ち込み
従って燃料をすりつぶしたり或は粉砕したりして除去す
ることができないという事実によって、より増大してい
る。放射すみ燃料から揮発性核分裂生成物の除去方法は
、米国のOakRidge国立研究所により開発され、
それは、voloxidation(ボロキシデーショ
ン)と呼ばれており、OakRidge国立研究所報告
ORNL−TN−3723号の記載されている。
The problem with removing this volatile fission product is due to the fact that the volatile fission products sink into the crystal lattice of the radiated fuel and therefore cannot be removed by grinding or crushing the fuel. It is increasing. A method for removing volatile fission products from radioactive fuel was developed by the Oak Ridge National Laboratory in the United States.
It is called voloxidation and is described in Oak Ridge National Laboratory Report ORNL-TN-3723.

このvoloxidation(ボロキシデーション)
は、放射ずみ燃料を酸素の存在において制御された温度
で酸化し、U308の微細粉末を形成する方法である。
このvoloxidation(ボロキシデーション)
は温度に敏感で、大きな商業的工場において、反応温度
を約48000プラス、又は、マイナス10qCの狭い
範囲内に維持しなければならないことが確認されている
。この極めて狭い温度範囲の故に、この方法を大規模な
再加工工場で操業することを益々困難にしている。本発
明は放射ずみ燃料から揮発性核分裂生成物を、商業的に
妥当な時間内に、商業的に妥当な加工条件において、放
散させ、それによって放射すみ核燃料の再加工における
コストを大中に減少させることのできる方法に関するも
のである。一般的に云えば本発明は、揮発性核分裂生成
物、すなわち、ヨード、キセノン、クリプトンおよびト
リチウムなどを放散するために放射すみ核燃料を酸化す
る方法であって、放射ずみの二酸化ウラン、又は混合物
酸化物燃料は、酸化窒素、すなわち、二酸化窒素で酸化
される。二酸化窒素は、この方法の反応温度においては
、その分解生成物、すなわち一酸化窒素および酸素と平
衡している。従って、酸化剤として二酸化窒素、二酸化
窒素の分解生成物(一酸化窒素と酸素)、又は、二酸化
窒素と、その分解生成物との混合物を添加してもよい。
この酸化剤を、ガス、希釈剤例えば窒素又は一酸化窒素
で希釈してもよく、それによる実質的に有害な効果はな
い。酸化反応温度は約325C0から80000で、好
ましくは約350qoと780ooの間であってもよい
。より好ましくは、反応は350℃ないし650qoの
範囲の温度に維持される。上記酸化反応は、放射ずみ燃
料べレットを0.105ミリメートル、好ましくは0.
045ミリメートル、より小さい平均粒子サイズを有す
る徴粉に変換させるのに十分な時間だけ続けられる。
This voloxidation
is a method of oxidizing radiated fuel at controlled temperatures in the presence of oxygen to form a fine powder of U308.
This voloxidation
It has been determined that the reaction temperature is temperature sensitive and that in large commercial plants the reaction temperature must be maintained within a narrow range of about 48,000 plus or minus 10 qC. This extremely narrow temperature range makes this process increasingly difficult to operate in large scale reprocessing plants. The present invention dissipates volatile fission products from radiated fuel in a commercially reasonable time and under commercially reasonable processing conditions, thereby greatly reducing the cost of reprocessing radiated nuclear fuel. It concerns a method that can be used to Generally speaking, the present invention is a method of oxidizing irradiated nuclear fuel to liberate volatile fission products, such as iodine, xenon, krypton, and tritium, comprising oxidizing irradiated uranium dioxide or a mixture of oxidized uranium dioxide. The fuel is oxidized with nitrogen oxide, i.e., nitrogen dioxide. Nitrogen dioxide is in equilibrium with its decomposition products, namely nitric oxide and oxygen, at the reaction temperature of this process. Therefore, as an oxidizing agent, nitrogen dioxide, a decomposition product of nitrogen dioxide (nitric oxide and oxygen), or a mixture of nitrogen dioxide and a decomposition product thereof may be added.
The oxidizing agent may be diluted with a gas, diluent such as nitrogen or nitric oxide, without substantial deleterious effects. The oxidation reaction temperature may be about 325C0 to 80000C, preferably between about 350QO and 780OOO. More preferably, the reaction is maintained at a temperature in the range of 350°C to 650qo. The above-mentioned oxidation reaction produces a radiated fuel pellet of 0.105 mm, preferably 0.1 mm.
0.045 mm, continued for a sufficient time to convert to a powder having an average particle size smaller than 0.045 mm.

80000より高い反応温度に加熱することは、微粉末
の塊状化を生じ、従って、このような温度は避けなけれ
ばならない。
Heating to reaction temperatures higher than 80,000 °C will result in agglomeration of the fine powder and therefore such temperatures should be avoided.

反応器から取り出した後の放射ずみ燃料集合体は一般に
冷却され、次に燃料榛は、再加工用放射ずみ燃料を調製
するために切開されるか、或は内容物を露出される。
After removal from the reactor, the radiated fuel assembly is generally cooled, and then the fuel stubs are cut open or their contents exposed to prepare the radiated fuel for reprocessing.

この放射ずみ核燃料を、次に、反応容器中に入れ、二酸
化窒素単独、又は、それと、その分解生成物との混合物
を、反応器中に通す。この系を325q0と800o○
の間の反応温度に加熱する。この酸化反応の間に核分裂
ガス、特にトリチウムは、ほぼ定量的量でガス除去系に
放散する。この反応の間にU02はU03および/又は
い○8に酸化される。本発明に従って、放射ずみ核燃料
、すなわち、U02又は、U02とPW02との混合物
は反応容器中に入れられ、酸化窒素、例えば二酸化窒素
、或は二酸化窒素とその分解生成物、すなわち酸素と一
酸化窒素、との混合物により酸化される。
This radiated nuclear fuel is then placed in a reaction vessel and nitrogen dioxide alone, or a mixture thereof with its decomposition products, is passed through the reactor. This system is 325q0 and 800o○
Heat to reaction temperature between . During this oxidation reaction, fission gases, especially tritium, are liberated in almost quantitative quantities into the gas removal system. During this reaction, U02 is oxidized to U03 and/or I8. According to the invention, radiated nuclear fuel, ie U02 or a mixture of U02 and PW02, is placed in a reaction vessel and nitrogen oxides, eg nitrogen dioxide, or nitrogen dioxide and its decomposition products, ie oxygen and nitric oxide, are introduced into the reaction vessel. , is oxidized by a mixture of

この酸化は放射ずみ燃料を反応容器中に入れ、窒素酸化
物の存在下に約350なし、し780q0の反応温度に
加熱することによって行われる。放射ずみ燃料は、この
放射ずみ燃料を微粉末(仏08およびU03)にするの
に十分な時間だけ加熱させる。反応時間は、反応器中の
材料の容積燃料片のサイズ、UO次泣子サイズ、温度お
よびガスの組成に極めて大きく依存する。この微粉末は
0.103ミリメーター、好ましくは0.045ミリメ
ーターより4・ごな平均粒子径を有している。放散され
たトリチウムはトリチウムガスとして捕集されるか、或
はTHOの形に酸化され、冷却され、液体(TNQ,H
TO等)として橘集される。
This oxidation is carried out by placing the radiated fuel in a reaction vessel and heating it to a reaction temperature of about 350 to 780 q0 in the presence of nitrogen oxides. The radiated fuel is heated for a sufficient amount of time to turn the radiated fuel into a fine powder (F08 and U03). The reaction time is highly dependent on the volumetric fuel piece size, UO subdivision size, temperature and gas composition of the materials in the reactor. The fine powder has an average particle size of 0.103 millimeters, preferably 4 degrees greater than 0.045 millimeters. The released tritium is collected as tritium gas or oxidized to the form of THO, cooled, and converted into a liquid (TNQ, H
It is collected as Tachibana (TO, etc.).

本発明の有効性を示すために燃料べレツトは通常の実験
室設備中で酸化された。
To demonstrate the effectiveness of the present invention, fuel pellets were oxidized in conventional laboratory equipment.

燃料べレットはサンプルボード中に入れられ、燃焼管中
に挿入された。温度調節のために熱電対が用いられた。
管状炉を、燃焼管のまわりに置き、反応系を加熱した。
酸化剤はガス状で燃焼管に通された。酸化の間にトリチ
ウムが遊離し、酸化鋼炉中でTHOに変成され、冷却管
中に凝縮された。実施例 1 放射ずみ酸化ウラン(U02)燃料と、混合酸化*物(
U02/Pu02)燃料との各1グラムのサンプルをN
02により400午○で4時間酸化した。
The fuel pellet was placed into a sample board and inserted into the combustion tube. Thermocouples were used for temperature control.
A tube furnace was placed around the combustion tube to heat the reaction system.
The oxidizer was passed in gaseous form to the combustion tube. During the oxidation, tritium was liberated and converted to THO in the oxidizing steel furnace and condensed in the cooling tubes. Example 1 Radioactive uranium oxide (U02) fuel and mixed oxide* (
U02/Pu02) Samples of 1 gram each with fuel N
Oxidation was carried out for 4 hours at 400 pm using 02.

4時間の期間の終りに、放射ずみ燃料は非常に細かな粉
末の形になった。
At the end of the four hour period, the radiated fuel was in the form of a very fine powder.

得られた粉末を15ミリリットルの8モルHN03中に
10000で3なし、し4時間溶解し、炉遇し、溶液中
に残存しているトリチウムサンプルを採取した。礎準サ
ンプルを調製するために各放射ずみ燃料の1グラムの追
加サンプルを、N02による酸化なしで直接に8モルH
N03中に100℃で約4時間溶解した。これを炉過し
、トリチゥムサンプルを採取した。上記標準サンプルお
よびテストサンプルの両者における、炉過残固形分を更
に8モルHN03に0.005モルふつ化水素酸の添加
物で溶解し、得られた溶液を採取して固形分中のトリチ
ゥム含有量を測定した。
The resulting powder was dissolved in 15 ml of 8M HN03 at 10,000 ml for 4 hours, heated in an oven, and a sample of tritium remaining in the solution was taken. An additional 1 gram sample of each radiated fuel was added directly to 8 mol H without oxidation with N02 to prepare the base sample.
Dissolved in N03 at 100°C for approximately 4 hours. This was passed through a furnace and a tritium sample was collected. The remaining solid content in the furnace in both the standard sample and the test sample was further dissolved in 8 mol HN03 with an additive of 0.005 mol hydrofluoric acid, and the resulting solution was collected to determine the content of tritium in the solid content. The amount was measured.

上記二つの燃料サンプルの酸化の結果は、下記第1表に
示されている。第1表 上記結果から溶解前に燃料のN02による酸化を行うと
燃料からトリチウムを除去するのに有効である、という
ことがわかる。
The oxidation results for the two fuel samples are shown in Table 1 below. From the above results in Table 1, it can be seen that oxidizing the fuel with N02 before melting is effective in removing tritium from the fuel.

混合酸化物の溶解剤溶液、および固形物は、最初のトI
Jチウム含有率の5%を含んでいた。実施例 2 300ooないし800qoの温度における等温条件下
で、U02燃料べレットのサンプルを用いて一連の実験
を行い、反応速度を求めた。
The mixed oxide solubilizer solution and the solids are
It contained 5% of J thium content. Example 2 A series of experiments were conducted using samples of U02 fuel pellets under isothermal conditions at temperatures between 300oo and 800qo to determine reaction rates.

酸化が完了したとき、燃料べレットは細かに粉砕された
粉末に変化しており、燃料サンプルは4重量%の重量増
加を示した。第1図に示されている結果が観察された。
32500ないし60000の温度で行われる実験では
、最終生成物は粉末であった。
When the oxidation was complete, the fuel pellet had turned into a finely ground powder and the fuel sample showed a weight gain of 4% by weight. The results shown in Figure 1 were observed.
In experiments conducted at temperatures between 32,500 and 60,000, the final product was a powder.

35000,50000および60000で行われた実
験はほぼ同一と思われる。
Experiments performed at 35,000, 50,000 and 60,000 appear to be nearly identical.

実施例 3 30000/時の一定加熱速度の一連の実験を行って酸
化剤、すなわちN02を、窒素で希釈するときの効果を
試験し、第2図に示されている結果を得た。
Example 3 A series of experiments with a constant heating rate of 30,000/hour were conducted to test the effect of diluting the oxidizer, ie N02, with nitrogen, with the results shown in FIG.

燃料サンプルはU02べレットであった。The fuel sample was U02 pellets.

N02によるU02の酸化の反応速度はN2による希釈
に比較的鈍感であることに注意すべきである。実施例
4 U02の酸化におけるNOによる希釈の影響を求めるた
めに300oo/時の一定加熱速度の実験を、酸化剤混
合物としてN02およびそれに添加されたN02の混合
物を用いて行い、第3図に示されている結果を得た。
It should be noted that the kinetics of oxidation of U02 by N02 is relatively insensitive to dilution with N2. Example
4 To determine the effect of dilution with NO on the oxidation of U02, experiments with a constant heating rate of 300 oo/hr were carried out using a mixture of N02 and N02 added to it as the oxidant mixture, and the results shown in Fig. 3 I got the result.

使用された酸化剤は、N02とNOとの1:1の混合物
であった。
The oxidant used was a 1:1 mixture of N02 and NO.

NOの鼻が増大すると、U02のN02内における酸化
反応速度が低下する煩があることが観察された。
It was observed that an increase in the NO nose caused a decrease in the oxidation reaction rate of U02 in N02.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例2において、種々な反応温度における
反応時間と、生成物の重量変化との関係を示すグラフで
あり、第2図は、実施例3におし、て、種々のN02濃
度における反応温度と生成物の重量変化との関係を示す
グラフであり、第3図は実施例4において、種々のN0
2濃度における反応温度と生成物の重量変化との関係を
示すグラフである。 第1図 第2図 第3図
FIG. 1 is a graph showing the relationship between the reaction time at various reaction temperatures and the weight change of the product in Example 2, and FIG. 2 is a graph showing the relationship between reaction time and weight change of the product at various reaction temperatures in Example 3. 3 is a graph showing the relationship between reaction temperature and product weight change in concentration, and FIG. 3 is a graph showing the relationship between reaction temperature and product weight change in Example 4.
2 is a graph showing the relationship between reaction temperature and product weight change at two concentrations. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1 放射ずみ核燃料ペレツトと、酸化窒素酸化剤とを、
約325℃と800℃との間の反応温度で、前記ペレツ
トが微粉末に変化するのに十分な時間だけ反応させ、そ
れにより揮発性核分裂生成物を放散させることを含む、
放射ずみ核燃料から揮発性核分裂生成物を分離する方法
。 2 前記放射ずみ燃料が酸化ウラン、酸化プルトニウム
、および、これらの混合物からなる群から選ばれたもの
であるから、特許請求の範囲第1項記載の方法。 3 前記反応温度が約350℃と650℃との間に保持
される特許請求の範囲第1項記載の方法。 4 前記酸化剤が本質的に二酸化窒素からなる特許請求
の範囲第1項記載の方法。 5 前記酸化剤が、本質的に二酸化窒素と、酸素と、一
酸化窒素との混合物からなる、特許請求の範囲第1項記
載の方法。 6 前記揮発性核分裂生成物がキセノン、ヨード、クリ
プトンおよびトリチウムである、特許請求の範囲第1項
記載の方法。 7 前記酸化剤がガス希釈剤によつて希釈されている、
特許請求の範囲第1項記載の方法。 8 前記希釈剤が窒素である、特許請求の範囲第7項記
載の方法。 9 前記希釈剤が一酸化窒素である、特許請求の範囲第
7項記載の方法。
[Claims] 1. Radiated nuclear fuel pellets and a nitrogen oxide oxidizer,
reacting at a reaction temperature between about 325°C and 800°C for a time sufficient to convert the pellet to a fine powder, thereby dissipating volatile fission products;
A method for separating volatile fission products from radioactive nuclear fuel. 2. The method of claim 1, wherein the radiated fuel is selected from the group consisting of uranium oxide, plutonium oxide, and mixtures thereof. 3. The method of claim 1, wherein the reaction temperature is maintained between about 350<0>C and 650<0>C. 4. The method of claim 1, wherein said oxidizing agent consists essentially of nitrogen dioxide. 5. The method of claim 1, wherein the oxidizing agent consists essentially of a mixture of nitrogen dioxide, oxygen, and nitric oxide. 6. The method of claim 1, wherein the volatile fission products are xenon, iodine, krypton and tritium. 7. the oxidizing agent is diluted with a gas diluent;
A method according to claim 1. 8. The method of claim 7, wherein the diluent is nitrogen. 9. The method of claim 7, wherein the diluent is nitric oxide.
JP53008985A 1977-02-07 1978-01-31 Method for separating volatile fission products from radioactive nuclear fuel Expired JPS6034718B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US76614277A 1977-02-07 1977-02-07
US766142 2001-01-19

Publications (2)

Publication Number Publication Date
JPS5399196A JPS5399196A (en) 1978-08-30
JPS6034718B2 true JPS6034718B2 (en) 1985-08-10

Family

ID=25075540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53008985A Expired JPS6034718B2 (en) 1977-02-07 1978-01-31 Method for separating volatile fission products from radioactive nuclear fuel

Country Status (8)

Country Link
JP (1) JPS6034718B2 (en)
BE (1) BE863675A (en)
DE (1) DE2801744C2 (en)
ES (1) ES466675A1 (en)
FR (1) FR2379884A1 (en)
GB (1) GB1593323A (en)
IT (1) IT1092476B (en)
SE (1) SE429587B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0439019U (en) * 1990-08-01 1992-04-02

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3140151A (en) * 1959-11-12 1964-07-07 James R Foltz Method of reprocessing uo2 reactor fuel
BE611199A (en) * 1961-12-06 1962-06-06 Ct D Etude De L En Nucleaire Process for the reprocessing of nuclear fuels, which include carbon in their structure and / or in their cladding.
IT1034322B (en) * 1975-03-17 1979-09-10 Agip Nucleare Spa PYROCHEMICAL SEPARATION OF PLUTUS NIUM FROM IRRAYED NUCLEAR FUELS BY THERMODECOMPOSITION IN MELTED NITRATES

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0439019U (en) * 1990-08-01 1992-04-02

Also Published As

Publication number Publication date
JPS5399196A (en) 1978-08-30
GB1593323A (en) 1981-07-15
SE7801361L (en) 1978-08-08
ES466675A1 (en) 1979-11-16
DE2801744A1 (en) 1978-08-10
IT7819802A0 (en) 1978-01-30
FR2379884B1 (en) 1984-10-19
BE863675A (en) 1978-08-07
IT1092476B (en) 1985-07-12
DE2801744C2 (en) 1986-12-11
SE429587B (en) 1983-09-12
FR2379884A1 (en) 1978-09-01

Similar Documents

Publication Publication Date Title
US4011296A (en) Irradiated fuel reprocessing
US4279875A (en) Method of releasing fission gases from irradiated fuel
US4285891A (en) Method of removing fission gases from irradiated fuel
US3276850A (en) Method of selectively reducing plutonium values
JPS6034718B2 (en) Method for separating volatile fission products from radioactive nuclear fuel
Cathers Uranium recovery for spent fuel by dissolution in fused salt and fluorination
DelCul et al. Advanced head-end for the treatment of used LWR fuel
Flanary et al. Hot-cell studies of aqueous dissolution processes for irradiated carbide reactor fuels
Kobayashi et al. Fluorex reprocessing system for the thermal reactors cycle and future thermal/fast reactors (coexistence) cycle
Shaffer et al. The Recovery of Protactinium and Uranium from Molten Fluoride Systems by Precipitation as Oxides
Goode et al. ORNL experiments on behavior of tritium during head-end processing of irradiated reactor fuels
Bray et al. Method of releasing fission gases from irradiated nuclear fuel
Goode et al. Comparison studies of head-end reprocessing using three LWR fuels
US3039847A (en) Separation of metal values from nuclear reactor poisons
Flanary et al. Development of the Sulfex Process for Decladding Stainless-Steel-Clad Power Reactor Fuel Elements with Sulfuric Acid
US2892701A (en) Pyrochemical decontamination method for reactor fuel
Straumanis et al. THE REACTION OF ZIRCONIUM-OXYGEN ALLOYS WITH HYDROFLUORIC ACID
Burdese et al. HEAT OF OXIDATION OF URANIUM OXIDES
Karraker et al. Evaluation of the" reverse Strike" Head-end Procedure
Johnson et al. Light water reactor fuel reprocessing: dissolution studies of voloxidized and nonvoloxidized fuel
Grattan et al. Uranium Recovery from Scrap Uranium Tetrafluoride by Wet Reversion with Sodium Hydroxide
RU2400846C1 (en) Dissolution method of off-grade and/or spent fuel
Quincy Jr Preparation of high-purity magnesium oxide
Shuler Processing of Fuel Assemblies that Contain Zirconium
Niedrach et al. Recovery of Uranium from Stainless Steel Fuel Elements