JPS6034093B2 - Manufacturing method of optical modulator - Google Patents
Manufacturing method of optical modulatorInfo
- Publication number
- JPS6034093B2 JPS6034093B2 JP49081689A JP8168974A JPS6034093B2 JP S6034093 B2 JPS6034093 B2 JP S6034093B2 JP 49081689 A JP49081689 A JP 49081689A JP 8168974 A JP8168974 A JP 8168974A JP S6034093 B2 JPS6034093 B2 JP S6034093B2
- Authority
- JP
- Japan
- Prior art keywords
- electrically insulating
- crystal plate
- insulating tube
- optical modulator
- adhesive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Description
【発明の詳細な説明】
本発明は光変調器に使用する光変調素子の製造方法に関
する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an optical modulation element used in an optical modulator.
近年、光変調素子として電気光学効果を有するタンタル
酸リチウム、ニオブ酸リチゥル等の強議電体結晶が一般
に用いられている。In recent years, strong electrolyte crystals such as lithium tantalate and lithium niobate, which have an electro-optic effect, have been commonly used as light modulating elements.
従来の光変調器の保持手段は、第1図に示される如く、
タンタル酸リチウム等の結晶板1の両王面に電極2を配
置し、この電極2の一方を半田付で金属半円柱3の平面
の中心軸上に固着したものを二個用いて、これを金属半
円柱3の径と鼓合する内径を持った金属管4の内部に挿
入し、二個の主面が互いに直交するように位置調整して
から、金属半円柱3と金属管4とを固定したものである
。The conventional holding means for an optical modulator is as shown in FIG.
Electrodes 2 are placed on both royal faces of a crystal plate 1 made of lithium tantalate, etc., and one of the electrodes 2 is soldered onto the central axis of the plane of a metal semi-cylindrical column 3, using two pieces. Insert it into a metal tube 4 whose inner diameter matches the diameter of the metal semi-cylinder 3, adjust the position so that the two main surfaces are perpendicular to each other, and then connect the metal semi-cylinder 3 and the metal tube 4. It is fixed.
この保持手段では、結晶板の持つ圧電効果(結晶板に電
極を施し、その電極に電気信号を加えると結晶板が歪む
ピェゾ共振)が生じ、電気光効果を利用しようとする光
変調器にはこのような振動は不要であり、電気光効果に
悪影響を与えるおそれがある。With this holding means, the piezoelectric effect of the crystal plate (piezoresonance in which the crystal plate is distorted when an electrode is applied to the crystal plate and an electric signal is applied to the electrode) occurs, and an optical modulator that attempts to utilize the electro-optic effect Such oscillations are unnecessary and may adversely affect the electro-optical effect.
ここでは結晶板の一面は金属半円柱に固着されているが
、他の面は何処にも固着されていないため、圧電効果に
よって振動を生じ易い構造である。そこでピェゾのダン
ピング(変調電圧によるピェゾ共振を防止すること)効
果を生じさせるために、結晶板1の電極2の面と金属半
円柱3をハンダ付接合している。このハンダ付作業にお
いて、結晶板1が高温加熱されることにより、結晶板1
の内部に熱応力歪みを起こし、消光比(出力光の最大光
量と最少光量の比をいう)を劣化させてしまう。更に、
ハンダ付作業をしつつ結晶板1の接合位置決めを行うこ
とは、非常に難しいので、工程を著しく煩雑化している
。本発明は、上記欠点を除去して、ピェゾのダンピング
効果を奏し、かつ消光比の劣化を防止した光変調器の製
造方法を提供しようとするものである。Here, one surface of the crystal plate is fixed to a metal semi-cylinder, but the other surface is not fixed anywhere, so the structure is likely to cause vibrations due to the piezoelectric effect. Therefore, in order to produce a piezo damping effect (preventing piezo resonance due to modulation voltage), the surface of the electrode 2 of the crystal plate 1 and the metal semi-cylindrical column 3 are joined by soldering. In this soldering work, the crystal plate 1 is heated to a high temperature.
This causes thermal stress distortion inside the device, which deteriorates the extinction ratio (the ratio of the maximum amount of output light to the minimum amount of light). Furthermore,
It is very difficult to position the crystal plate 1 for bonding while performing the soldering work, making the process extremely complicated. The present invention aims to eliminate the above-mentioned drawbacks, provide a method for manufacturing an optical modulator that exhibits a piezo damping effect, and prevents deterioration of the extinction ratio.
上記目的を達成するため、本発明は、強議電体結晶板に
対向し、かつ互いに平行である二面に電極を配置してな
る光変調素子は、該強叢電体結晶板の外形が電気絶縁管
の内径に鉄合する状態で、該電気絶縁管の内部に挿入し
、該電気絶縁管が該強議電体結晶板の線熱膨張係数と略
等しい線熱膨張係数をもつ物質に選定され、該電気絶縁
管の側面に接着剤を充填するための穴を予め設けておき
、該接着剤が該穴を通して該光変調素子の光通過軸の面
以外の四面に充填して、該光変調素子を該電気絶縁管の
内部に個着保持していることを特徴とする光変調器の製
造方法である。To achieve the above object, the present invention provides a light modulation element in which electrodes are arranged on two surfaces facing and parallel to a strong electromagnetic crystal plate, the outer shape of the strong electromagnetic crystal plate being The electrically insulating tube is made of a material having a coefficient of linear thermal expansion substantially equal to that of the strong electric crystal plate. A hole for filling an adhesive is provided in the side surface of the electrically insulating tube, and the adhesive passes through the hole and fills the four sides of the light modulation element other than the plane of the light transmission axis. This is a method of manufacturing an optical modulator, characterized in that an optical modulating element is individually held inside the electrically insulating tube.
すなわち、本発明は、ピヱゾのダンピング効果として、
高温加熱を要せずに、接着剤の充填により光変調素子の
光通過軸の面以外の四面を被覆固着している。That is, the present invention provides the piezo damping effect as follows:
The four surfaces of the light modulation element other than the light transmission axis are coated and fixed by filling the adhesive without requiring high-temperature heating.
ここで用いる接着剤の熱収縮率は適宜選定すべきもので
あるが、好ましくは1%以下のものである。この熱収縮
率が大きい場合には、結晶板に歪みを与えるので、消光
比が劣化してしまう。実験によれば、熱収縮率3%及び
6%の場合は、熱収縮率が1%の場合の消光比を1とし
て比較すると、それぞれ0.7及び0.05となり、消
光比の劣化が現われる。以下、本発明を実施例の図面を
用いて詳細に説明する。The heat shrinkage rate of the adhesive used here should be selected appropriately, but is preferably 1% or less. If this thermal shrinkage rate is large, distortion will be applied to the crystal plate, resulting in a deterioration of the extinction ratio. According to experiments, when the extinction ratio is 1 when the thermal contraction rate is 3% and 6%, the extinction ratio becomes 0.7 and 0.05, respectively, and a deterioration of the extinction ratio appears. . Hereinafter, the present invention will be explained in detail using drawings of embodiments.
第2図は、本発明の基本となる一実施例を示す斜視図で
ある。同図Aは、タンタル酸リチウム結晶からなる結晶
板5の対向する面であって、互いに平行である主面上に
電極6を配置し、この主面の中央近傍に接続線7を結線
している光変調素子8を示している。融方向は、図示の
方向に限るものではないが、後述するように二個の光変
調素子を用いた温度補償型光変調器の場合には、光通過
軸(実施例ではX軸)及び電極面(同、Z軸面)は統一
しておく必要がある。同図Bは、Aで示された光変調素
子8の外形と鯨合する内径を有し、かつ中央部に穴9を
設け、結晶板5の熱膨張率と略等しい円筒状の電気絶縁
管10(例えばガラス管)の内部に光変調素子8を挿入
し、穴9より接続線7を引出し、穴9から熱収縮率が1
%以下の接着剤11(例えば、シリコン樹脂、合成ポリ
エステル接着剤等)を固着に充分な量だけ充填し、光変
調素子8の光通過軸の二面(×面)以外の四面(Y面及
びZ面)を電気絶縁管10に固着させた光変調器を示し
ている。ここで、電気絶縁管10の穴9の位置は任意で
あり、図示するように中央部に設けなくてもよい。FIG. 2 is a perspective view showing an embodiment that is the basis of the present invention. Figure A shows the opposing surfaces of a crystal plate 5 made of lithium tantalate crystal, in which electrodes 6 are arranged on the main surfaces that are parallel to each other, and a connecting wire 7 is connected near the center of this main surface. The light modulation element 8 shown in FIG. The fusion direction is not limited to the direction shown in the figure, but as described later, in the case of a temperature-compensated optical modulator using two optical modulation elements, the fusion direction is It is necessary to unify the surface (same, Z-axis surface). B in the figure shows a cylindrical electrically insulating tube having an inner diameter that matches the outer shape of the light modulating element 8 shown in A, a hole 9 in the center, and a coefficient of thermal expansion approximately equal to the coefficient of thermal expansion of the crystal plate 5. 10 (for example, a glass tube), the connecting wire 7 is pulled out from the hole 9, and the heat shrinkage rate is 1.
% or less adhesive 11 (e.g., silicone resin, synthetic polyester adhesive, etc.) is filled in a sufficient amount for adhesion, and the four sides (Y plane and An optical modulator is shown in which the Z plane) is fixed to an electrically insulating tube 10. Here, the position of the hole 9 in the electrically insulating tube 10 is arbitrary, and does not need to be provided in the center as shown in the figure.
また、穴9の数は図示では二個であるが、接着剤の充填
作業上必要があれば三個以上であってもよい。接続線7
の取り出し口は、穴9を通さなくても、電気絶縁管10
の閉口部であってもよい。この場合、接続線7の電極6
からの取り出し位置は、上記開□部近傍の電極6の個所
にすることが好ましい。接着剤の熱願酸張係数と結晶板
の熱膨張係数は、近いことが好ましいが、たとえ異なっ
ていたとしても、結晶板は光通過軸以外の四面が接着剤
で充填されており、かつ電気絶縁管と結晶板の熱膨張係
数が略等しいため、結晶板の表面でそり等の応力はほと
んど加わらない。Further, although the number of holes 9 is two in the illustration, it may be three or more if necessary for the adhesive filling operation. Connection line 7
The outlet of the electrically insulating tube 10 does not need to pass through the hole 9.
It may be a closed part. In this case, the electrode 6 of the connecting wire 7
The extraction position is preferably at the electrode 6 near the opening □. It is preferable that the adhesive tensile coefficient and the crystal plate's thermal expansion coefficient are close to each other, but even if they are different, the crystal plate is filled with adhesive on all four sides other than the light transmission axis, and Since the thermal expansion coefficients of the insulating tube and the crystal plate are approximately equal, almost no stress such as warpage is applied to the surface of the crystal plate.
第3図は、本発明の応用例である温度補償型光変調器を
示す斜視図である。FIG. 3 is a perspective view showing a temperature compensated optical modulator which is an application example of the present invention.
なお、同図において電極及び接着剤は使用されているが
、図示していない。ここで、光変調素子8′,8″は第
2図で示した光変調素子8に相当するものであって、電
気絶縁管10′,10″の内部に挿入されている。そし
て、電気絶縁管10′,10″は、その外形と鉄合する
内径を有する電気絶縁管13に競合しており、光変調素
子8′,8″からの接続線7′,7″が電気絶縁管10
′,10″の穴9′,9″から引出した場合、それに合
わせて電気絶縁管13にも穴9′,9″を設け、接続線
7′,7″を電気絶縁管10′,10″の開口部から取
り出した場合(図示せず)でも、同様に両光変調器12
′,12″を並列接続して両端子間に変調電圧を印加す
る。次に、光変調器12′,12″の光通過軸を一致さ
せ、電極面を直交させる。この直交の位置決めは、電気
絶縁管13の内側円周に沿って、一方の光変調器12′
又は12″を回転させながら、光変調器に光を通過させ
、消光状態の調整を行って正確に求められる。そして、
電気絶縁管10′,10″を接着剤で固着する。なお、
結晶板5′,5″は、それぞれ対向する個所の距離1,
は、消光状態の調整による結晶板の回転作業で、双方の
結晶板5′,5″が接触しないために、後者の長さは1
2は、接着剤が光通過軸の面に付着させないためにある
。以上の構成において、光変調器12′,12″のそれ
ぞれ1′,rとすれば、温度による位相変化は、2汀(
n。Note that although electrodes and adhesives are used in the figure, they are not shown. Here, the light modulation elements 8', 8'' correspond to the light modulation element 8 shown in FIG. 2, and are inserted into the electrically insulating tubes 10', 10''. The electrically insulating tubes 10', 10'' compete with the electrically insulating tube 13, which has an inner diameter that matches the outer shape of the electrically insulating tube 13, and the connecting wires 7', 7'' from the light modulation elements 8', 8'' are electrically Insulation tube 10
When the connecting wires 7', 7'' are pulled out from the holes 9', 9'' in the electrically insulating tubes 10', 10'', corresponding holes 9', 9'' are provided in the electrically insulating tube 13, and the connecting wires 7', 7'' are connected to the electrically insulating tubes 10', 10''. (not shown), both optical modulators 12
', 12'' are connected in parallel and a modulation voltage is applied between both terminals.Next, the optical transmission axes of the optical modulators 12', 12'' are aligned, and the electrode surfaces are orthogonal. This orthogonal positioning means that one optical modulator 12'
Or, while rotating the 12'', pass the light through the optical modulator and adjust the extinction state to accurately determine the extinction state.And,
Fix the electrical insulation tubes 10' and 10'' with adhesive.
The crystal plates 5' and 5'' have distances of 1 and 1, respectively, at opposing points.
is the rotation work of the crystal plate by adjusting the extinction state, and since both crystal plates 5' and 5'' do not touch, the length of the latter is 1.
2 is to prevent the adhesive from adhering to the surface of the light transmission axis. In the above configuration, if the optical modulators 12' and 12'' are 1' and r, respectively, the phase change due to temperature is 2 (
n.
−n8)(1′−r)/入。(ここで、no、neはそ
れぞれの結晶物質(実施例ではタンタル酸リチウム結晶
)によって決まる常光線、異常光線による各屈折率、入
。は通過光線の波長である。)に従うので、1′=1″
に設定すれば、温度補償型光変調器が得られる。以上、
本発明を説明したように、本発明によれば、光変調素子
としての強談電体結晶板の保持手段において、結晶板の
線熱膨張係数と略等しい電気絶縁管内で、その内径と筋
合した外形を有する結晶板を挿入し、接着剤をその電気
絶縁管に設けた穴を通して充填して、結晶板の光通過軸
の面以外の四面を被覆固着させているので、これにより
ピェゾのダンピング効果を得て、更に、以上加熱させる
ことなく固着することができるのみならず、固着時及び
その固着完了後における周囲温度変化に対しても薮着剤
からの熱収縮及び電気絶縁管からの熱膨張による応力が
結晶板に加わらないので、消光比を劣化させない安定な
光変調器を提供することができる。-n8) (1'-r)/in. (Here, no and ne are the refractive indexes for ordinary and extraordinary rays determined by each crystal material (lithium tantalate crystal in the example), and in is the wavelength of the passing light.) Therefore, 1'= 1″
If set to , a temperature-compensated optical modulator can be obtained. that's all,
As described above, according to the present invention, in the means for holding an electric crystal plate as a light modulating element, the inner diameter and the brace are aligned within an electrically insulated tube having a coefficient of linear thermal expansion substantially equal to the linear thermal expansion coefficient of the crystal plate. A crystal plate with the same external shape is inserted, and adhesive is filled through the hole in the electrically insulating tube to cover and fix all four sides of the crystal plate other than the plane of the light transmission axis. Not only can it be fixed without further heating, but it can also be resistant to changes in ambient temperature during and after fixing due to heat shrinkage from the bush adhesive and heat from the electrically insulated tube. Since stress due to expansion is not applied to the crystal plate, a stable optical modulator that does not deteriorate the extinction ratio can be provided.
本発明によって、光変調器の生命とも言える消光比に影
響を与える2枚の結晶板の融合わせの調整が容易となり
、良好な結晶板の配置において、接着剤を充填すること
によって、再現性のよい光変調器が製造出来る。The present invention makes it easy to adjust the fusion of two crystal plates, which affects the extinction ratio, which is the lifeblood of an optical modulator. Good optical modulators can be manufactured.
更に、製造作業面において、簡単な治具を用いた結晶板
の取り付け位置及び融合わせを容易に定めることができ
、結晶板の固着も接着剤で充填するため、工数がかから
なくなり、従来に比べ安価に提供出来る。Furthermore, in terms of manufacturing operations, the installation position and fusion of the crystal plates can be easily determined using a simple jig, and the fixation of the crystal plates is also filled with adhesive, reducing the number of man-hours and making it easier than conventional methods. It can be provided at a comparatively low price.
第1図は従来の光変調器を示す斜視図、第2図は本発明
の一実施例を示す斜視図、第3図は本発明の一応用例を
示す斜視図である。
5・・…・結晶板、6……電極、8……光変調素子、9
・・・・・・穴、10・・…・電気絶縁管。
弟’図第2図
発う図FIG. 1 is a perspective view showing a conventional optical modulator, FIG. 2 is a perspective view showing an embodiment of the present invention, and FIG. 3 is a perspective view showing an application example of the present invention. 5... Crystal plate, 6... Electrode, 8... Light modulation element, 9
...... Hole, 10... Electrical insulation tube. Little brother's figure 2nd figure
Claims (1)
面に電極を配置してなる光変調素子は、該強誘電体結晶
板の外形が電気絶縁管の内径に嵌合する状態で、該電気
絶縁管の内部に挿入し、該電気絶縁管が該強誘電体結晶
板の線熱膨張係数と略等しい線熱膨張係数をもつ物質に
選定され、該電気絶縁管の側面に接着剤を充填するため
の穴を予め設けておき、該接着剤が該穴を通して該光変
調素子の光通過軸の面以外の四面に充填して該光変調素
子を該電気絶縁管の内部に固着保持していることを特徴
とする光変調器の製造方法。1. A light modulation element in which electrodes are arranged on two surfaces facing a ferroelectric crystal plate and parallel to each other, with the outer shape of the ferroelectric crystal plate fitting into the inner diameter of an electrically insulating tube, The electrically insulating tube is inserted into the electrically insulating tube, and the electrically insulating tube is made of a material selected to have a coefficient of linear thermal expansion approximately equal to that of the ferroelectric crystal plate, and an adhesive is applied to the side surface of the electrically insulating tube. A hole for filling is prepared in advance, and the adhesive passes through the hole and fills all four sides of the light modulation element other than the plane of the light transmission axis to firmly hold the light modulation element inside the electrically insulating tube. A method of manufacturing an optical modulator, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP49081689A JPS6034093B2 (en) | 1974-07-18 | 1974-07-18 | Manufacturing method of optical modulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP49081689A JPS6034093B2 (en) | 1974-07-18 | 1974-07-18 | Manufacturing method of optical modulator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5194952A JPS5194952A (en) | 1976-08-20 |
JPS6034093B2 true JPS6034093B2 (en) | 1985-08-07 |
Family
ID=13753312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP49081689A Expired JPS6034093B2 (en) | 1974-07-18 | 1974-07-18 | Manufacturing method of optical modulator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6034093B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3653743A (en) * | 1970-11-23 | 1972-04-04 | Hughes Aircraft Co | Electro-optic devices with acousto-optic effect suppression |
US3771852A (en) * | 1971-01-29 | 1973-11-13 | American Optical Corp | Pockels cell |
-
1974
- 1974-07-18 JP JP49081689A patent/JPS6034093B2/en not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3653743A (en) * | 1970-11-23 | 1972-04-04 | Hughes Aircraft Co | Electro-optic devices with acousto-optic effect suppression |
US3771852A (en) * | 1971-01-29 | 1973-11-13 | American Optical Corp | Pockels cell |
Also Published As
Publication number | Publication date |
---|---|
JPS5194952A (en) | 1976-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2021105650A (en) | Optical waveguide element and optical modulator | |
US6008927A (en) | Optical fiber modulator having an optical fiber having a poled portion serving as an electrooptic element and method for making same | |
US4379620A (en) | Light modulator employing electrooptic crystals | |
JPS6034093B2 (en) | Manufacturing method of optical modulator | |
EP1936414A2 (en) | Small optical package having multiple optically aligned soldered elements therein | |
EP0881528B1 (en) | Method for making a second-order nonlinear optical material, the material obtained by the method, and an optical modulation device comprising the material | |
US4976517A (en) | Optical unit including electrooptical crystal elements | |
US4714312A (en) | Electrostatically biased electrooptical devices | |
EP0607328B1 (en) | Strain isolated integrated optic chip package | |
US3541300A (en) | Apparatus for stabilizing the modulation of coherent radiation | |
US3771852A (en) | Pockels cell | |
JP3210376B2 (en) | Optical waveguide module | |
JP3228862B2 (en) | Optical voltage sensor | |
JPH0461413A (en) | Thickness-shear piezoelectric vibrator | |
JPH019933Y2 (en) | ||
JPH0375608A (en) | Packaging method for optical waveguide parts | |
JPS5954311A (en) | Method for holding surface acoustic wave device | |
JPH0222621A (en) | Optical element and optical parts using this element | |
JPS5852367B2 (en) | Support structure of contour piezoelectric vibrator | |
JPS6043911A (en) | Thickness-shear mode composite vibrator | |
JPH0348832A (en) | Domain control method for nonlinear ferroelectric optical material | |
JPS58192008A (en) | Reinforcing method of optical fiber connecting part | |
US5781328A (en) | Electro-optical modulator | |
JPS58223119A (en) | Liquid crystal display panel | |
JPS58220516A (en) | Surface acoustic wave device |