JPS6034576B2 - Method for producing organosilicon polymer - Google Patents

Method for producing organosilicon polymer

Info

Publication number
JPS6034576B2
JPS6034576B2 JP5753878A JP5753878A JPS6034576B2 JP S6034576 B2 JPS6034576 B2 JP S6034576B2 JP 5753878 A JP5753878 A JP 5753878A JP 5753878 A JP5753878 A JP 5753878A JP S6034576 B2 JPS6034576 B2 JP S6034576B2
Authority
JP
Japan
Prior art keywords
silicic acid
water
organosilicon
reaction
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5753878A
Other languages
Japanese (ja)
Other versions
JPS54149798A (en
Inventor
最昭 渡辺
浩也 山下
重之 遠山
正広 武末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP5753878A priority Critical patent/JPS6034576B2/en
Publication of JPS54149798A publication Critical patent/JPS54149798A/en
Publication of JPS6034576B2 publication Critical patent/JPS6034576B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Silicon Polymers (AREA)

Description

【発明の詳細な説明】 本発明は珪酸と有機珪素化合物との反応により有機溶剤
に可溶な有機珪素重合体を製造する、新規に改良された
方法を提供するにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a new and improved method for producing organosilicon polymers soluble in organic solvents by the reaction of silicic acid and organosilicon compounds.

これまで耐熱性高分子として知られている珪素樹脂は機
水性、消泡性、鱗型性、電気絶縁性などにすぐれ、広い
分野に使用されてきたが、その製造方法は周知の如く、
オルガノクロルシランモノマーの重合によるものである
Silicone resin, which has been known as a heat-resistant polymer, has excellent water resistance, antifoaming properties, scale-like properties, electrical insulation properties, etc., and has been used in a wide range of fields, but its manufacturing method is well-known.
This is due to the polymerization of organochlorosilane monomers.

しかるに上記製法では、出発原料の金属シリコンを得る
ために大量に電気エネルギーを要し、またポリマーの収
率も低く、得られる珪素樹脂製品の高価格を余儀なくさ
れていた。これに対して、一層経済的な安価な有機珪素
重合体の製造方法として、珪酸ナトリウム、もしくは珪
酸から合成する方法が、特公昭28−5699号及び侍
公昭53−799号などに提案されている。
However, the above production method requires a large amount of electrical energy to obtain the metal silicon as a starting material, and the yield of the polymer is also low, making the resulting silicone resin products expensive. On the other hand, as a more economical and inexpensive method for producing organosilicon polymers, a method of synthesizing it from sodium silicate or silicic acid has been proposed in Japanese Patent Publication No. 28-5699 and Samurai Publication No. 53-799, etc. .

しかし、これらの方法も、いくつかの問題点を有してい
る。例えば特公昭28一569計号によれば、有機珪素
化合物、所謂オルガノシリル化剤とヒIJカヒドロゾル
とを反応させるに当り、前者を後者に対して大過剰仕込
んで反応させても、なお有機溶剤に不溶の有機珪素重合
体が生成する。そのためにこの方法を工業的に利用しよ
うとすれば、生成した有機溶剤可溶物を有機溶剤で抽出
する工程が必要で、収率も低く工業的に満足出来る方法
とは云えない。また、特公昭53−79$獣こよれば、
珪酸をオルガノシリル化剤と反応させる前に、一般に予
め珪酸を樋性有機溶剤で抽出する工程が必要である。
However, these methods also have some problems. For example, according to Japanese Patent Publication No. 28-569, when reacting an organosilicon compound, the so-called organosilylating agent, with H-IJ-cahydrosol, even if the former is charged in large excess with respect to the latter, the organic solvent still remains. Insoluble organosilicon polymers are formed. Therefore, if this method is to be used industrially, a step of extracting the produced organic solvent-soluble matter with an organic solvent is necessary, and the yield is low, so it cannot be said to be an industrially satisfactory method. Also, according to the special public service 53-79 Jyukoyo,
Before reacting silicic acid with an organosilylating agent, it is generally necessary to carry out a step of extracting silicic acid with a gutter organic solvent.

そのため本工程に塩折操作が必要となり、工程が煩雑な
上に、得られた有機珪素重合体の分子量が低く、限定さ
れる。本発明者らは、これらの有機珪素重合体の製造に
おける問題点を鯛決すべく鋭意研究を続けた結果、珪酸
と有機珪素化合物(以下、オルガノシリル化剤と称す)
とを反応させて有機珪素重合体を製造するに当り、予め
珪酸を適当な条件下に加熱処理すれば、所望の分子量を
有する、有機溶剤に可溶な有機珪素重合体を、高収率で
容易に製造できることを見し、出し、本発明を完成させ
た。
Therefore, this process requires a salt-folding operation, which makes the process complicated, and the molecular weight of the obtained organosilicon polymer is low and limited. The present inventors have continued intensive research to resolve the problems in the production of these organosilicon polymers, and as a result, we have developed a combination of silicic acid and organosilicon compounds (hereinafter referred to as organosilylating agents).
When producing an organosilicon polymer by reacting with silicic acid, if the silicic acid is heat-treated under appropriate conditions in advance, an organic solvent-soluble organosilicon polymer having a desired molecular weight can be produced in high yield. They discovered that it could be easily manufactured, and completed the present invention.

即ち、本発明は珪酸をハロゲン原子又はアルコキシ基を
結合して有する有機珪素化合物と反応させ有機珪素重合
体を製造するに際し、該珪酸として水又は水と極性有機
溶剤との混合溶媒中で3000〜溶剤の沸点の温度下に
加熱処理した珪酸を用いることを特徴とする有機珪素重
合体の製造方法である。本発明の実施により、有機溶剤
に可溶な有機珪素重合体を塩析出工程を必要としない簡
便なプロセスで、安定して且つ高収率で製造することが
できる。
That is, in the present invention, when producing an organosilicon polymer by reacting silicic acid with an organosilicon compound having a halogen atom or an alkoxy group bonded to it, the silicic acid is reacted with a silica in water or a mixed solvent of water and a polar organic solvent. This is a method for producing an organosilicon polymer, characterized by using silicic acid that has been heat-treated at a temperature of the boiling point of a solvent. By implementing the present invention, an organic-solvent-soluble organosilicon polymer can be produced stably and in high yield through a simple process that does not require a salt precipitation step.

更に、所望する任意の分子量、即ち重量平均分子量50
00〜100000さらには数10万にも及ぶ高分子量
の有機珪素重合体を製造することができる。また本発明
により得られる有機珪素重合体は勿論、親油性であり、
溌水剤、消泡剤、離型剤、電気絶縁剤、その他の各種原
料として極めて有用である。また、極めて分子量を高く
できるので、フィルム性も良好である。本発明は予め加
熱処理した珪酸とオルガノシリル化剤とを一般に水と磁
性有機溶剤との混合溶媒中で蝿梓下に反応させる。
Furthermore, any desired molecular weight, i.e. a weight average molecular weight of 50
It is possible to produce organosilicon polymers with high molecular weights ranging from 0.00 to 100,000 or even several hundreds of thousands. Furthermore, the organosilicon polymer obtained by the present invention is of course lipophilic,
It is extremely useful as a water repellent, antifoaming agent, mold release agent, electrical insulation agent, and various other raw materials. Furthermore, since the molecular weight can be made extremely high, film properties are also good. In the present invention, silicic acid that has been heat-treated in advance and an organosilylating agent are generally reacted together in a mixed solvent of water and a magnetic organic solvent.

反応の進行に伴い、次第に二層に分離する。下層に沈燈
する有機珪素重合体層は酸や使用した酸の塩がなくなる
まで、十分洗液し、ついで乾燥することによってガラス
状或いは粉末状の生成物が得られる。本発明は淫酸とオ
ルガノシリル化剤とを反応させて、所望する任意の分子
量を有する有機珪素重合体を得るために、珪酸を予め加
熱処理することが極めて重要である。
As the reaction progresses, it gradually separates into two layers. The organosilicon polymer layer precipitated in the lower layer is thoroughly washed with liquid until the acid and the salt of the acid used are gone, and then dried to obtain a glassy or powdery product. In the present invention, it is extremely important to heat-treat silicic acid in advance in order to obtain an organosilicon polymer having a desired arbitrary molecular weight by reacting an inactive acid with an organosilylating agent.

本発明で用いられる原料珪酸は水溶性の珪酸であれば特
に限定されず用いられ、例えば珪酸ナトリウム、珪酸カ
リウムが好適に使用される。一般には水ガラスを塩酸、
硝酸、硫酸等で中和反応することにより容易に水溶性の
珪酸を得ることができるので、この方法が工業的に有利
に採用できる。しかしながな該反応においては条件次第
ではいまいまゲル化し、ゲル化したケイ酸を用いるオル
ガノシリル化反応後も有機溶剤に不溶となるので、ゲル
化したものは本発明の珪酸原料としては用いることがで
きない。本発明で用いる原料珪酸は水又は水と極性有機
溶剤との混合溶媒中で、特にpHO.4〜3.5の酸性
条件下に3000以上の温度で加熱処理したものが好ま
しい。
The raw material silicic acid used in the present invention is not particularly limited as long as it is water-soluble silicic acid, and for example, sodium silicate and potassium silicate are preferably used. Generally, water glass is mixed with hydrochloric acid,
Since water-soluble silicic acid can be easily obtained by neutralizing with nitric acid, sulfuric acid, etc., this method can be advantageously employed industrially. However, depending on the conditions in this long reaction, it may turn into a gel, and even after the organosilylation reaction using the gelled silicic acid, it becomes insoluble in organic solvents, so the gelled silicic acid is used as the silicic acid raw material of the present invention. I can't. The raw silicic acid used in the present invention is prepared in water or a mixed solvent of water and a polar organic solvent, especially at pH. Preferably, the material is heat-treated at a temperature of 3,000 or higher under acidic conditions of 4 to 3.5.

即ちpH0.4〜3.封戦こpHI〜3で条件下では、
水ガラスの中和により製造した珪酸は極めて安定で、重
合度も低い。従って3000以上で熱処理を施すことに
より原料珪酸の分子量の調整が容易となり、ひいては任
意の有機珪素重合体を得ることができる。また加熱処理
の時間は混合溶媒組成、極性有機溶剤の種類、pH、加
熱温度等によって多少異なるが、一般には2び分〜8時
間の範囲が最も好適に採用される。
That is, pH 0.4-3. Under conditions of a pH of ~3,
Silicic acid produced by neutralizing water glass is extremely stable and has a low degree of polymerization. Therefore, by heat-treating at a molecular weight of 3,000 or more, the molecular weight of the raw silicic acid can be easily adjusted, and any desired organosilicon polymer can be obtained. Further, the heat treatment time varies somewhat depending on the mixed solvent composition, the type of polar organic solvent, pH, heating temperature, etc., but generally a range of 2 minutes to 8 hours is most preferably employed.

本発明に於ける珪酸を予め特定のpH下に加熱処理する
ことが、どのような作用機構で得られる有機珪素重合体
の分子量を増大しうるのか明らかではないが、特定のp
H下に於ける加熱処理が原料の珪酸を重合し高分子量の
珪酸を生成させることによるのではないかと推定してい
る。また本発明で用いる珪酸の濃度は混合溶媒に溶解し
ている状態であれば特に限定されず、ゾル状のものまで
使用出来る。一般にはシリカ濃度で1〜10%程度の珪
酸が最も好適に使用出来る。前記したように、本発明に
おける加熱処理した珪酸とオルガノシリル化剤との反応
は既に公知の方法をそのまま用い得る。特に工業的によ
り好ましい条件として、水を含む極性有機溶剤中で珪酸
1モルに対してオルガノシリル化剤を0.7〜2.0モ
ル用い、且つ反応温度200○以上で行うことである。
この際、水を含む極性有機溶剤として、適切な極性有機
溶剤/水の容量比は0.2〜2.0である。上記の容量
比が0.沙〆下では十分オルガノシリル化反応が進行し
ない場合があり、結果として珪酸ゲルが共沈して有機溶
剤に不溶の有機珪素重合体が生成する場合がある。一方
、上記の容量比が2.0を越えると、珪酸及びオルガノ
シリル化剤が共に比較的に安定となり、結果としてオル
ガノシリル化が進んだ段階で、その速度が遅く、必ずし
も良好な結果が得られず、更に全体としてシリカ濃度の
減少をきたすため、工業的にも不利となる。本発明で使
用するオルガノシリル化剤/蓮酸の仕込みモル比は0.
7〜2.0が好ましい。
Although it is not clear by what mechanism of action heat treatment of silicic acid in the present invention to a specific pH can increase the molecular weight of the organosilicon polymer obtained, it is possible to increase the molecular weight of the obtained organic silicon polymer.
It is presumed that this is due to the fact that the heat treatment under H atmosphere polymerizes the raw material silicic acid to produce high molecular weight silicic acid. Further, the concentration of silicic acid used in the present invention is not particularly limited as long as it is dissolved in a mixed solvent, and even sol-like silicic acid can be used. Generally, silicic acid having a silica concentration of about 1 to 10% can be used most preferably. As described above, the reaction between the heat-treated silicic acid and the organosilylating agent in the present invention can be carried out using a known method as is. Particularly preferred industrial conditions are to use 0.7 to 2.0 moles of the organosilylating agent per mole of silicic acid in a polar organic solvent containing water, and to carry out the reaction at a reaction temperature of 200° or higher.
At this time, as the polar organic solvent containing water, a suitable polar organic solvent/water volume ratio is 0.2 to 2.0. The above capacity ratio is 0. In the presence of salt, the organosilylation reaction may not proceed sufficiently, and as a result, silicic acid gel may co-precipitate to produce an organosilicon polymer insoluble in organic solvents. On the other hand, when the above-mentioned capacity ratio exceeds 2.0, both the silicic acid and the organosilylation agent become relatively stable, and as a result, the speed of organosilylation is slow and good results are not necessarily obtained. Moreover, the silica concentration as a whole decreases, which is industrially disadvantageous. The molar ratio of organosilylating agent/lotus acid used in the present invention is 0.
7 to 2.0 is preferred.

上記モル比の下限値は用いる原料珪酸の分子量によって
も異なり、水に可溶な限り高分子量の原料を用いる程オ
ルガノシリル化剤の使用量は少なくても差し支えない。
一般には、有機溶剤に可溶な珪素重合体を得るためには
、モル比0.7以上が必要である。オルガノシリル化剤
/珪酸のモル比が大である場合には、用いるオルガノシ
リル化剤の種類によっては予想に反して有機溶剤に不溶
となる場合が観察される。また、オルガノシリル化剤は
反応中に種々の態様を経て、分解、変質するために過剰
のオルガノシリル化剤を必ずしも容易に回収することが
できず、上記のモル比が2以上では工業的とは言えない
。経済性を考慮して、モル比1近辺で十分である。反応
温度については特に限定されないが、高温ほど、オルガ
ノシリル化反応は速やかである。
The lower limit of the above molar ratio also varies depending on the molecular weight of the raw material silicic acid used, and as long as it is soluble in water, the amount of organosilylating agent used may be smaller as a raw material with a higher molecular weight is used.
Generally, in order to obtain a silicon polymer soluble in an organic solvent, a molar ratio of 0.7 or more is required. When the molar ratio of organosilylating agent/silicic acid is large, it is observed that depending on the type of organosilylating agent used, the organosilylating agent becomes insoluble in organic solvents, contrary to expectations. Furthermore, since the organosilylating agent undergoes various processes during the reaction and undergoes decomposition and deterioration, it is not always possible to easily recover the excess organosilylating agent. I can't say that. Considering economic efficiency, a molar ratio of around 1 is sufficient. The reaction temperature is not particularly limited, but the higher the temperature, the faster the organosilylation reaction.

一般には、温度2000〜溶剤沸点範囲が良好である。
本発明で用いるオルガノシリル化剤は、一般式RnSi
Xrn及び×(R2Si0)mSiR2×で示される化
合物の1種又は2種以上を用いることができる。上式に
おいて、Rはメチル基、エチル基、プロピル基等のアル
キル基、フヱニル基、ナフチル基等のアリール基、ビニ
ル基アリル基等のアルケニル基等の飽和、不飽和の炭化
水素基又は、yーアミノプロピル基、8−カルポキシェ
チル基、yーシアノフ。ロピル基等、置換基を有する炭
化水素残基等の炭素官能性有機基である。また、×はハ
。ゲン及び/又は、メトキシ基、ェトキシ基などのアル
コキシ基である。更に、nは1〜3の整数であるが使用
の態様にあっては、nの値の平均的には1〜3の範囲内
の小数をとり得る。同様にmは3又は4である。好まし
く使用されるオルガノシリル化剤としては。
Generally, a temperature range of 2,000 to the boiling point of the solvent is favorable.
The organosilylating agent used in the present invention has the general formula RnSi
One or more of the compounds represented by Xrn and x(R2Si0)mSiR2x can be used. In the above formula, R is a saturated or unsaturated hydrocarbon group such as an alkyl group such as a methyl group, an ethyl group, or a propyl group, an aryl group such as a phenyl group or a naphthyl group, an alkenyl group such as a vinyl group or an allyl group, or y -aminopropyl group, 8-carpoxycetyl group, y-cyanof. It is a carbon-functional organic group such as a hydrocarbon residue having a substituent such as a lopyl group. Also, × is Ha. and/or an alkoxy group such as a methoxy group or an ethoxy group. Furthermore, although n is an integer of 1 to 3, depending on the mode of use, the average value of n may be a decimal number within the range of 1 to 3. Similarly, m is 3 or 4. Preferably used organosilylating agents include:

例えばトリメチルクロルシラン、トリエチルクロルシラ
ン、ジメチルジクロルシラン、ジエチルジクロルシラン
、メチルトリクロルシラン「エチルトリクロルシラン、
1,4ージクロルオクタメチルテトラシロキサン等が一
般に用いられる。本発明で用いる樋性有機溶剤は、メタ
ノール、エタノール、ブロバノール、ブタノール等のア
ルコール類、ジメチルェーテル、ジェチルェ−7ル、テ
トラヒドロフラン等のエーテル類、アセトン、メチルィ
ソブチルケトン等のケトン類、酢酸エチル、酢酸ブチル
等のェステル類、ジメチルホルムアミド等のアミド類、
ジメチルスルホキシド等のアルキルスルホキシド類、さ
らにベンゼン、トルェン等の芳香族化合物をも包含する
。以下に本発明の実施例を示すが、本発明はもとより、
これらに限定されるものではない。
For example, trimethylchlorosilane, triethylchlorosilane, dimethyldichlorosilane, diethyldichlorosilane, methyltrichlorosilane, ethyltrichlorosilane,
1,4-dichlorooctamethyltetrasiloxane and the like are generally used. The organic solvents used in the present invention include alcohols such as methanol, ethanol, brobanol, and butanol, ethers such as dimethyl ether, jetyl ether, and tetrahydrofuran, ketones such as acetone and methyl isobutyl ketone, ethyl acetate, Esters such as butyl acetate, amides such as dimethylformamide,
It also includes alkyl sulfoxides such as dimethyl sulfoxide, and aromatic compounds such as benzene and toluene. Examples of the present invention are shown below, but the present invention also includes:
It is not limited to these.

以下の実施例で使用する珪酸ナトリウム水溶液は徳山曹
達■製の4号珪酸ナトリウム(Si02/Na20モル
比3.37)を予め水で希釈し、シリカ濃度を2の重量
%としたものを用いた。
The sodium silicate aqueous solution used in the following examples was prepared by diluting No. 4 sodium silicate (Si02/Na20 molar ratio 3.37) manufactured by Tokuyama Soda ■ with water and adjusting the silica concentration to 2% by weight. .

また分子量分布の測定及び重量平均分子量の計算は次の
ように行なった。
Furthermore, the measurement of molecular weight distribution and calculation of weight average molecular weight were performed as follows.

測定装置は日立製作所製液体クロマト633型を使用し
た。カラムはShodeXA−802、A−803 A
−805の3本を接続(室温で測定した。溶媒はテトラ
ヒドロフランを1机‘/minの速度で流した。検出器
には差動屈折計を用いた。試料は0.5夕を100私の
テトラヒドロフランに溶解させ、その0.5の‘を吸引
法により溶媒に注入した。同一測定条件で標準ポljス
チレンにより作成した鮫正曲線により、各カウントの分
子量(Mi)を求め、又得られたクロマトグラムは流出
量を0.5凧【/minで分割し、各カウントのピータ
高さ(Hj)を出した。
The measuring device used was Liquid Chromato Model 633 manufactured by Hitachi, Ltd. Column is ShodeXA-802, A-803A
-805 were connected (measured at room temperature. The solvent was tetrahydrofuran, which was flowed at a rate of 1 m/min. A differential refractometer was used as a detector. The sample was It was dissolved in tetrahydrofuran, and 0.5' of it was injected into the solvent by suction.The molecular weight (Mi) of each count was determined using a shark positive curve created using standard polyj styrene under the same measurement conditions. The chromatogram was divided by dividing the flow rate by 0.5 kite/min, and the Peter height (Hj) of each count was calculated.

重量平均分子量(Mw)はこれらの数値を用い、次式に
より電子計算機で算出した。
The weight average molecular weight (Mw) was calculated using an electronic computer according to the following formula using these values.

Mw=三型凶山 2Hi 実施例 1 30重量%硫酸(比重1.27)7.5叫と水22.5
の【を300瓜【ビーカーに入れ、マグネチツクスタ−
ラーで損拝しながら、珪酸ナトリウム水溶液15夕を水
15地で希釈した溶液を1分以内で加えた。
Mw = Type 3 Kakuzan 2Hi Example 1 30% by weight sulfuric acid (specific gravity 1.27) 7.5 and water 22.5
Put 300 melons into a beaker and place in a magnetic star.
A solution prepared by diluting 15 parts of an aqueous sodium silicate solution with 15 parts of water was added within 1 minute while using a larder.

ついで40qoで6時間加熱処理した。一方、トリメチ
ルク。
Then, it was heat-treated at 40 qo for 6 hours. On the other hand, trimethylchloride.

ルシラン6.4叫をインプロピルアルコール60泌に希
釈し、40qoに加溢した。前者を後者中に40qo、
櫨枠下、1分以内で加えた。ついで30分間反応させた
。この際、混合時の珪酸溶液のpHは約1、ィソプロピ
ルアルコール/水の容量比は約1、トリメチルクロルシ
ラン/珪酸のモル比も約1である。反応の進行に伴い、
層分離した。下層の有機珪素重合体層をトルェンに熔解
し、水を加えて水洗し、ついで60℃減圧下にトルェン
を除去し乾燥した。生成物はガラス状粉体で努水性であ
った。
Luciran 6.4 was diluted to 60 q of inpropyl alcohol and perfused to 40 q. 40 qo of the former in the latter,
It was added within 1 minute under the box frame. Then, it was allowed to react for 30 minutes. At this time, the pH of the silicic acid solution during mixing is about 1, the volume ratio of isopropyl alcohol/water is about 1, and the molar ratio of trimethylchlorosilane/silicic acid is also about 1. As the reaction progresses,
The layers were separated. The lower organosilicon polymer layer was dissolved in toluene, washed with water, and then the toluene was removed under reduced pressure at 60° C. and dried. The product was a glassy powder and hydrophobic.

このものは、ベンゼン、トルエン、アセトン、n−ブタ
ノール、テトラヒドロフランなどに溶解した。生成物の
元素分析よりCI2.7%、日3.3%で残りはSi0
2であった。赤外吸収スペクトルは、Si−0−Siに
帰因する1080cm‐1及び1250肌‐1に(CH
3)3Siの顕著な特性吸収を示した。しかしSi−O
Hの存在は赤外吸収スペクトル及びNMR分析のいずれ
も認められなかった。生成物をテトラヒドロフランに溶
かし、高速液体クロマトグラフで求めた重量平均分子量
は31,000であった。実施例 2 3の重量%硫酸(比重1.27)15地と水15の上を
300の‘ビーカーに入れ、マグネチックスターラ−で
擬拝しながら、珪酸ナトリウム水溶液15夕を水15の
【で希釈した溶液を1分以内で加えた。
This product was dissolved in benzene, toluene, acetone, n-butanol, tetrahydrofuran, etc. From elemental analysis of the product, CI2.7%, day 3.3%, and the rest is Si0.
It was 2. The infrared absorption spectrum is at 1080 cm-1 and 1250 cm-1 attributed to Si-0-Si (CH
3) It showed remarkable characteristic absorption of 3Si. However, Si-O
The presence of H was not recognized in either the infrared absorption spectrum or NMR analysis. The product was dissolved in tetrahydrofuran and the weight average molecular weight determined by high performance liquid chromatography was 31,000. Example 2 Put 15 parts by weight of sulfuric acid (specific gravity 1.27) and 15 parts of water into a 300-ml beaker, and while using a magnetic stirrer, add 15 parts of sodium silicate aqueous solution to 15 parts of water. The diluted solution was added within 1 minute.

ついで30午0で、2時間加熱処理した。一方、トリメ
チルク。ルシラン6.4叫をインプロピルアルコール6
0の‘に希釈し、40ooに加温する。前者を後者中に
、灘拝しながら1分以内で加え、40つ0で30分間反
応させた。この際、混合時の珪酸溶液のpHは約0.0
インプロピルアルコール/水の容量比は約1、トリメチ
ルクロルシラン/珪酸のモル比は約1である。反応の進
行に伴い、層分離した。下層の有機珪素重合体層をベン
ゼンに溶かし、水を加えて水洗し、ついで6000減圧
下にベンゼンを除去し乾燥した。得られたものはガラス
状粉体で、髪水性を示した。
Then, at 30:00, heat treatment was performed for 2 hours. On the other hand, trimethylchloride. Lucilan 6.4 shout inpropyl alcohol 6
Dilute to 0° and warm to 40°. The former was added to the latter within 1 minute while stirring, and the reaction was allowed to proceed for 30 minutes at 40°C. At this time, the pH of the silicic acid solution during mixing is approximately 0.0.
The volume ratio of inpropyl alcohol/water is about 1, and the molar ratio of trimethylchlorosilane/silicic acid is about 1. As the reaction progressed, the layers were separated. The lower organosilicon polymer layer was dissolved in benzene, washed with water, and then the benzene was removed under 6000 vacuum and dried. The product obtained was a glassy powder and exhibited aqueous properties.

元素分析よりCI7.6%、日4.8%で残りはSi0
2であった。このものはベンゼン、トルエン、アセトン
、nーブタノール、テトラヒドロフランなどに溶解した
From elemental analysis, CI7.6%, day 4.8%, and the rest is Si0.
It was 2. This material was dissolved in benzene, toluene, acetone, n-butanol, tetrahydrofuran, etc.

赤外吸収スペクトルは実施例1と同機にSi−○−Si
に婦因する1080伽‐1及び1250弧‐1に(CH
3)3Siの顕著な特性吸収を示した。しかしSi−O
Hの存在は、赤外吸収スペクトル及びNM旧分析のいず
れも認められなかった。生成物をテトラヒドロフランに
溶かし、高速液体クロマトグラフで求めた重量平均分子
量は28,100であった。実施例 3〜12実施例1
又は2と同様にして、インプロピルアルコール/水の容
量比を約1、トリメチルクロルシラン/珪酸のモル比を
約1と一定にして第1表に記載したように混合時の珪酸
溶液のpH、舟調整のための鉱酸の種類、加熱処理温度
と時間を種々変えて、得られた生成物の重量平均分子量
を求めた。
The infrared absorption spectrum was obtained using Si-○-Si in the same machine as in Example 1.
(CH
3) It showed remarkable characteristic absorption of 3Si. However, Si-O
The presence of H was not recognized in either the infrared absorption spectrum or the NM old analysis. The product was dissolved in tetrahydrofuran and the weight average molecular weight determined by high performance liquid chromatography was 28,100. Examples 3-12 Example 1
Or, in the same manner as in 2, the pH of the silicic acid solution at the time of mixing as described in Table 1 by keeping the volume ratio of inpropyl alcohol/water constant at about 1 and the molar ratio of trimethylchlorosilane/silicic acid at about 1, The weight-average molecular weight of the products obtained was determined by varying the type of mineral acid and heat treatment temperature and time for boat conditioning.

結果を第1表中に実施例3〜12として示す尚生成物の
有機溶剤への溶解性、赤外吸収スペクトル、などは実施
例1と同様であった。実施例 13 3の重量%硫酸15の‘、水21の‘、インプロピルア
ルコール12磯を300の【ビーカーに入れ、マグネチ
ツクスターラ‐で鷹拝しながら、珪酸ナトリウム水溶液
152を1分以内で加えた。
The results are shown as Examples 3 to 12 in Table 1. The solubility of the products in organic solvents, infrared absorption spectra, etc. were the same as in Example 1. Example 13 3 weight percent sulfuric acid 15 parts, water 21 parts, and inpropyl alcohol 12 parts were placed in a 300ml beaker, and while stirring with a magnetic stirrer, an aqueous sodium silicate solution 152 parts was added within 1 minute. Ta.

ついで30℃で2時間加熱処理した。一方、トリメチル
クロルシラン6.4の‘をインプロピルアルコール35
の‘で希釈し、40qoに加溢した。前者を後者中に燈
拝しながら、1分以内で加え、40午0、3び分間反応
させた。この際、混合時の珪酸溶液のpH‘ま約0.6
、インプロピルアルコール/水比は約1、トリメチルク
ロルシラン/珪酸モル比は約1である。また、珪酸の加
熱処理中のイソプ。ピルアルコール/水の比は1′3で
ある。後処理は実施例1と同機に行なった。生成物はガ
ラス状粉体で有機溶剤に可溶であった。元素分析よりC
I9.6%、日5.1%で残りはSi02であった。
Then, it was heat-treated at 30°C for 2 hours. On the other hand, 6.4' of trimethylchlorosilane was mixed with 35' of inpropyl alcohol.
The solution was diluted with 40 qo. The former was added to the latter within 1 minute while stirring, and the mixture was allowed to react for 3 minutes at 40:00. At this time, the pH of the silicic acid solution at the time of mixing is approximately 0.6.
, the inpropyl alcohol/water ratio is about 1, and the trimethylchlorosilane/silicate molar ratio is about 1. Also, isop during heat treatment of silicic acid. The ratio of alcohol/water is 1'3. Post-processing was carried out on the same machine as in Example 1. The product was a glassy powder and soluble in organic solvents. C from elemental analysis
I was 9.6%, I was 5.1%, and the rest was Si02.

重量平均分子量は10,260であった。実施例 14
30重量%硫酸30のと、水5.6泌、インプロピルア
ルコール12の‘を300奴ビーカーに入れ、マグネチ
ックスターラーで縄拝しながら、珪酸ナトリウム水溶液
15夕を1分以内で加えた。
The weight average molecular weight was 10,260. Example 14
30 parts by weight of 30% sulfuric acid, 5.6 parts of water, and 12 parts of inpropyl alcohol were placed in a beaker, and while stirring with a magnetic stirrer, 15 parts of an aqueous sodium silicate solution was added within 1 minute.

ついで30qoで1時間熱処理した。一方、トリメチル
クロルシラン6.4の‘をィソプロピルアルコ−ル35
の‘に希釈し、40℃に加溢した。前者を後者中に燭拝
しながら、1分以内で加え、40o030分反応させた
。この際、混合時の珪酸溶液のpHは約0.4、インプ
ロピルアルコール/水比は約1、トリメチルクロルシラ
ン/珪酸モル比も約1である、また珪酸の加熱処理中の
インプロピルアルコール/水比は約1/4である。後処
理は実施例2と同様に行なった。生成物は有機溶剤に可
溶で重量平均分子量は26,600であった。実施例
15〜21 実施例13と同様にして、トリメチルクロルシラン/珪
酸のモル比を約1と一定にして、反応を行うに際し、第
1表に示したように珪酸加熱処理時のインプロピルアル
コール/水の比、加熱処理温度と加熱処理時間、混合時
の溶液のpH、pH調整のために鉱酸の種類を変えて得
られる生成物の重量平均分子量を測定した。
Then, it was heat-treated at 30 qo for 1 hour. On the other hand, 6.4' of trimethylchlorosilane was added to 35' of isopropyl alcohol.
The solution was diluted to 100% and flooded to 40°C. The former was added to the latter within 1 minute while stirring, and the reaction was allowed to proceed for 40 minutes. At this time, the pH of the silicic acid solution during mixing is approximately 0.4, the inpropyl alcohol/water ratio is approximately 1, and the molar ratio of trimethylchlorosilane/silicic acid is approximately 1. The water ratio is about 1/4. Post-treatment was carried out in the same manner as in Example 2. The product was soluble in organic solvents and had a weight average molecular weight of 26,600. Example
15-21 In the same manner as in Example 13, the molar ratio of trimethylchlorosilane/silicic acid was kept constant at about 1, and when carrying out the reaction, as shown in Table 1, inpropyl alcohol/water during the silicic acid heat treatment was carried out. The ratio of heat treatment temperature and heat treatment time, the pH of the solution at the time of mixing, and the weight average molecular weight of the product obtained by changing the type of mineral acid for pH adjustment were measured.

結果を第1表に実施例15〜21として示す。尚、生成
物の極性有機溶剤への溶解性、赤外吸収スペクトルなど
は実施例1と同様であった。実施例 21〜23 実施例1の方法において、トリメチルクロルシランの量
を変え、それぞれトリメチルク。
The results are shown in Table 1 as Examples 15-21. The solubility of the product in polar organic solvents, infrared absorption spectrum, etc., were the same as in Example 1. Examples 21-23 The method of Example 1, but varying the amount of trimethylchlorosilane, respectively.

ルシラン/珪酸のモル比0.8、1.4、1.8で反応
を行なった。得られた生成物はいずれも有機溶剤に可溶
であった。実施例 24 実施例22の方法において、珪酸の加熱処理時間を変え
30℃、4時間で反応を行なった。
Reactions were carried out at molar ratios of lucilane/silicic acid of 0.8, 1.4, and 1.8. All of the obtained products were soluble in organic solvents. Example 24 In the method of Example 22, the silicic acid heat treatment time was changed and the reaction was performed at 30° C. for 4 hours.

得られた生成物は、有機溶剤に可溶であった。実施例
25〜27 実施例1の方法において、オルガノシリル化剤として、
それぞれジメチルクロルシラン、ジフエニルジクロルシ
ラン、1,4−ジクロルオクタメチルシロキサン、トリ
メチルクロルシランを用い、オルガノシリル化剤/珪酸
モル比1.0で反応を行なった。
The resulting product was soluble in organic solvents. Example
25-27 In the method of Example 1, as an organosilylating agent,
The reaction was carried out using dimethylchlorosilane, diphenyldichlorosilane, 1,4-dichlorooctamethylsiloxane, and trimethylchlorosilane, respectively, at an organosilylating agent/silicic acid molar ratio of 1.0.

得られた生成物は有機溶剤に可溶であった。実施例 2
8〜31 実施例1の方法において、極性有機溶剤としてそれぞれ
エタトル、ジメチルホルムアミド、メチルイソブチルケ
トン、酢酸エチルを用いた以外は同じ方法で反応を行な
った。
The product obtained was soluble in organic solvents. Example 2
8-31 The reaction was carried out in the same manner as in Example 1 except that ethator, dimethylformamide, methyl isobutyl ketone, and ethyl acetate were used as polar organic solvents.

得られた生成物はいずれも有機溶剤に可溶であった。実
施例 32 実施例1の方法において、珪酸ナトリウム原料として、
3号珪酸ナトリウム(Si02/Na2)モル比3.0
5)を用いた以外は同じ方法で、反応を行なった。
All of the obtained products were soluble in organic solvents. Example 32 In the method of Example 1, as the sodium silicate raw material,
No. 3 sodium silicate (Si02/Na2) molar ratio 3.0
The reaction was carried out in the same manner except that 5) was used.

得られた生成物は、重量平均分子量は29,500で、
有機溶剤に可溶であった。船 船
The obtained product had a weight average molecular weight of 29,500,
It was soluble in organic solvents. boat ship

Claims (1)

【特許請求の範囲】 1 珪酸をハロゲン原子又はアルコキシ基を結合して有
する有機珪素化合物と反応させ有機珪素重合体を製造す
るに際し、該珪酸としては水又は水と極性有機溶剤との
混合溶媒中で30℃〜溶剤の沸点の温度下に加熱処理し
た珪酸を用いることを特徴とする有機珪素重合体の製造
方法。 2 pH0.4〜3.5の酸性条件下で加熱処理をする
特許請求の範囲第1項記載の方法。 3 珪酸1モルに対し鍵有機珪素化合物を0.7〜2.
0モル用いる特許請求の範囲第1項記載の方法。 4 珪酸と有機珪素化合物との反応を水と極性有機溶剤
との混合溶媒中で行う特許請求の範囲第1項記載の方法
。 5 珪酸が水溶性の珪酸である特許請求の範囲第1項記
載の方法。 6 有機珪素化合物が一般式RnSiX_4_−_n又
はX(R_2SiO)_mSiR_2X(Rは炭化水素
基又は炭素官能性有機基、Xはハロゲン原子及び/又は
アルコキシ基、nは1〜3の整数、mは3又は4)で表
わされるものである特許請求の範囲第1項記載の方法。 7 加熱処理を少くとも20分間行う特許請求の範囲第
1項記載の方法。8 有機珪素重合体が有機溶剤に可溶
なものである特許請求の範囲第1項記載の方法。 9 有機珪素重合体が重量平均分子量1万以上である特
許請求の範囲第1項記載の方法。 10 珪酸と有機珪素化合体との反応をpH5以下で行
う特許請求の範囲第1項記載の方法。 11 極性有機溶剤がアルコール類、エーテル類、ケト
ン類、エステル類又は芳香族化合物である特許請求の範
囲第1項記載の方法。 12 珪酸と有機珪素化合物との反応を20℃〜溶剤の
沸点で行う特許請求の範囲第1項記載の方法。
[Scope of Claims] 1. When producing an organosilicon polymer by reacting silicic acid with an organosilicon compound having a halogen atom or an alkoxy group bonded to it, the silicic acid is prepared in water or a mixed solvent of water and a polar organic solvent. 1. A method for producing an organosilicon polymer, comprising using silicic acid heat-treated at a temperature of 30° C. to the boiling point of a solvent. 2. The method according to claim 1, wherein the heat treatment is performed under acidic conditions of pH 0.4 to 3.5. 3 0.7 to 2.0% of the key organosilicon compound per 1 mole of silicic acid.
The method according to claim 1, in which 0 mol is used. 4. The method according to claim 1, wherein the reaction between silicic acid and an organosilicon compound is carried out in a mixed solvent of water and a polar organic solvent. 5. The method according to claim 1, wherein the silicic acid is water-soluble silicic acid. 6 The organosilicon compound has the general formula RnSiX_4_-_n or X(R_2SiO)_mSiR_2X (R is a hydrocarbon group or a carbon-functional organic group, or 4), the method according to claim 1. 7. The method of claim 1, wherein the heat treatment is carried out for at least 20 minutes. 8. The method according to claim 1, wherein the organosilicon polymer is soluble in an organic solvent. 9. The method according to claim 1, wherein the organosilicon polymer has a weight average molecular weight of 10,000 or more. 10. The method according to claim 1, wherein the reaction between silicic acid and the organosilicon compound is carried out at a pH of 5 or less. 11. The method according to claim 1, wherein the polar organic solvent is an alcohol, ether, ketone, ester, or aromatic compound. 12. The method according to claim 1, wherein the reaction between silicic acid and the organosilicon compound is carried out at 20° C. to the boiling point of the solvent.
JP5753878A 1978-05-17 1978-05-17 Method for producing organosilicon polymer Expired JPS6034576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5753878A JPS6034576B2 (en) 1978-05-17 1978-05-17 Method for producing organosilicon polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5753878A JPS6034576B2 (en) 1978-05-17 1978-05-17 Method for producing organosilicon polymer

Publications (2)

Publication Number Publication Date
JPS54149798A JPS54149798A (en) 1979-11-24
JPS6034576B2 true JPS6034576B2 (en) 1985-08-09

Family

ID=13058530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5753878A Expired JPS6034576B2 (en) 1978-05-17 1978-05-17 Method for producing organosilicon polymer

Country Status (1)

Country Link
JP (1) JPS6034576B2 (en)

Also Published As

Publication number Publication date
JPS54149798A (en) 1979-11-24

Similar Documents

Publication Publication Date Title
Shea et al. Arylsilsesquioxane gels and related materials. New hybrids of organic and inorganic networks
JP2003523422A (en) Polyorganosilsesquioxane and method for producing the same
CN108864428B (en) Boron-containing silicone oil with heat-resistant and aging-resistant main chain belt pyridine structure and preparation method thereof
JPH02219829A (en) Fluoroorganopolysiloxane and its production
JP2000510522A (en) Synthesis of siloxane resin
JP3445625B2 (en) Synthesis of hydrogen silsesquioxane resin
JP4277105B2 (en) Siloxane monomer containing trifluorovinyl ether functional group and sol-gel hybrid polymer produced using this siloxane monomer
US5081202A (en) High purity phenyl silicone ladder polymer and method for producing the same
JPH04353521A (en) Organopolysilsequioxane and production thereof
US4263401A (en) Thermoplastic, elastomeric polystyrene/diorganopolysiloxane block copolymers
JP4536162B2 (en) Process for the production of organofunctionalized aerogels
JP3942201B2 (en) Method for producing phenylpolysilsesquioxane
Matyjaszewski Anionic ring‐opening polymerization of cyclotetrasilanes
JPS6034576B2 (en) Method for producing organosilicon polymer
JP4018873B2 (en) Multivalent reactive polysiloxane compound substituted with halogen and process for producing the same
JP2001220445A (en) Method for producing polysilane
JPS6216212B2 (en)
JPH03190931A (en) Production of titanosiloxane polymer
EP0742245A2 (en) Modified hydrogen silsesquioxane resin
JPH064698B2 (en) Dimethylphenylsilylmethylpolysilane and method for producing the same
CN112538004A (en) Octafluorocyclopentenyl benzocyclobutene functionalized monomer and preparation and application thereof
JPH064699B2 (en) 1,2,2-Trimethyl-1-phenylpolydisilane and method for producing the same
JP3089982B2 (en) 2,5-Reactive Substituent-Containing Siloles and Silole Condensates and Methods for Producing the Same
JPS6034577B2 (en) Method for producing organosilicon polymer
JPS6251296B2 (en)