JPS6033932B2 - Construction method of underground piles - Google Patents

Construction method of underground piles

Info

Publication number
JPS6033932B2
JPS6033932B2 JP16126079A JP16126079A JPS6033932B2 JP S6033932 B2 JPS6033932 B2 JP S6033932B2 JP 16126079 A JP16126079 A JP 16126079A JP 16126079 A JP16126079 A JP 16126079A JP S6033932 B2 JPS6033932 B2 JP S6033932B2
Authority
JP
Japan
Prior art keywords
pile
piles
driven
construction method
frictional force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16126079A
Other languages
Japanese (ja)
Other versions
JPS5685025A (en
Inventor
弘之 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP16126079A priority Critical patent/JPS6033932B2/en
Publication of JPS5685025A publication Critical patent/JPS5685025A/en
Publication of JPS6033932B2 publication Critical patent/JPS6033932B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Description

【発明の詳細な説明】 本発明は地中に打ち込まれた杭の支持力をきわめて簡単
にかつ効率よく確認しつつ、施工する新規な施工方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel construction method for constructing piles while extremely simply and efficiently confirming the bearing capacity of piles driven into the ground.

地上構築物たとえば送電線用鉄塔などを支持するため、
その基礎部分に地中に杭を打ち込み補強支持することは
知られている。
To support above-ground structures such as power transmission towers,
It is known to reinforce and support the foundation by driving piles into the ground.

この場合、ビルなどの建築物ではきわめて足場のよいと
ころに構築されることから、杭の打ち込みもドロップハ
ンマーがジーゼル、ハンマーなど大型高能率の打ち込み
装置が用いられているが、送電線用鉄塔の場合には、お
おむね山間僻地や田園地帯あるいは原野などとなり、そ
のような大型機械の搬入が不可能ら場合が大部分である
。このため、第1図に示すように杭1の先端にスクリュ
ー2を取付け、杭1とスクリュー2とを同時回転させな
がら、これらを地中に打ち込んでいく工程が効果的に運
用できる。
In this case, as buildings and other structures are constructed on very good footing, large, high-efficiency driving devices such as drop hammers, diesels, and hammers are used to drive the piles. In most cases, the location is remote, mountainous, rural, or wilderness, and it is impossible to bring in such large machinery. Therefore, as shown in FIG. 1, the process of attaching the screw 2 to the tip of the pile 1 and driving the pile 1 and screw 2 into the ground while simultaneously rotating them can be effectively operated.

この工程によれば打ち込み装置は簡単な回転付与装置で
足り、小型なもので足りることとなるb従来この種杭の
支持力を知るには、当該杭の打ち込まれる地点のボーリ
ングを行ない、そこの土壌を実験室に持ち帰ってその地
層の構成をつぶさに調べ、杭表面と各地層の摩擦力を算
出して理論的推論によって概括的に求めていた。
According to this process, a simple rotation imparting device and a small driving device are sufficient.B Conventionally, in order to know the bearing capacity of this type of pile, boring is carried out at the point where the pile will be driven, and the The soil was taken back to the laboratory, the composition of its strata was examined in detail, the friction force between the pile surface and each stratum was calculated, and a rough estimate was obtained through theoretical reasoning.

しかし、この方法ではボーリングや地層分析という余分
な仕事がある上、別途実験室に搬出することにする時間
的あるいは地理的離隔はさげ得ず、煩雑化はまぬがれ得
ない。本発明はかかるボーリングも地層分析もなんら行
なわず、現地作業をしながらそのまま、いわゆる“in
situ’’に杭と当該杭の打ち込まれた地層との摩擦
力を求め、当該杭の支持力を確認して施工することを可
能とした画期的施工方法を提供しようとするものである
However, this method requires extra work such as boring and strata analysis, and the time and geographical distance required for transporting the material to a separate laboratory cannot be avoided, making it unavoidably complicated. The present invention does not perform any such boring or strata analysis, and can be carried out as is while carrying out field work.
The present invention aims to provide an innovative construction method that enables construction by determining the frictional force between a pile and the stratum in which the pile is driven in situ'' and confirming the bearing capacity of the pile.

本発明に係る方法によれば、現に杭が打ち込まれている
それぞれの深さでの杭の支持力を知ることができ、杭が
設計通りの支持力を有する状態にあるか否かをその場で
直ちに知ることができるものであって、その作業効率の
改善と信頼性の向上は計り知れないものがある。以下に
本発明の実施例について詳細に説明する。
According to the method of the present invention, it is possible to know the bearing capacity of the pile at each depth where the pile is actually driven, and to check whether the pile has the bearing capacity as designed or not. The improvement in work efficiency and reliability is immeasurable. Examples of the present invention will be described in detail below.

本発明においては、杭を長手方向に単位長さずつに区分
する。
In the present invention, the pile is divided into units of length in the longitudinal direction.

この区分けする単位長さについては、打ち込まれる杭の
長さや径ばかりでなく、打ち込む地点の地層の構成によ
り選択される。すなわち、地層が深い堆積層の一層によ
りなることが予想される地点であれば、単位長さは長く
なろうし、つぎつぎにちがつた薄い地層が出現すること
が予想されれば短く選んだ方が検知精度がよくなる。本
発明の技術思想は施工に際し、この単位長さ入る度に生
ずるトルクの変化分かち順次摩擦力に引き直して支持力
を知ろうとするにある。
The unit length for this division is selected based not only on the length and diameter of the pile to be driven, but also on the composition of the strata at the point where it is driven. In other words, if the geological formation is expected to consist of a single layer of deep sediment, the unit length will be long, but if it is expected that different thin strata will appear one after another, it is better to choose a shorter unit length. Detection accuracy improves. The technical idea of the present invention is that during construction, the supporting force is determined by sequentially converting the changes in torque that occur each time a unit length is entered into the frictional force.

まず本発明の理論から述べる。First, the theory of the present invention will be described.

杭のスクリュー2部分のトルク特性を求める。Find the torque characteristics of the two screw parts of the pile.

スクリュー羽根Sは、第3図に示すように近似的に半径
Rsなる円板にシミュレートされる。羽根Sの片面での
半径r部分の微4・中部分drの微小環状面に生ずる摩
擦力は次式であらわされるCX2汀rXdrここにCは
単位面積当りの土壌の摩擦力である。
The screw blade S is simulated as a disk approximately having a radius Rs as shown in FIG. The frictional force generated on one side of the blade S on the micro annular surface of the small radius r portion and the medium portion dr is expressed by the following formula: CX2rXdr where C is the frictional force of the soil per unit area.

スクリューの回転軸はここでは考えないで、羽根部分に
ついてみると、スクリュー羽根Sの片面の全摩擦トルク
QsはQS=′官SPCX2汀rXdr=CX(さけば
S−喜びR13p) 竿(R3S‐R′3p) .・・…【1’つぎに
杭1部のトルク特性を求める。
Without considering the rotational axis of the screw here, and looking at the blade part, the total friction torque Qs on one side of the screw blade S is QS = 'Gan SPC 3p). ...[1' Next, find the torque characteristics of the first part of the pile.

杭1を単位長さL‘こ区分けして場合土壌のせん断の表
面をAp、当該せん断面までの半径を第4図に示すよう
にRpとした場合Apニ2中Rp・L 従って、この全表面の摩擦によって生ずるトルクを求め
るとAPXCXRpニ2汀R2pXLXC,.,,.,
{2}以上の計算によって、スクリューと杭との単位面
積当りの摩擦力に関する基本的な計算式が入手できたこ
とになる。
If the pile 1 is divided into units of length L', the sheared surface of the soil is Ap, and the radius to the sheared surface is Rp as shown in Figure 4, then Apd2 is Rp・L. Determining the torque caused by surface friction, APXCXRp22R2pXLXC, . ,,. ,
{2} Through the above calculations, we have obtained the basic calculation formula for the frictional force per unit area between the screw and the pile.

つぎにこれらに基づき、実用サイズに当てはめ、具体的
に支持力を求める方法について説明する。
Next, based on these, we will explain how to apply it to a practical size and specifically determine the supporting force.

第5図に示すように、スクリューの鯛部の長さを10フ
ィートすなわち300仇肌ことる。
As shown in Figure 5, the length of the sea bream section of the screw is 10 feet or 300 feet.

杭の単位区分長さも、従って10フィートすなわち30
0仇吻とする。スクリューの羽根をそれぞれS,,S2
,S3,S4とする。前式【1ー式および【2ー式から
、スクリュー部分のトルク定数Ksを求める。
The unit segment length of the pile is therefore 10 feet or 30
0 enmity. The screw blades are respectively S,,S2
, S3, and S4. Determine the torque constant Ks of the screw portion from the previous equations [1-formula] and [2-formula].

Ks=2mR′2px3000 十妻汀{(R3S・一R′3p) 十(R3s2−R3p) 十(R3s3−R′p3)} x2 十妻灯{(R3S4−Rp3)十(Rも4−R3p)}
同じく杭部のトルク定数Kpを求める。
Ks=2mR'2px3000 Tozuma tai {(R3S・1R'3p) 10 (R3s2-R3p) 10 (R3s3-R'p3)} x2 Tozuma light {(R3S4-Rp3) 10 (R is also 4-R3p) }
Similarly, the torque constant Kp of the pile portion is determined.

Kpニ2汀R2pX3000 いま Qn:nフィート深さの場合のトルク Cn.m:深さnフィートから深さmフィートまでの単
位面積当りの平均摩擦力とした場合、第2図に示したよ
うに各10フィート打込みごとのQnはQI。
Kp Ni 2 R 2 p X 3000 Now Qn: Torque Cn when n feet deep. m: Average frictional force per unit area from depth n feet to depth m feet, Qn for each 10 feet drive is QI as shown in Figure 2.

ニKSXCM。Q20ニKSXCI〇,数十KPXC〇
,10Q。
NiKSXCM. Q20 KSXCI〇, dozens of KPXC〇, 10Q.

ニKSXC数,恥十Kp(CM。十C,小の)Q。=K
SXC弧,節十KPX(CO.1。十C,小数十C20
,の十C30,40十C小則)これをCn.mでまとめ
ると Co.,。
NiKSXC number, shame ten Kp (CM. ten C, small) Q. =K
SXC arc, node tens KPX (CO.1. tens C, decimal tens C20
, Cn. 30, 40 C minor rules) Summarized by m, Co. ,.

=Q譜C…弧−Q20−QI。=Q stave C...Arc-Q20-QI.

−Co.1。(Kp【KS)KSC小松・Q30−Q2
0−CI〇,幻瓜p・KS)KSC3。
-Co. 1. (Kp [KS) KSC Komatsu・Q30-Q2
0-CI〇, phantom melon p・KS) KSC3.

・め−Q4。−Q3。−C数‐のびp−KまKSC小磯
二Q50一Q40一Cの.鮒(Kp・KS)KSC50
,弧;Q60一Q50一Cゆ,則(Kp一KS)KS以
上により各単位長さ打ち込んだときのトルクが求まれば
、そのときの土壌と杭との現実の摩擦力が計算で求め得
ることがわかる。然すれば、所要深さに杭を打ち込んだ
ときの最終支持力Pfuはせん断単位表面積Apn.m
とCn.mの積の総和として求め得る。
・Me-Q4. -Q3. -Number of C-Nobi p-K KSC Koisoji Q50-1Q40-1C. Carp (Kp/KS) KSC50
, arc; Q60-Q50-1C Yu, Rule (Kp-KS) KS If the torque when driving each unit length is found from the above, the actual frictional force between the soil and the pile at that time can be calculated. I understand that. Therefore, the final bearing force Pfu when the pile is driven to the required depth is the shear unit surface area Apn. m
and Cn. It can be found as the sum of the products of m.

すなわち、Pfu=ZApn.m×Cn.m となる。That is, Pfu=ZApn. m×Cn. m becomes.

これは現実に杭を打ち込みながら、そのときの回転トル
クを読み取るのみで、直ちに現場でその支持力を求め得
るものであって、従来例の実験室的方法に比べれば、そ
の便宜度合は、はかり知れない。
This method allows you to immediately determine the supporting capacity on-site by simply reading the rotational torque while actually driving a pile.Compared to conventional laboratory methods, it is much more convenient. I don't know.

本方法による場合、多少の誤差分は止むを得ないが、こ
れは従来例とて変りがなく、実用に際しては所定の安全
率を見たものを実用値とすれば、何らの問題はないので
ある。
When using this method, some error is unavoidable, but this is no different from the conventional example, and in practical use, there will be no problem if the actual value is taken based on the predetermined safety factor. be.

またKs、KPなどは理論計算値と実験値の差異を別途
確認して補正値を使ってCn4m>Pfuを求めれば、
更に精度は高めることができる。
Also, for Ks, KP, etc., if you separately check the difference between the theoretical calculation value and the experimental value and use the correction value to find Cn4m>Pfu,
Furthermore, the accuracy can be increased.

以上、本発明に係る施工方法をもってすれば、杭を打ち
込んだ深さに応じ、そのときの支持力を確認して打ち込
むことが可能となり、信頼性を格段に向上できる上、そ
の実用上の高能率化はけだし甚大なものがある。
As described above, by using the construction method according to the present invention, it is possible to confirm the bearing capacity at that time depending on the depth at which the pile is driven, and then drive the pile, which not only greatly improves reliability but also improves its practical performance. There is a tremendous amount of efficiency that can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る方法が対象する杭の説明的見取
図、第2図は杭が各深さに打ち込まれていく様子を示す
説明図、第3〜5図は計算式の誘導のための説明図であ
る。 1…杭、2…スクリュー。 が′図 矛3図 才4図 オタ図 汁乙囚
Fig. 1 is an explanatory sketch of a pile targeted by the method according to the present invention, Fig. 2 is an explanatory drawing showing how the pile is driven to various depths, and Figs. 3 to 5 are illustrations of the guidance of the calculation formula. FIG. 1...Pile, 2...Screw. Ga' Zuzu 3 Zu Sai 4 Zu Ota Zu Juice Prisoner

Claims (1)

【特許請求の範囲】[Claims] 1 スクリユー回転方式により地中に杭を打ち込む場合
において、杭を長手方向に単位長さずつに区分けし、当
該単位長さずつ地中に打ち込まれた時の杭に加わるトル
クを検知することにより、当該単位長さごとの杭と土壌
との摩擦力を求め、所要長さ打ち込まれたときの杭の前
記各単位長さでの外周面とそこにおける前記摩擦力の積
の総和を求めることにより、そのときの杭全体の支持力
を検知施工することを特徴とする地中杭の施工方法。
1 When driving piles into the ground using the screw rotation method, by dividing the piles into unit lengths in the longitudinal direction and detecting the torque applied to the piles when each unit length is driven into the ground, By determining the frictional force between the pile and the soil for each unit length, and determining the sum of the products of the outer peripheral surface of the pile at each unit length when the required length is driven and the frictional force there, An underground pile construction method characterized by detecting the bearing capacity of the entire pile at that time.
JP16126079A 1979-12-12 1979-12-12 Construction method of underground piles Expired JPS6033932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16126079A JPS6033932B2 (en) 1979-12-12 1979-12-12 Construction method of underground piles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16126079A JPS6033932B2 (en) 1979-12-12 1979-12-12 Construction method of underground piles

Publications (2)

Publication Number Publication Date
JPS5685025A JPS5685025A (en) 1981-07-10
JPS6033932B2 true JPS6033932B2 (en) 1985-08-06

Family

ID=15731707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16126079A Expired JPS6033932B2 (en) 1979-12-12 1979-12-12 Construction method of underground piles

Country Status (1)

Country Link
JP (1) JPS6033932B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153911A (en) * 1984-08-23 1986-03-18 Toa Harbor Works Co Ltd Device of measuring peripheral surface friction force of pile

Also Published As

Publication number Publication date
JPS5685025A (en) 1981-07-10

Similar Documents

Publication Publication Date Title
US4001773A (en) Acoustic telemetry system for oil wells utilizing self generated noise
JPS6033932B2 (en) Construction method of underground piles
Burland et al. The design of bored piles in stiff clays: 11F, 1T, 7R. GROUND ENGNG. V7, N4, JULY, 1974, P28–35
Wannenmacher et al. Water ingress and reduction measures in the headrace tunnel at the Uma Oya multipurpose project
JPS5858491B2 (en) underground pile
SU675130A1 (en) Method of making multifork filling pile in soil
Cox et al. Static and cyclic axial load tests on two 762 mm diameter pipe piles in clays
Fry Manually operated post-hole diggers as sampling instruments
Masters Timber friction pile foundations
Tominaga et al. Horizontal displacement of soil in front of laterally loaded piles
JPS60109413A (en) Measurement of bearing power of cast-in-place pile head
Lord et al. Lateral loading and tension tests on a driven cased pile in chalk
BASSOM BITA Foundation design for a commercial building in Vicenza (Italy)
RU2015289C1 (en) Method for drilling vertical and crooking wells
JPS63134719A (en) Constructing method for pile-group-forming foundation pile
Stuckey et al. The stream-powered manometrie pump
JPS5827400B2 (en) Drilling method and equipment for large-diameter boreholes
Baker et al. Pile foundation design using pile driving analyzer
US3516256A (en) Method of forming vertical bores through the ground
Kenny et al. Densification of granular soils during CFA pile augering
SU604902A1 (en) Method of constructing root-base support
Shenkman All-union symposium on construction of pile foundations.—A report of the discussions, conclusions and recommendations arising from the symposium: 5F. SOIL MECH. FOUNDATION ENG. V10, N6, 1973, P413–416
Reimbert et al. Retaining walls. Anchorages and sheet piling: Volume 1. Theory and practice. Textbook. 186F. TRANS. TECH. PUBLICATIONS, 1974, 284P
Resendiz Accuracy of equilibrium slope stability analysis: Discussion of paper by SG Wright et al. J. Soil Mech. Found. Div. No. 10. 1973. 3F, 6R. J. GEOTECH. ENGNG. DIV. V100, N. GT8, 1974, P967
Hermann et al. Reinforced earth retaining walls: Discussions of original paper by KL Lee. J. Soil Mech. Found. Div. 1973. 9F, 5R. J. GEOTECH. ENGNG. DIV. V100, N. GT8, 1974, P958–966