JPS6033490A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS6033490A
JPS6033490A JP14344883A JP14344883A JPS6033490A JP S6033490 A JPS6033490 A JP S6033490A JP 14344883 A JP14344883 A JP 14344883A JP 14344883 A JP14344883 A JP 14344883A JP S6033490 A JPS6033490 A JP S6033490A
Authority
JP
Japan
Prior art keywords
heat exchanger
temperature fluid
fluid flow
flow path
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14344883A
Other languages
Japanese (ja)
Inventor
Keiji Nishizaki
西崎 奎二
Shiro Hosoda
細田 史朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP14344883A priority Critical patent/JPS6033490A/en
Publication of JPS6033490A publication Critical patent/JPS6033490A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
    • F28D7/0033Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes the conduits for one medium or the conduits for both media being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/04Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being spirally coiled

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To permit to accommodate the heat exchanger into a small installation space equal to the same in a multi-flow type heat exchanger, constitute the flow directions of all flow paths so as to be perfect opposing flows and prevent generation of pressure loss by a method wherein high temperature fluid flow paths and low temperature fluid flow paths are formed into continuous one pair of spiral flow paths. CONSTITUTION:One piece 9 of the heat exchanger is constituted of the combined body of the high temperature fluid flow path 1 and the low temperature fluid flow path 2, which are in neighboring relation on the front and rear surfaces of a heat transfer plate 3, and is cut at every 1/2 pitches of the spiral line thereof while both end faces 10, 11 thereof are constituted so as to have a phase difference p/2 of one pitch (p) of the spiral line thereof. Accordingly, both ends of the unit spiral line, formed so as to have one pitch of the spiral line, are provided with the phase difference corresponding to one pitch (p) of the spiral line by arranging one pair of pieces 9, 9 of same shapes opposingly and connecting the opposing end faces 10, 11. According to this method, the heat exchanger may be accommodated into the small installation space equal to the same in the multi-flow type heat exchanger and, further, the flow directions of all flow paths may be constituted of perfect opposing counter-flows.

Description

【発明の詳細な説明】 この発明は熱交換器に関するもので、伝熱プレートの表
裏に高温流体流路と低温流体流路とが相互間の広い接触
面を持って瞬接の関係に設けられ予熱交換器、いわゆる
プレート式熱交換器に関するものである〇 従来、多回流式のプレート式熱交換器においては、伝熱
プレートの両面に沿って流れる各流体の流れ方向を、全
伝熱面を通じて対向流とすることができないため、表面
熱伝達率が細形式の熱交換器にくらべて大きいという特
長!有しているにも拘らず、対数平均温度差を大きく取
些ないという欠点があった0このことを図面によって説
明すると、7乙図ないし21図はいずれも従来のプレー
ト式熱交換器を示し、27図は1回流式のものを、才r
図は多回流式のものを示す0高温流体の流路/と低温流
体の流路コとは、伝熱プレート3の表裏に隣接の関係に
設けられる。ダは高温流体の入口、!はその出口であ9
%gは低温流体の入口で、7はその出口である。図中の
実線矢印は高温流体の流れ方向を示し、破線矢印は低温
流体の流れ方向を示す01回流式の第2図のものにおい
ては、流路/と流路2との流れ方向の関係はいずれも完
全対向流となるが、多回流式の7♂図のものにおいては
、流路/と流路コとの流れ方向の関係は、その!θチが
対向流で残り 30 %は平行流となり、対数平均温度
差を大きく取れないことになる。
[Detailed Description of the Invention] This invention relates to a heat exchanger, in which a high-temperature fluid flow path and a low-temperature fluid flow path are provided on the front and back surfaces of a heat transfer plate in an instantaneous contact relationship with a wide contact surface between them. This relates to a preheat exchanger, a so-called plate heat exchanger. Conventionally, in a multi-flow plate heat exchanger, the flow direction of each fluid flowing along both sides of the heat transfer plate is directed through the entire heat transfer surface. The feature is that the surface heat transfer coefficient is higher than that of narrow type heat exchangers because counterflow cannot be created! However, it has the disadvantage that the logarithmic average temperature difference is not large enough.To explain this using drawings, Figures 7 to 21 all show conventional plate heat exchangers. , Figure 27 shows the single flow type.
The figure shows a multi-flow type. A high-temperature fluid flow path and a low-temperature fluid flow path are provided adjacent to each other on the front and back sides of the heat transfer plate 3. Da is the inlet of high temperature fluid,! is the exit 9
%g is the inlet of the cryogenic fluid and 7 is its outlet. The solid line arrows in the figure indicate the flow direction of the high temperature fluid, and the broken line arrows indicate the flow direction of the low temperature fluid. In both cases, the flow is completely opposite, but in the multi-flow type shown in Fig. 7, the relationship in the flow direction between the flow path / and the flow path C is as follows. θ-chi is a counter flow, and the remaining 30% is a parallel flow, which means that it is not possible to obtain a large logarithmic average temperature difference.

しかし、そのため多回流式の構造を排して1回流式の構
造を採用すると、設置スペースの増大を来たすことにな
る0 また、流体流路の流れ方向の折返し点、たとえば12図
中の折返し点♂171 + + +では、折流による過
大な圧力損失が発生し、これがプレート式熱交換器の本
質的な欠点となっていた0この発明は、プレート式熱交
換器における上記従来の欠点を排除し、多回流式におけ
ると同等の小さい設置スペースに収容が可能で、しかも
すべての流路の流れ方向を完全対向流として構成するこ
とができ、かつ流路の途中に過大な圧力損失を伴なう流
れ方向の折返し点が存在しない熱交換器を実現すること
を目的としてなされたもので、か\る目的を達成するた
めの手段として、伝熱プレートの表裏に高温流体流路と
低温流体流路とが相互間の広い接触面を持って隣接の関
係に設けられる熱交換器において、高温流体流路と低温
流体流路とを連続する一対の螺線状の流路として構成し
たことを特徴とする0つぎKこの発明装置について、図
面に示す実施例に基き具体的に説明する。27図および
オコ図において、ピース?は、伝熱プレート30表裏に
隣接の関係に設けられる高温流体流路/と低温流体流路
コとの組合せ体として構成され、螺締の3ピツチごとに
切断されてその端面10と//とが螺締の歩みPのイの
位相差lをもつように構成されるoしたがって、等形の
一対のピース?、?’t−1図示のように対向配置して
−1の対向する端面/θと//とを接合することにより
、螺締の1ピツチとして形成された単位螺締の両端は、
22図に示すように螺締の歩みpに相当する位相差をそ
なえる。
However, if the multi-flow structure is eliminated and a single-flow structure is adopted, the installation space will increase.In addition, the turning point in the flow direction of the fluid flow path, for example, the turning point in Figure 12, will increase the installation space. In ♂171 + + +, excessive pressure loss occurred due to folded flow, which was an essential drawback of plate heat exchangers.0 This invention eliminates the above-mentioned conventional drawbacks of plate heat exchangers. However, it can be accommodated in a small installation space equivalent to that of a multi-flow type, and all flow paths can be configured to have completely opposite flow directions, and there is no excessive pressure loss in the middle of the flow path. This was done with the aim of realizing a heat exchanger that does not have a turning point in the flow direction.As a means to achieve this purpose, high temperature fluid flow channels and low temperature fluid flow channels are installed on the front and back sides of the heat transfer plate. In a heat exchanger in which channels are provided adjacently with a wide contact surface between them, the high-temperature fluid channel and the low-temperature fluid channel are configured as a pair of continuous spiral channels. 0 to K This inventive device will be specifically explained based on an embodiment shown in the drawings. In Figure 27 and Oko diagram, peace? is constructed as a combination of a high-temperature fluid flow path and a low-temperature fluid flow path provided adjacent to each other on the front and back sides of the heat transfer plate 30, and is cut at every three pitches of screwing, and the end face 10 and the is constructed so that it has a phase difference l of a of the screwing step P. Therefore, is it a pair of equal-shaped pieces? ,? 't-1 By arranging the opposing end faces /θ and // of -1 as shown in the figure and joining them, both ends of the unit screw formed as one pitch of the screw are:
As shown in Fig. 22, a phase difference corresponding to the screwing step p is provided.

23図は、上記の実施例における一対のピース?、9f
:6らかじめ連続して螺締が1ピツチごとに切断された
状態の各ピース/、2ヲ作成しておき、これを順次に連
結して螺線状に構成した例を示す。この場合も、連結さ
れるピース/、2は全く等形のものを連結して作成する
ことが可能である。
Figure 23 shows a pair of pieces in the above example? , 9f
: 6 An example is shown in which each piece/, 2 in which the screws are continuously cut at each pitch is created in advance, and these pieces are sequentially connected to form a spiral shape. In this case as well, the pieces /, 2 to be connected can be created by connecting pieces of exactly the same shape.

74を図は異なる実施例として、螺線状の己路を構成す
るためのピース73を半円周形に形成した例を示す0ピ
ース/3は、その端面/4tと/!とが螺締の歩みpの
%の位相差%tもつように構成されるo%流路の配置態
様に関しては77図のものと同等である。本例のものは
、全体の構成がいわゆる螺締形というにふされしい円周
形状のピースよりな9、したがって各流路内の流体の流
れも、72図ないし73図のものに比較してきわめて円
滑で必る0 、1−j図は、螺結の1ピツチを等形の4を個のピース
/lによりこれをたがいに連結することによってm成し
た例を示す0オコ図ないしオグ図の例では、1ピツチの
両端の位相差Pが隣接する一対の両流体直路の厚さに一
致する例を示したのに対し、位相差を2倍にした例を示
すOこのように位相差t−3倍、グ倍と変えることによ
って、水量に応じたコンパクトな熱交換器を形成するこ
とができる0 この発明にか−る熱交換器は以上のように構成されるの
で、多回流式におけると同等の小さい設置スペースへの
収容が可能で、しかもすべての流路の流れ方向を完全対
向流として構成することができ、かつ流路の途中に流れ
方向のシャープな折返し点が存在せず、流路の全長に亘
9−貫して螺腺状の円滑な流れが保持されるので、圧力
損失がきわめて少ない、などのすぐれた効果がある。
74 is a different embodiment in which a piece 73 for configuring a spiral self-path is formed into a semicircular shape.0 piece /3 has its end face /4t and /! The layout of the 0% flow path configured to have a phase difference %t of % of the screwing step p is the same as that shown in FIG. 77. In this example, the overall structure is made of circumferential pieces that can be called a screw type. Therefore, the flow of fluid in each flow path is also different from that in Figures 72 and 73. The diagrams 0 and 1-j, which are extremely smooth, are 0-co-diagrams or og-diagrams showing an example in which one pitch of a thread is made into m by connecting 4 pieces of equal shape to each other with pieces/l. In the example shown above, the phase difference P at both ends of one pitch corresponds to the thickness of a pair of adjacent two fluid straight paths, whereas the example shown in which the phase difference is doubled is shown below. By changing t-3 times and g times, a compact heat exchanger can be formed according to the amount of water.Since the heat exchanger according to the present invention is constructed as described above, it is a multi-flow type. It can be accommodated in a small installation space equivalent to that of a , and all flow paths can be configured to have completely opposite flow directions, and there are no sharp turning points in the flow direction in the middle of the flow path. Since a smooth spiral flow is maintained throughout the entire length of the flow path, there are excellent effects such as very little pressure loss.

【図面の簡単な説明】[Brief explanation of the drawing]

、?/図は本発明装置の構成を説明するための要部の斜
視図、オコ図は本発明装置の一実施例の側面図、第3図
、オグ図および23図はいずれも本発明装置のそれぞれ
異なる実施例の斜視図、7に図は従来装置の正面図、7
2図および才♂図はいずれも従来装置のそれぞれ異なる
例における作用を説明するための断面図である。 /00.高温流体流路、2 、、、低温流体流路、30
6.伝熱プレート、グ、乙08.入口、夕、7.・・出
口、♂00.折返し点、も/2. /3. /乙16.
ピース、10.//、/4t、/j +++端面。 2− A’77
,? / Figure is a perspective view of the main parts for explaining the configuration of the device of the present invention, the top view is a side view of one embodiment of the device of the present invention, and Figures 3, 3, and 23 are each of the device of the present invention. A perspective view of a different embodiment, 7 is a front view of a conventional device, 7
Both FIG. 2 and FIG. /00. High temperature fluid flow path, 2, Low temperature fluid flow path, 30
6. Heat transfer plate, g, Otsu08. Entrance, evening, 7. ...Exit, ♂00. Turning point, also/2. /3. /Otsu16.
Peace, 10. //, /4t, /j +++ end face. 2- A'77

Claims (3)

【特許請求の範囲】[Claims] (1)伝熱プレートの表裏に高温流体流路と低温流体流
路とが相互間の広い接触面を持って隣接の関係に設けら
れる熱交換器において、高温流体流路と低温流体流路と
を連続する一対の螺線状の流路として構成したことを特
徴とする熱交換器。
(1) In a heat exchanger in which a high-temperature fluid flow path and a low-temperature fluid flow path are provided adjacently with a wide contact surface between them on the front and back sides of a heat transfer plate, the high-temperature fluid flow path and the low-temperature fluid flow path are A heat exchanger characterized in that it is configured as a pair of continuous spiral flow paths.
(2)伝熱プレートの表裏に隣接や関係に設けられる高
温流体流路と低温流体流路との組合わせ体を螺線の/ピ
ッチごとに切断されて、その両端面が螺線の歩みに等し
い位相差をもつ等形のピースとして構成し、該ピースの
多数を順次に連結することにより螺線状の熱交換器体を
形成する特許請求の範囲才(1)項記載の熱交換器。
(2) The combination of high-temperature fluid flow channels and low-temperature fluid flow channels provided adjacently or in relation to each other on the front and back of the heat transfer plate is cut at each spiral/pitch, and both end surfaces are aligned with the steps of the spiral. The heat exchanger according to claim 1, wherein the heat exchanger is configured as uniform pieces having an equal phase difference, and a spiral heat exchanger body is formed by sequentially connecting a large number of the pieces.
(3)伝熱プレートの表裏に隣接の関係に設けられる高
温流体流路と低温流体流路との組合わせ体を1lli1
Nの%ピッチごとに切断されてその両端面が螺線の歩み
のΔに等しい位相差をもつ!形のピースとしてS成し、
該ピースの多数を順次に連結することによりvA線状の
熱交換器、体を形成する特許請求の範囲7(1)項記載
の熱交換器。
(3) A combination of a high temperature fluid flow path and a low temperature fluid flow path provided adjacently on the front and back sides of the heat transfer plate.
It is cut at every % pitch of N, and both end faces have a phase difference equal to Δ of the spiral step! Formed as a shaped piece,
The heat exchanger according to claim 7(1), wherein a vA linear heat exchanger body is formed by sequentially connecting a large number of the pieces.
JP14344883A 1983-08-04 1983-08-04 Heat exchanger Pending JPS6033490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14344883A JPS6033490A (en) 1983-08-04 1983-08-04 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14344883A JPS6033490A (en) 1983-08-04 1983-08-04 Heat exchanger

Publications (1)

Publication Number Publication Date
JPS6033490A true JPS6033490A (en) 1985-02-20

Family

ID=15338934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14344883A Pending JPS6033490A (en) 1983-08-04 1983-08-04 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS6033490A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2906353A1 (en) * 2006-09-21 2008-03-28 Valeo Systemes Thermiques Internal heat exchanger for motor vehicle, has flat tubes supplying low pressure outlet so as to form high pressure and low pressure outlets at same end of exchanger, where tubes provide reverse circulation of low pressure refrigerant
WO2013035966A1 (en) * 2011-09-08 2013-03-14 한국에너지기술연구원 Absorber for a solar power generating apparatus
US20150330714A1 (en) * 2012-12-05 2015-11-19 Polyvision, Naamloze Vennootschap Spiral or helical counterflow heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2906353A1 (en) * 2006-09-21 2008-03-28 Valeo Systemes Thermiques Internal heat exchanger for motor vehicle, has flat tubes supplying low pressure outlet so as to form high pressure and low pressure outlets at same end of exchanger, where tubes provide reverse circulation of low pressure refrigerant
WO2013035966A1 (en) * 2011-09-08 2013-03-14 한국에너지기술연구원 Absorber for a solar power generating apparatus
US20150330714A1 (en) * 2012-12-05 2015-11-19 Polyvision, Naamloze Vennootschap Spiral or helical counterflow heat exchanger
US10094621B2 (en) * 2012-12-05 2018-10-09 Polyvision, Naamloze Vennootschap Spiral or helical counterflow heat exchanger

Similar Documents

Publication Publication Date Title
US3380517A (en) Plate type heat exchangers
US7367385B1 (en) Optimized fins for convective heat transfer
US9766015B2 (en) Heat exchanger
GB2064748A (en) Plate type heat exchanger with bar means for flow control and structural support
US4966231A (en) Heat exchanger construction
US3217798A (en) Heat exchanger
US2405722A (en) Heat exchange structure
US3111168A (en) Heat exchangers
JPS6033490A (en) Heat exchanger
JPH06268127A (en) Cooling body of power semiconductor element
US3311166A (en) Heat exchanger
US2578136A (en) Tangentially finned heat exchange tubes
JPH0539335Y2 (en)
US3814171A (en) Stationary heat exchanger
JPS63210595A (en) Plate fin type heat exchanger
US3605881A (en) Plate heat exchanger
JP2000266484A (en) Heat exchanger
CN208075661U (en) Flow collection pipe component and heat exchanger for heat exchanger
JPS6321494A (en) Lamination type heat exchanger
JP7151253B2 (en) Heat transfer tubes and heat exchangers
JPH0227598B2 (en) NETSUKOKANKI
JPS6048451A (en) Solar heat collector
JPS61110878A (en) Heat exchanger
JP2003302190A (en) Corrugated fin type heat exchanger
JP2002333289A (en) Heat exchanger