JPS6033896B2 - Method for forming insulation coating on unidirectional silicon steel sheet - Google Patents

Method for forming insulation coating on unidirectional silicon steel sheet

Info

Publication number
JPS6033896B2
JPS6033896B2 JP7295582A JP7295582A JPS6033896B2 JP S6033896 B2 JPS6033896 B2 JP S6033896B2 JP 7295582 A JP7295582 A JP 7295582A JP 7295582 A JP7295582 A JP 7295582A JP S6033896 B2 JPS6033896 B2 JP S6033896B2
Authority
JP
Japan
Prior art keywords
silicon steel
temperature
steel sheet
mgo
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7295582A
Other languages
Japanese (ja)
Other versions
JPS58189374A (en
Inventor
康宏 小林
敏彦 船橋
征夫 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7295582A priority Critical patent/JPS6033896B2/en
Publication of JPS58189374A publication Critical patent/JPS58189374A/en
Publication of JPS6033896B2 publication Critical patent/JPS6033896B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 本発明は一方向性珪素鋼板の絶縁被膜形成方法に係り、
特に外観が均一で密着性にすぐれたフオルステラィト質
の絶縁被膜形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming an insulating film on a unidirectional silicon steel plate,
In particular, the present invention relates to a method for forming a forstellite insulating film that has a uniform appearance and excellent adhesion.

一方向性珪素鋼板のフオルステラィト質被膜の形成方法
は、所定の最終板厚に冷間圧延した珪素鋼帯を温水素中
において700〜90000の温度で鋼帯中の炭素を脱
炭し、その鋼帯表面にSi02を含むサブスケールを生
成させた後、Mg0を主成分とする碗鈍分離剤を塗布し
コイルに巻取り高温仕上焼鈍を施すことにより形成させ
る方法が一般に行われている。上記の如き一連の工程で
形成されたフオルステラィト質被膜は製品の最終の外観
を決定するため、その良否は製品価値を大きく左右し、
不良な被膜を有するものは製品として受入られず、被膜
外観が製品歩留に及ぼす影響は極めて大きい。
A method for forming a forsteritic coating on a unidirectional silicon steel sheet is to decarburize a silicon steel strip that has been cold-rolled to a predetermined final thickness in warm hydrogen at a temperature of 700 to 90,000 degrees Celsius, and then remove the carbon from the steel strip. A commonly used method is to generate subscales containing Si02 on the surface of the band, then apply a dull separator containing Mg0 as a main component, wind it into a coil, and subject it to high-temperature finishing annealing. The forsterite coating formed through the series of steps described above determines the final appearance of the product, and its quality greatly influences the product value.
Products with defective coatings are not accepted as products, and the appearance of the coating has an extremely large effect on product yield.

更にフオルステラィト質被膜の特性で重要視されるもの
は鋼板との密着性である。密着性が劣る場合、製品コイ
ルを打抜いて積層し変圧器鉄心に組立てる際、エッジ部
に被膜の剥離を生じ、この導通部分が原因となり鉄心の
鉄損が大きくなり、実機の特性を劣化させることになる
。すなわち、フオルステラィト質被膜に要請される最も
重要な特性はその外観と密着性にある。これらの特性を
満足させるため、これまで数多〈の研究が行われ、特に
フオルステラィト質被膜の形成に大きな影響を与えてい
るMg0に関する多数の研究があり、それらは900q
○程度の比較的低温において焼成されたMg○を使用し
ての絶縁被膜形成方法に関するものが大半を占めている
。しかしMg(OH)2を90000前後の温度で焼成
しても、被膜形成に有害な多くの不純物が除去されない
ため、経済的な不利を伴う原料段階における極めて入念
な精製を行っているがそれにもかかわらず有害な成分の
残留を防止できない現状である。また、この低温焼成M
g0は粒子が小さく高活性であるので脱炭暁鈍後の鋼板
表面に形成された蓮酸(Si02)との反応には好まし
いが、Mg○を水スラリーにして鋼板に塗布乾燥する際
、一部のMg○が水和によりMg(OH)2になってコ
イル内に持込まれる。この持込まれたMg(OH)2が
焼鈍中に分解して発生する日20は被膜の形成に大きな
影響を与える。この特込み水分量はMg0の活性度、ス
ラリーの水温、Mざ○のスラリー中の滞留時間などによ
って左右され、これを厳密に管理することは極めて困難
であり、良好な被膜を安定して得られない原因であった
。従来、コイル内に持込まれる水分を管理する方法とし
て、特公昭49−19981に開示されている如く、原
料Mg(OH)2から低温焼成で得られたMg○を予め
温水中で完全水和させ、これに水和性の低い比較的高温
の焼成によって得られたMg○を混合して焼鎚分離剤に
使用する方法、あるいは特開昭55−73823に開示
されているMg(OH)2自体を適量添加する方法等が
ある。
Furthermore, an important property of the forsterite coating is its adhesion to the steel plate. If the adhesion is poor, when the product coils are punched, laminated, and assembled into the transformer core, the coating will peel off at the edges, and this conductive area will cause core loss to increase and deteriorate the characteristics of the actual machine. It turns out. That is, the most important properties required of a forsteritic film are its appearance and adhesion. In order to satisfy these characteristics, a large number of studies have been carried out, and in particular, there have been many studies on Mg0, which has a great influence on the formation of a forsteritic film.
Most of the papers relate to methods for forming an insulating film using Mg○, which is fired at a relatively low temperature of about ○. However, even when Mg(OH)2 is fired at a temperature of around 90,000 ℃, many impurities harmful to film formation are not removed. However, the current situation is that it is not possible to prevent harmful components from remaining. In addition, this low temperature firing M
Since g0 has small particles and high activity, it is preferable for reaction with lotus acid (Si02) formed on the steel plate surface after decarburization and annealing. However, when Mg○ is made into a water slurry and applied to the steel plate and dried, Due to hydration, the Mg○ in the area becomes Mg(OH)2 and is brought into the coil. This introduced Mg(OH)2 is decomposed and generated during annealing, which has a great effect on the formation of the film. This special water content is influenced by the activity of Mg0, the water temperature of the slurry, the residence time of Mg0 in the slurry, etc., and it is extremely difficult to strictly control this, so that a good film can be stably obtained. This was the reason why I was unable to do so. Conventionally, as a method for controlling moisture brought into the coil, as disclosed in Japanese Patent Publication No. 49-19981, Mg○ obtained from raw material Mg(OH)2 by low-temperature firing is completely hydrated in hot water in advance. , a method of mixing this with Mg○ obtained by relatively high temperature calcination with low hydration property and using it as a scorching hammer separating agent, or Mg(OH)2 itself as disclosed in JP-A-55-73823. There are methods such as adding an appropriate amount of.

これらの方法はコイル内に持込まれる水分をある程度管
理することはできるが低温焼成のMg○を原料としてい
るので、Mg0に含有される不純物の純化が不完全であ
って不純物の含有が多く、形成された被膜の外観および
密着性に問題があった。本発明の目的は上記従来技術の
問題点を解決し、一方向性珪素鋼板に外観が良好で密着
性のすぐれたフオルステラィト質絶縁被膜を安定して経
済的に形成できる方法を提供するにある。本発明の上言
己の目的は次の2発明によって達成される。
Although these methods can control the moisture brought into the coil to some extent, they use low-temperature fired Mg○ as a raw material, so the impurities contained in MgO are incompletely purified, resulting in a large amount of impurities being formed. There were problems with the appearance and adhesion of the coated film. An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method for stably and economically forming a forsterite insulating coating with good appearance and excellent adhesion on a unidirectional silicon steel plate. The above objectives of the present invention are achieved by the following two inventions.

第1発明の要旨とするところは次のとおりである。The gist of the first invention is as follows.

すなわち、所定の最終板厚に袷間圧延した珪素鋼帯にM
g○もしくはMg○を主成分とする化合物を焼鎚分離剤
として塗布しコイルに巻取後、箱型炉において高溢焼鈍
を実施しフオルステラィト(2Mg○・Si02)質絶
縁被膜を形成する一方向性珪素鋼板の絶縁被膜形成方法
において、前記焼鈍分離剤として45000以上におけ
る灼熱減量率が2.0〜10%の範囲になるように40
00以上の温水中にて40〜19び分間強制的に水和さ
せた焼成温度130000以上の高温焼成の前言aMg
OもしくはMg○を主成分とする化合物を使用すること
を特徴とする一方向性珪素鋼板の絶縁被膜形成方法であ
る。第2発明者の要旨とするところは次のとおりである
。すなわち、第1発明と同様に焼金屯分離剤として45
0oo以上における灼熱減量率2.0〜10%の範囲に
なるように4000以上の温水中にて40〜190分間
強制的に水和させた焼成温度130000以上の高温焼
成のMg0を主成分としてTio.5〜10重量%およ
びSro.1〜1の重量%を含む化合物を使用すること
を特徴とする一方向性珪素鋼板の絶縁被膜形成方法であ
る。本発明者らはフオルステラィト質被膜の形成に影響
を与える要因を詳細に検討した結果、焼鈍分離剤に関し
ては、Mざ0中の不純物と、Mざ0スラリーを鋼板に塗
布乾燥する際Mg○の一部が水和してコイル内に持込ま
れる日20によって決定されるコイル内の層間雰囲気と
が主なるものであるという結論を得た。コイル内の層間
雰囲気はMg0の水和によって持込まれた日20による
酸化性雰囲気に左右される。
In other words, a silicon steel strip rolled to a predetermined final thickness is
A unidirectional method in which a compound containing g○ or Mg○ as a main component is applied as a hammer separation agent and wound into a coil, followed by overflow annealing in a box furnace to form a forsterite (2Mg○・Si02) insulating coating. In the method for forming an insulating film on a silicon steel sheet, the annealing separator is 40% so that the ignition loss rate at 45,000 or more is in the range of 2.0 to 10%.
A Mg that is forcibly hydrated in hot water of 0.00 or higher for 40 to 19 minutes and fired at a high temperature of 130,000 or higher.
This is a method for forming an insulating film on a unidirectional silicon steel sheet, which is characterized by using a compound containing O or Mg○ as a main component. The gist of the second inventor is as follows. That is, as in the first invention, 45
Tio whose main component is Mg0, which was fired at a high temperature of 130,000 or more and forcibly hydrated in hot water of 4,000 or more for 40 to 190 minutes so that the ignition loss rate was in the range of 2.0 to 10% at 0oo or more. .. 5-10% by weight and Sro. This is a method for forming an insulating film on a unidirectional silicon steel sheet, characterized in that a compound containing 1 to 1% by weight is used. As a result of a detailed study by the present inventors on the factors that affect the formation of a forsteritic film, we found that the annealing separator is free from impurities in MZ0 and when MZO slurry is applied to a steel plate and dried. It was concluded that the interlayer atmosphere within the coil determined by the amount of water partially hydrated and brought into the coil is the main one. The interlayer atmosphere within the coil is dependent on the oxidizing atmosphere introduced by the hydration of Mg0.

すなわち特込み水分量が少ない場合は、低い酸化性雰囲
気となり、形成される被膜全体が白っぽく密着性の悪い
ものになり、一方特込み水分量が過多の場合は逆に高酸
化性に過ぎ被膜を構成するフオルステラィト粒子が粗大
化し、被膜の密着性を損い、更には鋼板が完全に被覆さ
れずに地鉄が露出するに至る。本発明者らは、原料Mg
(OH)2を130000以上の高温で焼成することに
より、Mg(OH)2中の不純物を簡単に除去し、更に
このような高温焼成によって得られたMざ0は常温にお
いて水夫0性に極めて乏しく水和がスラリ−滞留時間、
スラリー水温などによって影響されないことから、前記
の2つの問題すなわちMg0の不純物とコイル内に持込
まれる水分量の管理という問題を同時に解決できること
を見出だした。
In other words, if the special moisture content is small, a low oxidizing atmosphere will result, and the entire film formed will be whitish and have poor adhesion.On the other hand, if the special moisture content is too large, the film will be too oxidizing. The constituent forsterite particles become coarse, impairing the adhesion of the coating, and furthermore, the steel plate is not completely covered and the base iron is exposed. The present inventors have discovered that the raw material Mg
By firing (OH)2 at a high temperature of 130,000 or higher, impurities in Mg(OH)2 can be easily removed, and the Mg(OH)2 obtained by such high-temperature firing has an extremely low water resistance at room temperature. Poorly hydrated slurry residence time;
Since it is not affected by the slurry water temperature, etc., it has been found that the two problems mentioned above, namely, the problem of controlling the impurity of Mg0 and the problem of controlling the amount of water brought into the coil, can be solved at the same time.

本発明はこの知見に基づいてなされたものである。次に
本発明を基礎実験により説明する。
The present invention has been made based on this knowledge. Next, the present invention will be explained by basic experiments.

第1表に示す化学成分の原料Mg(OH)2を9500
0、1300℃および1500qoで焼成しその化学成
分を同じく第1表に示した。第1表からS,CI,Na
,K等の不純分は950℃の焼成では除去できないが、
1300午0以上の焼成では除去できることが分る。
The raw material Mg(OH)2 of the chemical components shown in Table 1 is 9500
It was fired at 0.0°C, 1300°C and 1500qo, and its chemical composition is also shown in Table 1. From Table 1, S, CI, Na
, K and other impurities cannot be removed by firing at 950°C,
It can be seen that it can be removed by firing at 1300 pm or more.

従って本発明においてはMg○等の焼成温度を1300
00以上に限定した。その他のFe,Sj,B,Pなど
は焼成温度に関係なくM奴中に残留するが、CI,Na
,K等に比較すると被膜への悪影響は小さい。上記の如
く1300℃以上で高温焼成したMg0は従来の900
qC程度の低温焼成のMg0に比して極めて純度が高い
。高温焼成により簡単に不純物の除去ができるので、原
料における純度が多少低いものであっても、得られるM
g○の純度は良好であって、低廉な原料を使用して高純
度のMg0が得られる経済的効果も大きい。次に第1表
のMg○の水和性の比較を第2表に第1表示した。
Therefore, in the present invention, the firing temperature of Mg○ etc. is set to 1300
Limited to 00 or more. Other elements such as Fe, Sj, B, and P remain in the M core regardless of the firing temperature, but CI, Na
, K, etc., the adverse effect on the film is small. As mentioned above, the Mg0 fired at a high temperature of 1300℃ or higher is 900℃ compared to the conventional Mg0.
It has extremely high purity compared to Mg0 fired at a low temperature of about qC. Impurities can be easily removed by high-temperature firing, so even if the purity of the raw material is somewhat low, the obtained M
The purity of g○ is good, and the economic effect of obtaining high purity Mg0 using inexpensive raw materials is also great. Next, a comparison of the hydration properties of Mg◯ in Table 1 is shown in Table 2.

これは焼成したMgOを20℃の水中に30分間浸潰し
た後、乾燥し、次に100000で2時間の灼熱をした
後の減量であり、水との反応性すなわちMg○の活性度
を定量化したもので、950ooのMg0に比して高温
焼成のMg0は明らかに水和性に乏しいことが分る。第
2表 上記の如き高温焼成によって得られたMg0を単に従来
の如く焼鎚分離剤として使用し最終仕上焼鈍を行うと水
夫01性が低いためコイル内に持込まれる水分が少なく
、白っぽく密着性の悪いフオルステラィト質被膜が形成
される。
This is the weight loss after immersing the calcined MgO in water at 20°C for 30 minutes, drying it, and then scorching it at 100,000 for 2 hours, and quantifying the reactivity with water, that is, the activity of Mg○. It can be seen that Mg0 fired at a high temperature clearly has poor hydration properties compared to Mg0 of 950 oo. Table 2 If the Mg0 obtained by high-temperature firing as described above is simply used as a hammer separating agent and final annealing is performed as in the past, the sailor 01 property is low, so less water is brought into the coil, resulting in a whitish color and poor adhesion. A bad forsteritic film is formed.

良好なフオルステラィト質被膜を形成するには適量の水
分が必須であり、適量の水分をコイル内に持込むことは
高温焼成Mg○を焼鈍分離剤として使用する際に解決す
べき困難な問題であった。本発明者らは高温焼成のMざ
0の水和について研究の結果、高温焼成Mg0において
も4000以上の温水中においては速度は速くないが、
水和がおこって一部がMg(OH)2に変化し、これを
20〜30℃の通常の水温にもどしても水和はこれ以上
進行しないことを見出だした。
An appropriate amount of moisture is essential to form a good forstellite film, and bringing the appropriate amount of moisture into the coil is a difficult problem to be solved when using high-temperature fired Mg○ as an annealing separator. Ta. As a result of our research on the hydration of high-temperature fired Mg0, the present inventors found that even in high-temperature fired Mg0, the rate is not fast in hot water of 4000 or higher;
It has been found that hydration occurs and a portion of the material is converted to Mg(OH)2, and that even when the water is returned to a normal water temperature of 20 to 30 DEG C., hydration does not proceed any further.

この知見により、蒸留水を用い適当な溢水中で高温焼成
Mg○を水和し冷却し通常水温のスラリーとして塗布す
るか、あるいは蒸留水を使用したMg○の高温スラリー
を直後塗布することによって、高温焼成の高純度Mg○
が4000以上で徐々に水和し、4000未満において
は水和しない特質からコイル内に持込まれる水分量を所
期の値に管理できた。従って強制水和時の温水温度は4
0oo未満では水和がほとんど進行しないので4000
以上に限定した。また水和時間は後記の450oC以上
における灼熱減量率を2.0〜10%の範囲に管理して
第3表、第4表の実施例で示す如く均一な灰色の被膜外
観と良好な密着性のフオルステラィト質被膜を形成する
ために最適の40〜190分間に限定した。高温焼成M
g○を強制水和させる方法は、Mg0スラリーを温水中
に保温する方法、あるいはMg0粉末を直接温水中に投
入する方法等のいずれでもよいが、Mg0スラリーは静
置するよりも櫨拝した方が水和の効率がよい。Mg0の
水和によりコイル内に持込まれる水分量がフオルステラ
ィト質被膜の形成に大きな影響を与えることは前記のと
おりであるが、本発明においては基礎実験および後記の
実施例等に基づき強制水和させた高温焼成のMg○の4
5000以上における灼熱減量率を2.0〜10%の範
囲に限定したものを使用することにより良好な結果を得
ることができることを知見した。その限定理由は2.0
%未満においては酸化性雰囲気が低く形成される被膜が
白っぽく密着性が悪く、また10%を越すと酸化性雰囲
気が高過ぎてフオルステラィト粒子が粗大化し密着性が
低下するからである。なお灼熱減量率とはMg○の灼熱
減量と灼熱前の重量との割合であってMg0とMg(O
H)2の共存物の含水率を示す値である。灼熱処理を4
5000以上に限定した理由は、Mg(OH)2の脱水
は40000でほぼ終了するが、この程度の温度におけ
る灼熱処理においては少量の日20がMg○中に残存し
ている場合があり、45000以上で灼熱処理を行わな
いと正確な含水量は得られないからである。灼熱処理は
処理後の再処理で重量の変化がなくなるまで行う必要が
あるが、灼熱処理の時間は低温で行うほど長時間を要し
、短時間で終了させるためには約1000qoの灼熱温
度が望ましい。上記の如く灼熱減量率が2.0〜10%
になるように温水中において強制的に水和させた高温焼
成のMg○もしくはMざ0を主成分とする化合物を焼錨
分離剤として使用することにより外観が均一で密着性の
すぐれたフオルステラィト質の絶縁被膜を形成すること
ができるが、更にMg○のほかにTio.5〜1の重量
%およびSro.1〜10重量%を含む化合物を焼鈍分
離剤として使用する場合においても本発明の目的をより
有効に達成することができる。
Based on this knowledge, by hydrating and cooling the high-temperature calcined Mg○ in an appropriate flood using distilled water and applying it as a slurry at normal water temperature, or by immediately applying a high-temperature slurry of Mg○ using distilled water, High-purity Mg○ fired at high temperature
The amount of water brought into the coil could be controlled to the desired value because it gradually hydrates when the value is 4,000 or more, and does not hydrate when it is less than 4,000. Therefore, the hot water temperature during forced hydration is 4
4000 since hydration hardly progresses below 0oo.
limited to the above. In addition, the hydration time was controlled so that the ignition loss rate at 450oC or above was within the range of 2.0 to 10%, and as shown in the examples in Tables 3 and 4, a uniform gray coating appearance and good adhesion were achieved. The duration was limited to 40 to 190 minutes, which is the optimum time to form a forsteritic film. High temperature firing M
The forced hydration of g○ can be done by keeping the Mg0 slurry warm in hot water, or by directly putting the Mg0 powder into hot water, but it is better to hydrate the Mg0 slurry than to leave it still. has good hydration efficiency. As mentioned above, the amount of water brought into the coil due to hydration of Mg0 has a great influence on the formation of a forsteritic film, but in the present invention, forced hydration is carried out based on basic experiments and examples described later. High temperature fired Mg○4
It has been found that good results can be obtained by using a material whose ignition loss rate is limited to a range of 2.0 to 10% at a temperature of 5,000 or more. The reason for this limitation is 2.0
If the oxidizing atmosphere is less than 10%, the formed film will be whitish and have poor adhesion, and if it exceeds 10%, the oxidizing atmosphere will be too high and the forsterite particles will become coarse and the adhesion will decrease. Incidentally, the ignition loss rate is the ratio of the ignition loss of Mg○ to the weight before ignition, and is the ratio between Mg0 and Mg(O
H) This is a value indicating the water content of the coexisting substances of 2. Scorching heat treatment 4
The reason for limiting the temperature to 5,000 or higher is that dehydration of Mg(OH)2 is almost completed at 40,000, but in scorching heat treatment at this temperature, a small amount of 20 may remain in Mg○. This is because accurate moisture content cannot be obtained unless the scorching heat treatment is performed. Burning treatment must be carried out until there is no change in weight after reprocessing, but the lower the temperature, the longer the burning time is, and in order to complete the process in a short time, a burning temperature of approximately 1000 qo is required. desirable. As mentioned above, the scorching heat loss rate is 2.0 to 10%.
A forsterite material with a uniform appearance and excellent adhesion is created by using a compound mainly composed of Mg○ or Mza0, which is forcibly hydrated in hot water and fired at a high temperature, as a sintered anchor separating agent. However, in addition to Mg○, Tio. 5-1% by weight and Sro. Even when a compound containing 1 to 10% by weight is used as an annealing separator, the objects of the present invention can be more effectively achieved.

すなわち、Mg○もしくはMg0を主成分とする化合物
にTiおよびSr化合物を添加することにより、鋼板と
被膜の密着性は更に改善されるが、TiおよびSrとし
てそれぞれ0.5%未満および0.1%未満の場合にお
いてはその添加の効果がなく、又いずれも10%を越え
る添加は磁気特性に悪影響を及ぼすのでTio.5〜1
の重量%、Sro.1〜1の重量%の範囲に限定した。
That is, by adding Ti and Sr compounds to a compound mainly composed of Mg○ or Mg0, the adhesion between the steel plate and the coating is further improved, but if Ti and Sr are less than 0.5% and 0.1%, respectively. If the amount is less than 10%, the addition has no effect, and if it exceeds 10%, it will have a negative effect on the magnetic properties. 5-1
Weight % of Sro. It was limited to a range of 1 to 1% by weight.

実施例 1C:0.036%、Si:2.95%、S:
0.018%を含む厚さ0.3肌の冷延珪素鋼帯を霧点
6000、水素65%、残部が窒素からなるガス雰囲気
中において脱炭焼鈍を施し、一方Mg(OH)2を17
0000において2時間焼成後粉砕し100メッシュの
タィラー標準筋を通過したM奴を第3表に示す条件で強
制水和を行い、このMg○を鋼帯に塗布し、300o0
で乾燥しコイルに巻取った。
Example 1C: 0.036%, Si: 2.95%, S:
A cold-rolled silicon steel strip with a thickness of 0.3 skin containing 0.018% was subjected to decarburization annealing in a gas atmosphere consisting of a fog point of 6000, 65% hydrogen, and the balance nitrogen;
After firing at 0000 for 2 hours, pulverizing and passing through a 100-mesh Tyler standard strip was subjected to forced hydration under the conditions shown in Table 3, this Mg○ was applied to a steel strip, and 300o0
It was dried and wound into a coil.

その後箱型炉において、水素ガスを通入しながら120
0o0で5時間保持する最終仕上焼鈍を施し、形成した
フオルステラィト質被膜を1条件について3試料を調査
し、第3表には3試料中の最も悪い結果を、第1図には
3試料の全部の外観および密着性を示した。なおフオル
ステラィト質被膜と鋼板の密着性は、鋼板を一定の直径
を有する円柱状の榛鋼に角度180度の巻付けを行い曲
げた内面の被膜の剥離状態を観察し、剥離しない最小直
径で表示した。
Then, in a box furnace, 120
Final annealing was performed at 0o0 for 5 hours, and the formed forsteritic film was investigated on three samples under one condition. Table 3 shows the worst results among the three samples, and Figure 1 shows the results for all three samples. The appearance and adhesion were shown. The adhesion between the forsterite coating and the steel plate is determined by wrapping the steel plate around a cylindrical steel plate with a fixed diameter at an angle of 180 degrees, observing the peeling state of the coating on the inner surface of the bent steel plate, and indicating the minimum diameter without peeling. did.

密着性の良否はその直径の大きさによって示され、第3
表 直径2仇帆の円柱を用いても剥離が全くなければ非常に
密着性が良好であるが、30肌の直径で剥離がなければ
実用上問題はない。
The quality of adhesion is indicated by the size of its diameter, and the third
Even if a cylinder with a surface diameter of 2 mm is used, if there is no peeling, the adhesion is very good, but if there is no peeling with a diameter of 30 mm, there is no practical problem.

第3表および第1図から明らかな如く、灼熱減量率が2
.0〜10%の範囲内にある本発明例のNo.3〜6供
試材においては、外観、密着性が共に良好であるが、こ
の範囲外の比較例は外観が不良であり、15.1%のN
o.8供試村においては池鉄が露出するに至り、その密
着性を端部に形成された被膜について測定したが、その
結果は最悪であった。
As is clear from Table 3 and Figure 1, the ignition loss rate is 2.
.. No. of the present invention examples within the range of 0 to 10%. Sample materials 3 to 6 have good appearance and adhesion, but comparative examples outside this range have poor appearance and 15.1% N.
o. In the 8 sample villages, the pond iron was exposed and its adhesion was measured for the coating formed on the edge, but the results were worst.

実施例 2C:o.o38%、Sj:3.2%、S:0
.004%、Se:0.017%、Sb:0.025%
を含む厚さ0.3肌の冷延珪素鋼帯を実施例1と同条件
で脱炭糠錨を施し、Mg(OH)2を実施例1と同様に
焼成し、第4表に示す条件で強制水和を行い、このMざ
0にTi,Srを含有する化合物を添加した後鋼帯に塗
布し300*℃で乾燥しコイルに巻取った。
Example 2C: o. o38%, Sj:3.2%, S:0
.. 004%, Se: 0.017%, Sb: 0.025%
A cold-rolled silicon steel strip with a thickness of 0.3 skin was subjected to decarburization bran anchoring under the same conditions as in Example 1, and Mg(OH)2 was calcined in the same manner as in Example 1, under the conditions shown in Table 4. A compound containing Ti and Sr was added to the MZO, and then applied to a steel strip, dried at 300*°C, and wound into a coil.

その後、箱型炉で窒素ガス中85000、5畑時間の定
温保持後、水素ガスを通入しながら120000第4表 で5時間保持する最終仕上焼鈍を施し、実施例1と同様
に形成したフオルステラィト質被膜を調査し、その結果
を第4表および第2図に示した。
Thereafter, after holding the temperature at 85,000 in nitrogen gas for 5 hours in a box furnace, final annealing was carried out by holding at 120,000 in Table 4 for 5 hours while passing hydrogen gas, and the forsterite was formed in the same manner as in Example 1. The quality coating was investigated and the results are shown in Table 4 and Figure 2.

なお第2図中の数字は供試材No.を示している。第4
表および第2図から明らかなように、灼熱減量率が2.
0〜10.0%の範囲内にある本発明例の供試材No.
12〜15およびNo.17〜19は被膜外観、密着性
共にすぐれているが、本発明の限定範囲を外れている比
較例No.9〜11およびNo.16は被膜外観が不良
であり、密着性も低いものがある。本発明は上言己実施
例からも明らかな如く、高温焼成のMg○もしくはMg
0を主成分とする化合物を灼熱減量率が2.0〜10%
の範囲になるよう温水中において強制水和を行い、この
Mg0もしくはMg○を主成分とする焼鈍分離剤を使用
し、また必要によりTj,Sr化合物を少量添加するこ
とにより、外観が良好で密着性のすぐれたフオルステラ
ィト質絶縁被膜を経済的に形成する効果をあげることが
できた。
Note that the numbers in Figure 2 indicate the sample material No. It shows. Fourth
As is clear from the table and Figure 2, the ignition loss rate is 2.
Test material No. of the present invention example within the range of 0 to 10.0%.
12-15 and No. Comparative Example No. 17 to 19 have excellent coating appearance and adhesion, but are outside the scope of the present invention. 9 to 11 and No. No. 16 had poor coating appearance and poor adhesion. As is clear from the above embodiments, the present invention is directed to high-temperature fired Mg○ or Mg
The weight loss rate on ignition of compounds whose main component is 0 is 2.0 to 10%.
By performing forced hydration in warm water so that the temperature is within the range of It was possible to economically form a forsterite insulating film with excellent properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は共に水和したMg○の灼熱減量率
と、このMg○を主成分とする焼錨分離剤を使用して形
成されたフオルステラィト質絶縁被膜の外観および密着
性との関係を示す関係図である。 第1図 第2図
Figures 1 and 2 both show the ignition loss rate of hydrated Mg○ and the appearance and adhesion of a forsterite insulating film formed using a sintered anchor separation agent containing Mg○ as the main component. It is a relationship diagram showing a relationship. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1 所定の最終板厚に冷間圧延した珪素鋼帯にMgOも
しくはMgOを主成分とする化合物を焼鈍分離剤として
塗布しコイルに巻取後、箱型炉において高温焼鈍を実施
しフオルステライト(2MgO・SiO_2)質絶縁被
膜を形成する一方向性珪素鋼板の絶縁被膜形成方法にお
いて、前記焼鈍分離剤として450℃以上における灼熱
減量率が2.0〜10%の範囲になるように40℃以上
の温水中にて40〜190分間強制的に水和させた焼成
温度1300℃以上の高温焼成の前記MgOもしくはM
gOを主成分とする化合物を使用することを特徴とする
一方向性珪素鋼板の絶縁被膜形成方法。 2 所定の最終板厚に冷間圧延した珪素鋼帯にMgOも
しくはMgOを主成分とする化合物を焼鈍分離剤として
塗布しコイルに巻取後、箱型炉において高温焼鈍を実施
しフオルステライト(2MgO・SiO_2)質絶縁被
膜を形成する一方向性珪素鋼板の絶縁被膜形成方法にお
いて、前記焼鈍分離剤として450℃以上における灼熱
減量率が2.0〜10%の範囲になるように40℃以上
の温水中にて40〜190分間強制的に水和させた焼成
温度1300℃以上の高温焼成の前記MgOを主成分と
してTi0.5〜10重量%およびSr0.1〜10重
量%を含む化合物を使用することを特徴とする一方向性
珪素鋼板の絶縁被膜形成方法。
[Claims] 1. A silicon steel strip cold-rolled to a predetermined final thickness is coated with MgO or a compound containing MgO as a main component as an annealing separator, wound into a coil, and then subjected to high-temperature annealing in a box furnace. In the method for forming an insulating coating on a unidirectional silicon steel sheet in which a forsterite (2MgO SiO_2) insulating coating is carried out, the annealing separator has an ignition loss rate of 2.0 to 10% at 450°C or higher. The above MgO or M is forcibly hydrated in hot water of 40°C or higher for 40 to 190 minutes and fired at a high temperature of 1300°C or higher.
A method for forming an insulating film on a unidirectional silicon steel sheet, the method comprising using a compound containing gO as a main component. 2. MgO or a compound mainly composed of MgO is applied as an annealing separator to a silicon steel strip that has been cold-rolled to a predetermined final thickness, and after being wound into a coil, high-temperature annealing is performed in a box furnace to form forsterite (2MgO・In the method for forming an insulation coating on a unidirectional silicon steel sheet in which an SiO_2) insulation coating is formed, the annealing separator is heated at 40℃ or higher so that the ignition loss rate at 450℃ or higher is in the range of 2.0 to 10%. Using a compound containing 0.5 to 10 wt% of Ti and 0.1 to 10 wt% of Sr, the main component of which is MgO, which was forcibly hydrated in hot water for 40 to 190 minutes and fired at a high temperature of 1300°C or higher. A method for forming an insulating film on a unidirectional silicon steel sheet, the method comprising:
JP7295582A 1982-04-30 1982-04-30 Method for forming insulation coating on unidirectional silicon steel sheet Expired JPS6033896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7295582A JPS6033896B2 (en) 1982-04-30 1982-04-30 Method for forming insulation coating on unidirectional silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7295582A JPS6033896B2 (en) 1982-04-30 1982-04-30 Method for forming insulation coating on unidirectional silicon steel sheet

Publications (2)

Publication Number Publication Date
JPS58189374A JPS58189374A (en) 1983-11-05
JPS6033896B2 true JPS6033896B2 (en) 1985-08-06

Family

ID=13504311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7295582A Expired JPS6033896B2 (en) 1982-04-30 1982-04-30 Method for forming insulation coating on unidirectional silicon steel sheet

Country Status (1)

Country Link
JP (1) JPS6033896B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6885206B2 (en) * 2017-06-14 2021-06-09 日本製鉄株式会社 Directional electromagnetic steel sheet for laser magnetic domain control and its manufacturing method

Also Published As

Publication number Publication date
JPS58189374A (en) 1983-11-05

Similar Documents

Publication Publication Date Title
CN110100017B (en) Annealing separating agent composition for oriented electrical steel sheet, and method for producing oriented electrical steel sheet
GB2104916A (en) Grain-oriented electromagnetic steel sheet and process for producing the same
CN107746929A (en) High magnetic induction grain-oriented silicon steel annealing agent and preparation method and its application on aquation rate is reduced
JPS62156226A (en) Production of grain oriented electrical steel sheet having uniform glass film and excellent magnetic characteristic
US4582547A (en) Method for improving the annealing separator coating on silicon steel and coating therefor
WO2017191953A1 (en) Annealing separator composition, method for manufacturing same, and method for manufacturing grain-oriented electrical steel sheet using same
JPS6033896B2 (en) Method for forming insulation coating on unidirectional silicon steel sheet
JP2022514938A (en) Annealing Separator Composition for Electrical Steel Sheets, Manufacturing Methods for Electrical Steel Sheets and Electrical Steel Sheets
US4190469A (en) Method for forming forsterite insulating film on an oriented silicon steel sheet
US4662954A (en) Method for improving base coating formation on silicon steel by controlling winding tension
US4102713A (en) Silicon steel and processing therefore
US4096000A (en) Annealing separator for silicon steel sheets
US4338144A (en) Method of producing silicon-iron sheet material with annealing atmospheres of nitrogen and hydrogen
CS217967B2 (en) Fire resisting oxide composition for coating the silicon steel containing the boron
JPH06200325A (en) Production of silicon steel sheet having high magnetism
US4207123A (en) Coatings for reduced losses in (110) [001] oriented silicon iron
JPH0425349B2 (en)
US4096001A (en) Boron-containing electrical steel having a calcium borate coating and magnesia overcoating, and process therefor
US3832245A (en) Method of manufacturing an object of silicon steel having low sulphur content
GB1584455A (en) Method of producing silicon-iron sheet and a product thereof
US3331713A (en) Method of forming an insulating coating on silicon-iron sheets
US4548655A (en) Method for producing cube-on-edge oriented silicon steel
US3879234A (en) Lithia-containing frit additives for MgO coatings
US4097343A (en) Coated silicon-iron product and process therefor
US3151997A (en) Separating-medium coating for preparation of electrical steel strip for annealing