JPS6033748Y2 - Element abnormality detection circuit for forward conversion circuit - Google Patents

Element abnormality detection circuit for forward conversion circuit

Info

Publication number
JPS6033748Y2
JPS6033748Y2 JP1977133017U JP13301777U JPS6033748Y2 JP S6033748 Y2 JPS6033748 Y2 JP S6033748Y2 JP 1977133017 U JP1977133017 U JP 1977133017U JP 13301777 U JP13301777 U JP 13301777U JP S6033748 Y2 JPS6033748 Y2 JP S6033748Y2
Authority
JP
Japan
Prior art keywords
relay
circuit
short
voltage
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1977133017U
Other languages
Japanese (ja)
Other versions
JPS5459113U (en
Inventor
順彦 篠崎
政信 谷本
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Priority to JP1977133017U priority Critical patent/JPS6033748Y2/en
Publication of JPS5459113U publication Critical patent/JPS5459113U/ja
Application granted granted Critical
Publication of JPS6033748Y2 publication Critical patent/JPS6033748Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Power Conversion In General (AREA)
  • Protection Of Static Devices (AREA)
  • Rectifiers (AREA)

Description

【考案の詳細な説明】 本考案は、半導体整流素子を使用したブリッジ型順変換
回路において、該半導体整流素子の異常を検出する素子
異常検出回路に関し、特に順変換回路の入力変換部が変
流器の場合に整流素子の短絡故障を検出するに好適な検
出回路に関する。
[Detailed Description of the Invention] The present invention relates to an element abnormality detection circuit for detecting an abnormality in a semiconductor rectifying element in a bridge type forward conversion circuit using semiconductor rectifying elements. The present invention relates to a detection circuit suitable for detecting a short-circuit failure of a rectifier in the case of a rectifier.

第1図はダイオードブリッジによる全波整流回路に素子
異常検出回路を設けた従来の回路図である。
FIG. 1 is a conventional circuit diagram in which an element abnormality detection circuit is provided in a full-wave rectifier circuit using a diode bridge.

ダイオードD1〜D4による全波整流出力は平滑コンデ
ンサC8で平滑し、負荷りに給電もしくは直流検出電圧
として加える。
The full-wave rectified outputs from the diodes D1 to D4 are smoothed by a smoothing capacitor C8 and applied to the load as a power supply or DC detection voltage.

ダイオードD□〜D4の異常は直流出力端子P、N間に
設けるリレーRy□に印加される電圧で検出する。
Abnormalities in the diodes D□ to D4 are detected by the voltage applied to the relay Ry□ provided between the DC output terminals P and N.

ここで、負荷りを取除いた状態では平滑コンデンサC8
の放電回路がほとんどない(リレーRyの付勢電流のみ
)ため、整流回路構成が全波整流回路、半波整流回路に
拘らずPN間の電圧は交流電源電圧eの72倍になる。
Here, when the load is removed, the smoothing capacitor C8
Since there is almost no discharge circuit (only the energizing current of relay Ry), the voltage between PN is 72 times the AC power supply voltage e regardless of whether the rectifier circuit configuration is a full-wave rectifier circuit or a half-wave rectifier circuit.

しかし、全波整流回路の場合は負荷りがかけられてもP
NN電電圧降下小さくリレーRy1での検出ができない
のに対して、半波整流回路の場合は電圧降下が大きくリ
レーRy□が消勢されて検出できる。
However, in the case of a full-wave rectifier circuit, P
NN voltage drop is small and cannot be detected by relay Ry1, whereas in the case of a half-wave rectifier circuit, voltage drop is large and relay Ry□ is deenergized and detection is possible.

さて、ダイオードD□〜D、のうちの1個が短絡した場
合は半波整流回路に相当し、負荷りをかけたときにリレ
ーRy1で素子異常を検出できる。
Now, if one of the diodes D□ to D is short-circuited, it corresponds to a half-wave rectifier circuit, and when a load is applied, an element abnormality can be detected by relay Ry1.

ダイオード1個〜D、のうち2個が短絡した場合はPN
間に電圧が出ないのでリレーRy1で素子異常を検出で
きる。
If two of diodes 1 to D are short-circuited, PN
Since no voltage is generated between them, relay Ry1 can detect an element abnormality.

従って、リレーRy□による素子異常検出回路は、ダイ
オード1個の異常には負荷りをかけるまで異常を検出で
きない。
Therefore, the element abnormality detection circuit using the relay Ry□ cannot detect an abnormality in one diode until a load is applied.

ここで整流回路の交流入力側を計器用変圧器(PT)と
する場合、1個のダイオードの短絡で整流回路に短絡電
流が流れ、短絡ループ中の別のダイオードが短絡故障を
起こし、結果的には2個のダイオードが短絡したのと同
じになり、負荷りのない場合にもリレーRy1での素子
異常を検出できる。
If the AC input side of the rectifier circuit is a potential transformer (PT), a short circuit in one diode will cause a short circuit current to flow in the rectifier circuit, causing another diode in the short circuit to fail, resulting in a short circuit failure. This is the same as if two diodes were short-circuited, and an element abnormality in relay Ry1 can be detected even when there is no load.

ところが、入力が変流器(CT)の場合、短絡電流が小
さいので、ダイオード1個の短絡にとどまり、リレーR
y1は負荷りをかけるまで素子異常を検出できない。
However, when the input is a current transformer (CT), the short circuit current is small, so the short circuit only occurs in one diode, and the relay R
Element abnormality cannot be detected until a load is applied to y1.

このように、第1図に示す素子異常検出回路では負荷が
かけられていない場合、特に交流入力側が変流器(CT
)で負荷がかけられていない場合には1個の半導体整流
素子の短絡故障を検出することができなかった。
In this way, in the element abnormality detection circuit shown in Fig. 1, when no load is applied, the AC input side is connected to a current transformer (CT
), it was not possible to detect a short-circuit failure in one semiconductor rectifying element when no load was applied.

改良された従来回路を第2図に示す。An improved conventional circuit is shown in FIG.

同図においては、1巻線有極リレーを増設し、そのコイ
ル1、コイル2が互いに逆極性になるようにコイル1を
ダイオードD1と並列に、コイル2をダイオードD4と
並列に接続し、常時はコイル1による駆動力とコイル2
による抑制力とがバランスしてリレーを非作動状態にし
ておき、何れか1つのダイオードが短絡故障した際に駆
動力と抑制力とのバランスがくずれ、有極リレーの作動
で異常を検出する。
In the figure, a 1-winding polarized relay is added, and the coil 1 is connected in parallel with the diode D1 and the coil 2 is connected in parallel with the diode D4 so that the coil 1 and the coil 2 have opposite polarities. is the driving force of coil 1 and coil 2
When one of the diodes is short-circuited, the balance between the driving force and the suppressing force is lost, and an abnormality is detected by operating the polarized relay.

なお、交流入力側を変流@l1CTとして示す。Note that the AC input side is shown as a transformer @l1CT.

素子異常検出動作を以下に説明する。まず、ダイオード
D1〜D4が全て正常な場合、変流ITからの正の半波
ではコイル1に(e〜vc)電圧、コイル2には(e−
vc )電圧がかかり、共に励磁されるが打消しあって
有極リレーは不動作。
The element abnormality detection operation will be explained below. First, when all diodes D1 to D4 are normal, in the positive half wave from the current transformer IT, voltage (e to vc) is applied to coil 1, and voltage (e-vc) is applied to coil 2.
vc) Voltage is applied and both are excited, but they cancel each other out and the polarized relay does not operate.

なお、(e〜VC)はe>VCの場合はeが現われ、V
C>eの場合はvcが現われることを意味する。
In addition, (e ~ VC), if e>VC, e appears and V
If C>e, it means that vc appears.

負の半波ではコイル1,2は夫々ダイオードD1.D4
で短絡されるので両コイル1,2には電圧がかからずに
リレーは不動作。
In the negative half-wave, coils 1 and 2 are connected to diodes D1. D4
Since both coils 1 and 2 are short-circuited, no voltage is applied to both coils 1 and 2, and the relay is inoperative.

このように、正常時は両コイルが半波毎に励磁される。In this way, under normal conditions, both coils are excited every half wave.

次に、ダイオードD1が短絡した場合、正の半波ではコ
イル1はダイオードD1で短絡、コイル2にはvcがか
かるため有極リレーが動作して異常を検出する。
Next, when the diode D1 is short-circuited, the coil 1 is short-circuited by the diode D1 in the positive half wave, and since VC is applied to the coil 2, the polarized relay operates to detect an abnormality.

なお、負の半波では正常時と同じで不動作であり、正の
半波タイミングでリレーが異常検出することになる。
It should be noted that during negative half-waves, the relay is inactive as in normal times, and the relay detects an abnormality at positive half-wave timing.

同様に、ダイオードD4が短絡した場合、正の半波コイ
ル1にVcがかかり、コイル2は短絡されたリレーが動
作する。
Similarly, when diode D4 is short-circuited, Vc is applied to positive half-wave coil 1, and the relay with coil 2 short-circuited operates.

次に、ダイオードD2が短絡した場合、負の半波ではコ
イル1にVcがかかり、コイル2はダイオードD4で短
絡されるためリレーが動作。
Next, when diode D2 is short-circuited, Vc is applied to coil 1 in the negative half wave, and coil 2 is short-circuited by diode D4, so the relay operates.

なお、正の半波では正常時と同じで不動作にある。Note that during the positive half-wave, it is inactive, which is the same as during normal operation.

同様に、ダイオードD3が短絡した場合、負の半波でコ
イル1がダイオードD1で短絡、コイル2はVcがかか
りリレーが動作する。
Similarly, when diode D3 is short-circuited, coil 1 is short-circuited at diode D1 during the negative half wave, and Vc is applied to coil 2, causing the relay to operate.

また、正の半波では正常時と同じで不動作にある。Also, in the positive half wave, it is inactive as in the normal state.

このように、交流入力側が変流器においてもダイオード
D□〜D、のうち何れか1個が短絡故障した際に正、負
どちらか一方の半波で有極リレーが作動してダイオード
異常を検出することができる。
In this way, even when the AC input side is a current transformer, when any one of the diodes D□ to D is short-circuited, the polarized relay is activated by either the positive or negative half-wave, and the diode abnormality is detected. can be detected.

しかし、第2図の検出回路では、高価2巻線有極リレー
を必要とし、しかも常時励磁しておくための寿命が短い
However, the detection circuit shown in FIG. 2 requires an expensive two-winding polarized relay, and has a short lifespan because it is constantly energized.

また、常時励磁しておくため、抵aR1,R2を適正な
値に調整して正常時に誤動作しないようにバランスをと
る必要があり、その調整作業に手間がかかる。
In addition, since it is constantly excited, it is necessary to adjust the resistors aR1 and R2 to appropriate values to maintain a balance so as not to malfunction during normal operation, and this adjustment work is time-consuming.

本考案の目的は、一般に使用されるリレー1個と簡単な
抵抗回路を付加することで1個の半導体整流素子の異常
も検出でき、さらに正常時にはリレーの励磁がなされず
、調整も不要にした素子異常検出回路を提供するにある
The purpose of this invention is to detect an abnormality in a single semiconductor rectifying element by adding one commonly used relay and a simple resistance circuit, and also to make it possible to detect an abnormality in a single semiconductor rectifying element, and also to eliminate the need for adjustment because the relay is not energized during normal operation. An object of the present invention is to provide an element abnormality detection circuit.

第3図は本考案の一実施例を示す。FIG. 3 shows an embodiment of the present invention.

整流回路の交流入力側A、 B間には抵#3. R4の
直列回路を設け、抵抗R3,R1の抵抗値を同じものに
して中性点Cを形成している。
A resistor #3 is connected between AC input sides A and B of the rectifier circuit. A series circuit of R4 is provided, and a neutral point C is formed by making the resistance values of resistors R3 and R1 the same.

同様に、整流回路の直流回路側P、 N間には抵抗R5
? R6の直列回路を設け、抵15? R6の抵抗値を
同じものにして中点性りを形成している。
Similarly, a resistor R5 is installed between P and N on the DC circuit side of the rectifier circuit.
? A series circuit of R6 is provided, and a resistor of 15? The resistance value of R6 is made the same to form a midpoint resistance.

そして中性点C,D間には素子異常検出用リレーR3’
2を設けている。
And between neutral points C and D is relay R3' for element abnormality detection.
2 are provided.

このリレーRy2は通常の直流用リレーである。This relay Ry2 is a normal DC relay.

斯かる構成においてダイオードD□〜D4の全てが正常
の場合、中性点CおよびDの電位差が零であるからリレ
ーRy2が励磁されない。
In such a configuration, when all of the diodes D□ to D4 are normal, the potential difference between the neutral points C and D is zero, so the relay Ry2 is not excited.

これを以下に詳細に説明する。This will be explained in detail below.

(i) 正の半波でA、 8間電圧がP、N間電圧よ
り小さいときはダイオードD□〜D、が全で不導通状態
であるから中性点C,D間に電流が流れずC,D間は同
電位になる。
(i) When the voltage between A and 8 is smaller than the voltage between P and N during a positive half wave, all diodes D to D are in a non-conducting state, so no current flows between neutral points C and D. C and D have the same potential.

(ii) 正の半波でA、 8間電圧がP、N間電圧
より小さいときはダイオードD2.D3が導通となり、
AとP、BとN間はほとんど同電位となり、C,Dが同
電位となってリレーRy2は動作しない。
(ii) When the voltage between A and 8 is smaller than the voltage between P and N in the positive half wave, the diode D2. D3 becomes conductive,
A and P, B and N are at almost the same potential, C and D are at the same potential, and relay Ry2 does not operate.

(iii) 負の半波でA、 8間電圧がP、N間電
圧より小さいときは上記(i)の場合と同じになる。
(iii) When the voltage between A and 8 is smaller than the voltage between P and N during a negative half wave, the result is the same as in case (i) above.

(iv) 負の半波でA、8間電圧がP、N間電圧よ
り大きいときはダイオードD4.D□が導通となり、A
とN、 Bと2間がほとんど同電位となり、上記(ii
)の場合と同じになる。
(iv) When the voltage between A and 8 is greater than the voltage between P and N in the negative half wave, diode D4. D□ becomes conductive, and A
and N and B and 2 become almost the same potential, and the above (ii
) is the same as in the case of

以上にように、ダイオードD□〜D4が全て正常な場合
は何れの条件のときでもC,D間が同電位になってリレ
ーRJ2には電流が流れず動作しない。
As described above, when all of the diodes D□ to D4 are normal, the potential between C and D becomes the same under any condition, and no current flows through the relay RJ2, so it does not operate.

次にダイオードD0が短絡故障を起したとき、正の半波
ではCTが短絡され、C,D間に電位差が生じてリレー
Ry2が異常を検出する。
Next, when diode D0 causes a short-circuit failure, CT is short-circuited in the positive half wave, a potential difference is generated between C and D, and relay Ry2 detects an abnormality.

負の半波では正常時と同じで不動作になる。In the negative half wave, it becomes inoperable as in the normal state.

これを以下に詳細に説明する。This will be explained in detail below.

(i) 正の半波でD1〜D3を通してA、 B間が
短絡されるのでその間の電圧が零になる。
(i) In the positive half wave, A and B are short-circuited through D1 to D3, so the voltage between them becomes zero.

もし、リレーRy2のインピーダンスが抵抗R3,R6
に比べて非常に大きいとすると、Cの電位がA、 Bと
ほぼ同電位になる。
If the impedance of relay Ry2 is the resistance R3, R6
If it is very large compared to , the potential of C will be almost the same as that of A and B.

ところで、Doは短絡しているのだからAとNは同電位
であり、C9D間にはり、 N間の電圧がかかることに
なる。
By the way, since Do is short-circuited, A and N are at the same potential, and a voltage is applied between C9D and N.

D。N間電圧はP、N間電圧すなわち直流出力電圧Vc
の上であるから、C9D間にはVc/2の電圧がかかり
、Ry2は動作する。
D. The voltage between N is the voltage between P and N, that is, the DC output voltage Vc
Since it is above, a voltage of Vc/2 is applied between C9D and Ry2 operates.

電流の経路は、Dlが短絡、Dが導通状態であるからP
−D−C−A(およびB)−Nとなる。
The current path is P since Dl is short-circuited and D is conductive.
-D-C-A (and B)-N.

また、等他回路は第4図aに示すものになり、R3=R
4=RA、R5=R6=RD、リレーR3’2のコイル
インピーダンスをZとするとaはbに示すものになる。
In addition, other circuits such as the one shown in Fig. 4a, R3=R
4=RA, R5=R6=RD, and the coil impedance of relay R3'2 is Z, then a becomes as shown in b.

bにおいて、リレーRy2に流れる電流Iは、 c ■”2(Z+RA)+R8・・・・・・(1)となり、
この■の値がリレーRY2の最小動作電流値よりも大き
くなるように抵抗R3,R4,R5゜Rst Zを設定
すれば、素子異常時にリレーRy2が作動してその検出
ができる。
At b, the current I flowing through relay Ry2 is c ■”2(Z+RA)+R8 (1),
If the resistors R3, R4, and R5°RstZ are set so that the value of ◯ is larger than the minimum operating current value of the relay RY2, the relay Ry2 operates and can detect an abnormality in the element.

なお、R3〜Rs < Zとすれば、上記(1)式は IJψ・・・・・・(2) となり、リレーRy2の選択で上記条件を決定できる。In addition, if R3~Rs < Z, the above formula (1) becomes IJψ・・・・・・(2) Therefore, the above conditions can be determined by selecting relay Ry2.

(ii) 負の半波でA、 8間電圧がP、N間電圧
より小さい場合、ダイオードD1が短絡されているから
、AとNの電位は同じになり、リレーRy2のインピー
ダンスZを大きいすることからC9D間の電位差は、P
、N間電圧からA、 B間室圧を減算した値のるになり
、リレーRy2に電流が流れる。
(ii) If the voltage between A and 8 is smaller than the voltage between P and N during the negative half wave, the potentials of A and N will be the same because diode D1 is shorted, increasing the impedance Z of relay Ry2. Therefore, the potential difference between C9D is P
, N is equal to the value obtained by subtracting the chamber pressure between A and B, and a current flows through relay Ry2.

(iii) 負の半波でAB間電圧がP、 N間電圧
より大きい場合、ダイオードD4が導通になり、B。
(iii) When the voltage between AB is greater than the voltage between P and N in the negative half wave, diode D4 becomes conductive and B.

1間とA、N間がほとんど同電位となるから、CとDの
電位も同じになってリレーRy2には電流が流れない。
1 and between A and N, the potentials of C and D also become the same, and no current flows through relay Ry2.

第5図に各部電圧電流波形を示す。FIG. 5 shows voltage and current waveforms at various parts.

同様に、ダイオードD2が短絡故障を起したとき、正の
半波では正常時と同じリレーR3’2は不動作にあるが
、負の半波ではD4.D2でCTが短絡されるのでC,
D間に電位差ができ、P−A(B)−C−D−Nの経路
で電流が流れリレーRy2が作動する。
Similarly, when diode D2 causes a short-circuit fault, relay R3'2 is inactive during the positive half-wave, as it is during normal operation, but during the negative half-wave, relay R3'2 is inactive, but during the negative half-wave, D4. Since CT is shorted at D2, C,
A potential difference is created between D, current flows through the path P-A(B)-C-D-N, and relay Ry2 is activated.

また、ダイオードD3が短絡故障を起したとき、正の半
波では正常時を同じでリレーRyは不動作にあるが、負
の半波ではD3.Dlが短絡されるのでC,D間に電位
差ができ、P−D−C−B(4)−Nの経路で電流が流
れリレーRy2が作動する。
Furthermore, when diode D3 causes a short-circuit failure, relay Ry is inoperative during the positive half-wave as in the normal state, but during negative half-wave, D3. Since Dl is short-circuited, a potential difference is created between C and D, and current flows through the path P-D-C-B(4)-N, and relay Ry2 is activated.

また、ダイオードD4が短絡故障を起したとき、正の半
波ではD2.D4でCTが短絡されるので、Ct D間
に電位差ができ、P−B(A)−C−D−Nの経路で電
流が流れリレーRy2が作動する。
Also, when the diode D4 causes a short-circuit failure, the positive half wave causes the diode D2. Since CT is short-circuited at D4, a potential difference is created between Ct and D, and current flows through the path P-B(A)-C-D-N, and relay Ry2 is activated.

負の半波では正常時と同じでリレーR3’2は不動作に
ある。
In the negative half wave, the relay R3'2 is inoperative as in the normal state.

以上のように、各ダイオードD□〜D4が短絡した場合
は負荷りがかけられていない状態でもリレRy2が作動
して異常を検出することができる。
As described above, when each of the diodes D□ to D4 is short-circuited, the relay Ry2 operates even when no load is applied, and an abnormality can be detected.

なお、リレーRY2の復帰時間が半サイクルの時間より
充分大きければ、うなりは生ぜず、リレーの動作は完全
に行なわれる。
Note that if the return time of relay RY2 is sufficiently longer than the half cycle time, no beat will occur and the relay will operate perfectly.

また、復帰時間の短かいリレーの場合でもコイルの両端
にコンデンサを付加すれば、リレーRy2にかかる電圧
が平滑されてその動作を安定させることができる。
Furthermore, even in the case of a relay with a short recovery time, if a capacitor is added to both ends of the coil, the voltage applied to the relay Ry2 can be smoothed and its operation can be stabilized.

本実施例によれば、リレーR3’2としては通常の直流
用リレーを使用でき、さらに正常時には励磁されていな
いのでその寿命を延ばすことができる。
According to this embodiment, a normal DC relay can be used as the relay R3'2, and since it is not energized during normal operation, its life can be extended.

また、抵抗回路によるリレーRy2の動作、不動作調整
が不要になるし、検出回路構成も簡単になる。
Further, there is no need to adjust the operation and non-operation of the relay Ry2 using a resistor circuit, and the configuration of the detection circuit becomes simple.

なお、実施例においては、単相交流用整流回路に適用す
る場合を示したが、本考案はこれに限定されるものでな
く、3相交流等の多相交流用整流回路にも適用できる。
In the embodiment, a case where the present invention is applied to a single-phase AC rectifier circuit is shown, but the present invention is not limited thereto, and can also be applied to a multi-phase AC rectifier circuit such as a three-phase AC rectifier.

以上間らかにしたとうり、本考案は一般に使用される1
個の直流用リレーと簡単な抵抗回路との構成で、1個の
半導体整流素子の異常も検出できる効果がある。
As explained above, the present invention is a commonly used 1
The configuration of two DC relays and a simple resistance circuit has the effect of detecting an abnormality in a single semiconductor rectifying element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の素子異常検出回路を示す回路図、第2図
は従来の他の検出回路を示す図、第3図は本考案に、よ
る順変換回路の素子異常検出回路の一実施例を示す回路
図、第4図aおよびbは第3図の動作を説明するための
等価回路図、第5図は第3図においてダイオードD□が
短絡故障した場合の各部電圧電流波形を示す図である。 CT・・・・・・変流器、D□〜D4・・・・・・ダイ
オード、Ryl、Ry2・・・・・・リレー、co・・
・・・・平滑コンデンサ、L・・・・・・負荷、R1〜
R,・・・・・・抵抗。
Fig. 1 is a circuit diagram showing a conventional element abnormality detection circuit, Fig. 2 is a diagram showing another conventional detection circuit, and Fig. 3 is an embodiment of an element abnormality detection circuit of a forward conversion circuit according to the present invention. 4a and b are equivalent circuit diagrams for explaining the operation of FIG. 3, and FIG. 5 is a diagram showing voltage and current waveforms at various parts when the diode D□ in FIG. 3 is short-circuited. It is. CT...Current transformer, D□~D4...Diode, Ryl, Ry2...Relay, co...
... Smoothing capacitor, L ... Load, R1 ~
R...Resistance.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ダイオード整流素子を使用し直流側に平滑用コンデンサ
を備えるブリッジ型順変換回路において、順変換回路の
交流入力側の中性点を形成する抵抗回路と、順変換回路
の直流出力側の中性点を形成する抵抗回路と、上記両抵
抗回路の中性点間に設けたリレーとを備え、上記ダイオ
ード整流素子の短絡異常を上記リレーの作動で検出する
ことを特徴とする順変換回路の素子異常検出回路。
In a bridge type forward conversion circuit that uses a diode rectifier and has a smoothing capacitor on the DC side, there is a resistor circuit that forms a neutral point on the AC input side of the forward conversion circuit, and a neutral point on the DC output side of the forward conversion circuit. and a relay provided between the neutral points of both of the resistance circuits, and detects a short-circuit abnormality in the diode rectifying element by actuation of the relay. detection circuit.
JP1977133017U 1977-10-01 1977-10-01 Element abnormality detection circuit for forward conversion circuit Expired JPS6033748Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1977133017U JPS6033748Y2 (en) 1977-10-01 1977-10-01 Element abnormality detection circuit for forward conversion circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1977133017U JPS6033748Y2 (en) 1977-10-01 1977-10-01 Element abnormality detection circuit for forward conversion circuit

Publications (2)

Publication Number Publication Date
JPS5459113U JPS5459113U (en) 1979-04-24
JPS6033748Y2 true JPS6033748Y2 (en) 1985-10-07

Family

ID=29101093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1977133017U Expired JPS6033748Y2 (en) 1977-10-01 1977-10-01 Element abnormality detection circuit for forward conversion circuit

Country Status (1)

Country Link
JP (1) JPS6033748Y2 (en)

Also Published As

Publication number Publication date
JPS5459113U (en) 1979-04-24

Similar Documents

Publication Publication Date Title
JP4845910B2 (en) Earth leakage breaker
KR0169174B1 (en) Regenerative ac/de/ac power converter for a plurality of motors
JP5255747B2 (en) Phase loss detection circuit and electrical equipment
CN215728707U (en) Three-phase power supply phase loss detection circuit and motor controller of BLDC motor
JPS6033748Y2 (en) Element abnormality detection circuit for forward conversion circuit
JP7405041B2 (en) Converter equipment and power supply equipment
JP4423949B2 (en) Control device for AC / AC direct conversion device
JP4766241B2 (en) DC voltage step-down circuit and power converter
JPS61139220A (en) Phase missing detection circuit for 3-phase altering current
KR20210107414A (en) Apparatus and method for diagnosing initial charging circuit of inverter
JPS6013244Y2 (en) Undervoltage relay with current compensation
US11043903B2 (en) Power supply and medical system
JP4240849B2 (en) Power supply device and power supply module using the same
JP2597025Y2 (en) Inverter DC short circuit detection device
JPS60134768A (en) Voltage doubler rectifier circuit
JPH08331862A (en) Uninterruptible power supply
JPH0514689Y2 (en)
JPS61285080A (en) Commutation failure detector of current type inverter
JPS5818439Y2 (en) voltage detection circuit
JPS622888Y2 (en)
JPH04285402A (en) Electric vehicle controller
JP6607156B2 (en) Phase loss detection circuit for three-phase AC power supply
JPH0526899Y2 (en)
JPH11285253A (en) Power supply
JPS6222360B2 (en)