JPS6033380A - Purification of lead electrolytic process liquid - Google Patents

Purification of lead electrolytic process liquid

Info

Publication number
JPS6033380A
JPS6033380A JP14138583A JP14138583A JPS6033380A JP S6033380 A JPS6033380 A JP S6033380A JP 14138583 A JP14138583 A JP 14138583A JP 14138583 A JP14138583 A JP 14138583A JP S6033380 A JPS6033380 A JP S6033380A
Authority
JP
Japan
Prior art keywords
lead
bismuth
ion exchange
ion
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14138583A
Other languages
Japanese (ja)
Other versions
JPS629193B2 (en
Inventor
Akira Tanaka
昭 田中
Hideki Nagata
秀樹 永田
Hiroyuki Takahashi
弘行 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP14138583A priority Critical patent/JPS6033380A/en
Publication of JPS6033380A publication Critical patent/JPS6033380A/en
Publication of JPS629193B2 publication Critical patent/JPS629193B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To remove Bi and Sb in a treating liquid with high efficiency, by bringing a lead electrolytic process liquid containing impurity ions into contact with a chelating ion exchange resin. CONSTITUTION:A process liquid, which is used in the electrolytic refining of lead and contains a Pb-ion and a Bi-ion and a Sb-ion as impurity ions, is brought into contact with a chelating ion exchange resin having an amino carboxylic acid group. By this treatment, Bi and Sb are adsorbed with the chelate resin and the purified treating liquid is supplied to a lead electrolytic process. The chelate resin having Bi and Sb adsorbed therewith is regenerated by using hydrochloric acid to elute Bi and Sb while the regenerated treating liquid is reused. By this purifying method, the Bi-concn. in an electrolyte is reduced and high purity lead can be prepared.

Description

【発明の詳細な説明】 本発明に、鉛電解工程液の浄化方法に関する。[Detailed description of the invention] The present invention relates to a method for purifying a lead electrolysis process solution.

より詳しく述べれば、本発明に、鉛電解工程液すなわち
鉛の電解精製法におけ、る電解液やそのような電解液に
繰返される工程iたとえば陽極スライム洗浄f液に金種
れるビスマスやアンチモン全効果的に除去する鉛電解工
程液の浄化方法に関する。
More specifically, the present invention includes a lead electrolytic process solution, that is, a lead electrolytic refining method, and processes that are repeated in such an electrolytic solution. The present invention relates to a method for effectively removing lead electrolytic process liquid.

現在鉛原料から鉛を製造する方法としてげ、溶鉱炉法、
電気炉法、IBP法などが行われている。
Current methods of producing lead from lead raw materials include the blast furnace method,
Electric furnace method, IBP method, etc. are used.

これらの方法にエリ製造される鉛に、原料中の金、銀、
銅、ビスマス、スズ、砒素、アンチモンなどの有価金属
ないし不純物ケある程度含有しており粗鉛と呼ばれてい
る。この粗鉛から不純物を除去またげ有価金属を回収す
るために、粗鉛の精製が行われており、その精製法に乾
式法と湿式法とに大別される。乾式法に精製コストが廉
価であるといわれているがビスマスの分離が困難であり
、我国でに湿式法が主流frf:なしている。
The lead produced by these methods contains gold, silver, and
It contains a certain amount of valuable metals or impurities such as copper, bismuth, tin, arsenic, and antimony, and is called crude lead. Crude lead is purified in order to remove impurities and recover valuable metals from the crude lead, and the refining methods are broadly divided into dry methods and wet methods. Although the dry method is said to have a low refining cost, it is difficult to separate bismuth, so the wet method is the mainstream in Japan.

ベンツ電解法に代表される湿式法に1電解液に珪弗酸を
使用し、粗鉛全陽極とし、陰極に電解鉛ケ使用して電解
精製ケ行うものである。この電解でに、陽極粗鉛中の鉛
に理非酸鉛となって溶出し、陰極板上に析出して精製が
行われるが、粗鉛中の不純物である金、銀、銅、ビスマ
ス、アンチモン、砒素に電化列が鉛Jl:りも責な金属
であるため、本来電解iにに溶出せず、陽極にスポンジ
状の金属として残存し陽極スライムを形成する。だが、
実際の操業でに、鉛より責な金属も少量溶出して電析し
たり、陽極スライムの鉛電析物への巻き込みがおこり、
製品中の不純物となっている。特にビスマスげ、電析鉛
の精製で一般的に行われているハリス精製でも除去し難
く、精製鉛の主要不純物となっている。したがってビス
マスの混入を防止する鉛電解の管理が急務となってくる
Electrolytic refining is carried out using a wet method typified by the Benz electrolysis method using silica-fluoric acid as an electrolyte, an all-crude lead anode, and electrolytic lead as a cathode. During this electrolysis, the lead in the anode crude lead is eluted as oxidized lead, which is deposited on the cathode plate for purification, but the impurities in the crude lead such as gold, silver, copper, bismuth, Since antimony and arsenic are metals with an electrification series similar to that of lead, they are not eluted during electrolysis and remain as a spongy metal on the anode, forming anode slime. However,
During actual operations, a small amount of metals more harmful than lead may be eluted and deposited, or the anode slime may become entangled in the lead deposits.
It becomes an impurity in the product. In particular, it is difficult to remove even with Harris refining, which is commonly used to purify bismuth lead and electrolytic lead, and it is a major impurity in refined lead. Therefore, there is an urgent need to manage lead electrolysis to prevent bismuth from being mixed in.

鉛電解精製における精製船中へのビスマスの混入の原因
としてに、人別して次の6つの原因が考えられる。その
第一ニ、陽極粗鉛中のビスマス含有量が高い場合、ビス
マスが一部電解液中に溶出し、陰極船上に析出すること
によるものである。
The following six causes can be considered for the contamination of bismuth into refining vessels during lead electrolytic refining, depending on the person. The first reason is that when the bismuth content in the anode crude lead is high, some bismuth is eluted into the electrolyte and deposited on the cathode vessel.

この防止策として汀、陽極粗鉛中のビスマスレベルケ充
分に管理することである。第二に、陽極スライムが脱落
して電解液中に浮遊し陰極に付着するとか、陽極と陰極
とが短絡して陽極スライムが陰極に付着するといった物
理的な原因によるものである。この防止策としてに、陽
極スライムの強度ヲ増すとかショートチェツタなどの対
策がとられている。第三げ、陽極スライム洗滌液力・ら
の循環によりビスマスが電解液中に混入し陰極船上に析
出することvCJ:るものである。陽極スライムには、
金、銀などの貴金属が含1れるとともに、電解液中の珪
弗酸お工び鉛が装着しており、これらを回収することに
、経済上および公害防止上非常に重要なことである。通
゛常陽極スライムげ、陽極より掻き取られ、沢過され、
スライムとスライムi=oとに分離される。スライムに
金、銀、ビスマスなどの回収工程に送られ、スライム1
液および洗滌液は浄液電解や置換などの操作にエリ主と
してビスマスを除去した後電解槽に循環される。珪弗酸
および鉛の回収率ケ上げる観点力・らに陽極スライムを
完全に洗滌するのがよいが、洗滌によって溶出したビス
マスをスライムf液から充分除去−rることに容易でな
く、そのためスライムPe、を電解槽に繰返して高純度
の鉛の製造に供する観点〃・らにスライム洗滌工程で充
分に洗滌を行えなかった事情があった。それ故、スライ
ムf液や洗滌液力・らビスマスケ効率工ぐ除去できる技
術の確立が望まれている。
As a preventive measure, it is necessary to adequately control the level of bismuth in the sediment and crude lead in the anode. Second, there are physical causes such as anode slime falling off and floating in the electrolyte and adhering to the cathode, or a short circuit between the anode and cathode resulting in anode slime adhering to the cathode. To prevent this, measures have been taken such as increasing the strength of the anode slime and shortening the anode slime. Third, due to the circulation of the anode slime cleaning solution, bismuth gets mixed into the electrolyte and is deposited on the cathode. For anode slime,
It contains precious metals such as gold and silver, as well as silicic acid and lead in the electrolyte, and recovering these is extremely important from an economic and pollution prevention perspective. Normally, the anode slime is scraped off from the anode, and a lot is filtered out.
It is separated into slime and slime i=o. The slime is sent to the collection process of gold, silver, bismuth, etc., and the slime 1
The solution and cleaning solution are circulated to the electrolytic cell after removing bismuth, which is the main ingredient, through operations such as solution electrolysis and replacement. From the viewpoint of increasing the recovery rate of silicic acid and lead, it is better to completely wash the anode slime, but it is not easy to sufficiently remove the bismuth eluted from the slime liquid by washing, and therefore the slime In addition, there was a problem in that the slime could not be sufficiently washed in the slime washing process. Therefore, it is desired to establish a technology that can efficiently remove slime F liquid, cleaning liquid, and bismasket.

本発明によれば、鉛イオンのは刀・に不純物としてビス
マスイオンおよびアンチモンイオンに含有する鉛電解工
程液をキレート性イオノ交換樹脂に接触させれば、キレ
ート性イオン交換樹脂a−すれらのビスマスお工び/ま
たげアンチモンを選択的に吸着除去することがわ力・つ
た。力・くして本発明に、鉛イオンのは刀1に不純物と
してビスマスイオンお工び/またにアンチモンイオンヲ
キ有する鉛電解工程液ケキレート性イオン交換樹脂に接
触させてそれらのビスマスおよび/またにアノチモンケ
当該樹脂に吸着させ、そして処理液を鉛電解工程に供給
する鉛電解工程液の浄化方法ケ提供する。
According to the present invention, if a lead electrolytic process solution containing lead ions, bismuth ions and antimony ions as impurities is brought into contact with a chelating ion exchange resin, the chelating ion exchange resin a-these bismuth The ability to selectively adsorb and remove antimony from work/matage. According to the present invention, lead ions are mixed with bismuth ions as impurities and/or antimony ions are brought into contact with a chelating ion exchange resin containing antimony ions. A method for purifying a lead electrolytic process solution is provided, in which the resin is adsorbed and the process liquid is supplied to a lead electrolytic process.

ビスマスおよび/11でにアンチモノを吸着した樹脂げ
、塩酸またげ珪弗酸で溶離再生して再使用するのが有利
である。
It is advantageous to reuse the resin adsorbed with bismuth and /11 by elution and regeneration with hydrochloric acid and silicofluoric acid.

本発明方法によって浄化処理できる鉛電解工程o、ホベ
ツツ式鉛電解における電解液そのものであることができ
、かような電解液の組成にたとえばPb40〜so 1
iI7t、遊離H2SiF6’40〜120 fl/l
It can be the electrolyte itself in the lead electrolysis process o, the Hobetz type lead electrolysis, which can be purified by the method of the present invention, and the composition of such an electrolyte includes, for example, Pb40~so1.
iI7t, free H2SiF6'40-120 fl/l
.

Bi 4〜6 m9/lであることができる。被処理液
にチたベツン式鉛電解刀・ら生じるスライムP液またぼ
洗滌液であることができ、その組成にたとえばPb15
0〜250グ/1.遊離H2SiF610〜60グ/1
゜B140〜60 m9/lであることができる。
Bi 4-6 m9/l. It can be a slime P solution or a cleaning solution, which is produced from a Betsu-type lead electrolytic knife containing a liquid to be treated, and its composition includes, for example, Pb15.
0-250g/1. Free H2SiF610-60g/1
°B can be 140 to 60 m9/l.

本発明方法に使用できるキレート性イオン交換樹脂に公
知であり、かつ市場入手できる。たとえば官能基として
テミノカルボン酸基ケ有するキレート性イオン交換樹脂
げ、プてとえは一般式(式中Mnアルカリ金属原子1だ
に水素原子を表わし、七してR,お工びR21−ffそ
れぞれが水素原子またCグ炭素数1〜6のアルキル基を
表わすンの化合物とフェノールおよびアルデヒドとを架
橋三次元化して得られ、特開昭54−121241号公
報によれば酸性電気亜鉛メッキ浴中の鉄イオン濃度を低
減できることが知られている。本発明方法の実施に使用
できるアミノカルボン酸基ヶ有する市販のキレート性イ
オン交換樹脂としてに、ユニチカ(株)社の■ユニセレ
ックUR−10,UR−20、UR−30、UR−40
およびUR−50、住友化学工業(株)社の■スεキレ
ートQ−10HRお工びMc〜30、オルカッ(株ン社
の■アンバーライトエRO−718および三菱化成工業
(株)社の■ダイヤイオン0R−10がある。アミノカ
ルボ/e基を官能基とするキレート性イオン交換樹脂の
は刀・、アミノアルキルリン酸基を官能基とするキレー
ト性イオン交換樹脂たとえばユニチカ(株ン社の■ユニ
セレツクUR−33圓Tおよび住友化学工業(株)社の
■スミキレートES −467、ポリアミン基音官能基
とするキレート性イオン交換樹脂たとえば住友化学工業
(株)社の■スミキレー)KA−,850お−よび三菱
化成工業(株)社の■ダイヤイオン0R−20ならびに
ピリジン基を官能基とするキレート性イオン交換樹脂た
とえば住友化学工業(株ン社の■スミキレートCR−2
も本発明方法の実施に使用できる。
Chelating ion exchange resins that can be used in the method of the invention are known and commercially available. For example, a chelating ion exchange resin having a teminocarboxylic acid group as a functional group has a general formula (in the formula, Mn represents an alkali metal atom, 1 and 2 hydrogen atoms, 7 is R, and 21-ff is an alkali metal atom, respectively). is obtained by three-dimensionally crosslinking a compound representing a hydrogen atom or an alkyl group having 1 to 6 carbon atoms with phenol and an aldehyde, and according to JP-A-54-121241, it is obtained by three-dimensionally cross-linking a compound representing a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and according to JP-A-54-121241, it can be used in an acidic electrogalvanizing bath. It is known that it is possible to reduce the concentration of iron ions in. As a commercially available chelating ion exchange resin having an aminocarboxylic acid group that can be used to carry out the method of the present invention, Unicelec UR-10, UR manufactured by Unitika Co., Ltd. -20, UR-30, UR-40
and UR-50, Sumitomo Chemical Co., Ltd.'s S ε Chelate Q-10HR Okobi Mc~30, Orkat Co., Ltd.'s Amberlite RO-718, and Mitsubishi Chemical Industries, Ltd.'s Diaion 0R-10 is a chelating ion exchange resin with an aminocarbo/e group as a functional group, and a chelating ion exchange resin with an aminoalkyl phosphate group as a functional group, such as Unitika Co., Ltd.'s ■ UNISEREC UR-33EN T, Sumitomo Chemical Co., Ltd.'s ■Sumikylate ES-467, chelating ion exchange resins with polyamine basic functional groups, such as Sumitomo Chemical Co., Ltd.'s ■Sumikile) KA-, 850O- and ■Diaion 0R-20 manufactured by Mitsubishi Chemical Industries, Ltd. and chelating ion exchange resins having a pyridine group as a functional group, such as ■Sumichelate CR-2 manufactured by Sumitomo Chemical Industries, Ltd.
can also be used in carrying out the method of the invention.

本発明や実施に当って汀、が工うlキレート性イオン交
換樹脂をカラムに充填し、被処理液すなわち鉛電解工程
ikカラムに通液するのが好都合−Cある。大抵の場合
、通液速度(sv)に1〜15/Hr、処理温度に周囲
温度でよい。この操作[J:す、キレート性イオン交換
樹脂に鉛電解工程液中の鉛を殆んど吸着することなく、
ビスマスやアンチモン−を選択的に吸着する。その結果
、標準組成のスライムP液中のビスマスU2rn9/l
−以下に、標準組成の電解液中のビスマスid 0.1
 mg/i以下に低下きせることができる。そのように
してビスマス1工び7寸たにアンチモルベルヶ低下させ
た処理液に鉛電解工程に供給される。
In carrying out the present invention or carrying out the invention, it is convenient to fill a column with the chelating ion exchange resin and to pass the liquid to be treated, that is, the column in the lead electrolysis process. In most cases, the flow rate (sv) may be 1 to 15/Hr and the processing temperature may be ambient temperature. This operation [J: So, the chelating ion exchange resin hardly adsorbs the lead in the lead electrolytic process solution,
Selectively adsorbs bismuth and antimony. As a result, bismuth U2rn9/l in slime P liquid with standard composition
- Below, bismuth id 0.1 in an electrolyte of standard composition
It can be lowered to below mg/i. In this way, the treatment solution, which has been reduced by an antimolbel for every 7 inches of bismuth, is supplied to the lead electrolysis process.

ビスマスおよび/またにア/チモンケ吸着した一カラム
内のキレート性イオン交換樹脂は、塩酸またに珪弗酸で
溶離再生して再使用できる。たとえば2−6Nの理非酸
寸たに2−8Nの塩酸をsv i〜6で同カラムに通過
させると、吸着されたビスマスお工び/まft、 Uア
ンチモンが溶離し、同時に樹脂に再生されて再使用可能
な状態になる。
The chelating ion exchange resin in one column that has adsorbed bismuth and/or acetic acid can be reused by elution and regeneration with hydrochloric acid or silicofluoric acid. For example, when 2-6N hydrochloric acid and 2-8N hydrochloric acid are passed through the same column at svi~6, the adsorbed bismuth/antimony is eluted and at the same time regenerated into resin. and is ready for reuse.

本発明方法によれば、従来にビスマスの溶出r抑制する
ため充分に洗滌が行えなかつグζスライム洗滌工程で充
分に洗滌ケ行うことができ、珪弗酸お工び鉛の回収率が
向上するとともに、電解液中のビスマス濃度が減少し、
精製船中のビスマスレベルが低下し、高純度の鉛を製造
することができる。
According to the method of the present invention, it is possible to perform sufficient cleaning in the slime cleaning step, which could not be done in the past to suppress the elution of bismuth, and improve the recovery rate of silicate-treated lead. At the same time, the bismuth concentration in the electrolyte decreases,
Bismuth levels in refining vessels are reduced, allowing the production of high-purity lead.

以下具体例により本発明ケさらに説明する。The present invention will be further explained below using specific examples.

実施例1 官能基としてアミノアルキルリン酸基合有するキレート
性イオン交換樹脂、ユニチカ(株)社の■ユニセレツク
UR−3300T 、500 mlfカラムに充填し、
そのカラムにPb 205.9 f/l、Bi 58.
8m9/l’に含むスライムr液5 L ’z I L
/Hr (SV −2)で通液したところ、Pb 20
3.2 ?/LSBi 1.8mvtの処理液が得られ
た。B1の除去率に97係であったことになる。
Example 1 A chelating ion exchange resin having an aminoalkyl phosphoric acid group as a functional group was packed into a 500 mlf column, Uniselect UR-3300T manufactured by Unitika Co., Ltd.
Pb 205.9 f/l, Bi 58.
Slime r liquid contained in 8 m9/l' 5 L 'z I L
/Hr (SV -2), Pb 20
3.2? /LSBi 1.8 mvt treatment solution was obtained. This means that the removal rate of B1 was 97%.

カラム中のビスマス1工着した樹脂[6N塩酸1 if
 I L/Hr (SV = 2 )で通液シ、そして
水21’z11/Hr (SV=2 )で通水して得た
溶離液n Pb L4 ?/i、Bi 85.5 m9
/l ’g含む%l (7)T6つだ。
1 bismuth in the column [6N hydrochloric acid 1 if
The eluent obtained by passing the solution at IL/Hr (SV = 2) and passing water at 21'z11/Hr (SV = 2) was obtained. /i, Bi 85.5 m9
/l'g%l (7) There are six T.

実施例2 官能基としてアεノカルボ/酸基ケ有するキレート性イ
オン交換樹脂、ユニチカ(株)社の■ユニセレツクUR
−50、soame2カラムに充填し、そのカラムにP
b2υ1.I Y/L、Bi 51.4m9/l、 S
b169omg/l−に含むスライムiF 8!i、5
 t f O,5A/Hr(sv=i)で通液したとこ
ろ、Pb 200.8 ?/l。
Example 2 Chelating ion exchange resin having an ε-nocarbo/acid group as a functional group, Uniselect UR from Unitika Co., Ltd.
-50, packed into a soame2 column, and put P into the column.
b2υ1. I Y/L, Bi 51.4m9/l, S
Slime iF contained in b169omg/l-8! i, 5
When the liquid was passed at t f O, 5A/Hr (sv=i), Pb 200.8? /l.

Bi O,5mq/l、 Sb 667 m9/1(7
)処理液が得られた。
Bi O, 5 mq/l, Sb 667 m9/1 (7
) A treated solution was obtained.

B1の除去率に99%であっ1でことになる。The removal rate of B1 is 99%, which makes a difference of 1.

カラム中のビスマスおよびア/チモ/を吸着した樹脂に
4N珪弗酸11. ?3) 0.5 L/Hr (SV
 = 1 )で通液し、そして水21’g−11/Hr
 (5V=21で通水して得た溶離液げ、PI) 2.
3り/l、 Di 72.3m9/l、 Sb 140
4 m9/l k含む’b (D 76 ツfv。
4N silicofluoric acid 11. ? 3) 0.5 L/Hr (SV
= 1), and water 21'g-11/Hr.
(Eluent obtained by passing water at 5V=21, PI) 2.
3ri/l, Di 72.3m9/l, Sb 140
4 m9/l k including'b (D 76 tsufv.

実施例6 官能基としてアミノアルキルリン酸基ケ有するキレート
性イオノ交換樹脂、ユニチカ(株)社の■ユ二セレンク
UR−3300T 500 mlケカラムに充填し、そ
のカラムにPb 65.5 fl/l、Bi 4.2m
Li/L。
Example 6 A chelating ion exchange resin having an aminoalkyl phosphate group as a functional group was packed into a 500 ml Yunishelenc UR-3300T column manufactured by Unitika Co., Ltd., and Pb 65.5 fl/l was added to the column. Bi 4.2m
Li/L.

遊離H2SiF685.4 ’j/l f含む鉛電解液
5t′に11−/Hr(SV=2)で通液して液中のビ
スマスを樹脂に吸着させた。得られた処理液を電解液と
して、B1含R0,6%の粗鉛陽極を用いて電解精製を
行ったところBiレベルが2 ppm以下の電気鉛を得
ることができた。
A lead electrolyte containing 685.4'j/l f of free H2SiF was passed through 5t' of lead electrolyte at 11-/Hr (SV=2) to adsorb bismuth in the solution onto the resin. When electrolytic refining was performed using the obtained treatment solution as an electrolytic solution and a crude lead anode containing B1 and R0.6%, electrolytic lead with a Bi level of 2 ppm or less could be obtained.

比較例 BiB125Oケ含むスライムP′ri、?、鉛板を懸
垂した置換槽に供給し、−昼夜放置し左。液の残留ビス
マス濃[n 7 s mg7tであった。これ[Biの
置換率(除去率)が約70係であったことになる。
Comparative Example Slime P'ri containing BiB125O? , feed the lead plate into a suspension tank and leave it there day and night. The concentration of residual bismuth in the liquid was 7 tons (n 7 s mg). This means that the Bi substitution rate (removal rate) was about 70.

出願人 同和鉱業株式会社Applicant: Dowa Mining Co., Ltd.

Claims (1)

【特許請求の範囲】 (11鉛イオンのは〃)に不純物としてビスマスイオン
お工び7寸たにアンチモンイオノ全含有する鉛電解工程
液?キレート件イオン交換樹脂に接触させてそれらのビ
スマスお工び/またげアンチモンを当該樹脂に吸着させ
、そして処理液を鉛電解工程に供給する鉛電解工程液の
浄化方法。 (2)鉛イオンのは刀)に不純物としてビスマスイオン
および/またにアンチモンイオノ全含有する鉛電解工程
液ケキレート性イオン交換樹脂に接触させてそれらのビ
スマスお工び/まタニアンチモンを当該樹脂に吸着させ
、そして処理液を鉛電解工程に供給すると共にビスマス
お工び/またにア/チモ/葡吸着した樹脂ケ再使用のた
めに塩酸またa珪弗酸で溶離再生する鉛電解工程液“の
浄化方法。
[Claims] (11) Lead ion is a lead electrolytic process solution that contains bismuth ion as an impurity and antimony ion as an impurity? A method for purifying a lead electrolysis process solution, which comprises contacting a chelate ion exchange resin to adsorb the bismuth and antimony on the resin, and supplying the treatment solution to a lead electrolysis process. (2) Contact the lead electrolytic process solution containing bismuth ions and/or antimony ions as impurities with a kechelating ion exchange resin to process the bismuth/antimony into the resin. Then, the treated solution is supplied to the lead electrolytic process, and the lead electrolytic process solution is eluted and regenerated with hydrochloric acid or a-silifluoric acid for reuse of the adsorbed resin. purification method.
JP14138583A 1983-08-02 1983-08-02 Purification of lead electrolytic process liquid Granted JPS6033380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14138583A JPS6033380A (en) 1983-08-02 1983-08-02 Purification of lead electrolytic process liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14138583A JPS6033380A (en) 1983-08-02 1983-08-02 Purification of lead electrolytic process liquid

Publications (2)

Publication Number Publication Date
JPS6033380A true JPS6033380A (en) 1985-02-20
JPS629193B2 JPS629193B2 (en) 1987-02-26

Family

ID=15290762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14138583A Granted JPS6033380A (en) 1983-08-02 1983-08-02 Purification of lead electrolytic process liquid

Country Status (1)

Country Link
JP (1) JPS6033380A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072481A (en) * 2010-09-27 2012-04-12 Jx Nippon Mining & Metals Corp Electrolysis method of lead
CN102433568A (en) * 2011-11-29 2012-05-02 东营方圆有色金属有限公司 Technology for removing bismuth from copper electrolyte with low cost

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072481A (en) * 2010-09-27 2012-04-12 Jx Nippon Mining & Metals Corp Electrolysis method of lead
CN102433568A (en) * 2011-11-29 2012-05-02 东营方圆有色金属有限公司 Technology for removing bismuth from copper electrolyte with low cost

Also Published As

Publication number Publication date
JPS629193B2 (en) 1987-02-26

Similar Documents

Publication Publication Date Title
US4069119A (en) Copper recovery by leaching and ion exchange
JPH05195298A (en) Method and system for recovering metal from electroplating waste
CA2016562C (en) Elution process for gold-iodine complex from ion-exchange resins
CN110564977A (en) Method for recovering nickel resource from chemical nickel waste liquid
JPH0569775B2 (en)
JP2010196140A (en) Method for recovering bismuth
US3696012A (en) Process for preventing supersaturation of electrolytes with arsenic,antimony and bismuth
JPS6033380A (en) Purification of lead electrolytic process liquid
CA2016561C (en) Purification process for gold-bearing iodine lixiviant
CN109055775B (en) Regeneration method of complexing precipitator for purifying copper electrolyte
JP2938285B2 (en) Chelate resin solution for copper electrolyte
US5573739A (en) Selective bismuth and antimony removal from copper electrolyte
JP4787951B2 (en) Method for electrolytic purification of silver
JP3653944B2 (en) Method for selective recovery of Sb and Bi from copper electrolyte
JPH03199392A (en) Liquid purifying method for silver electrolyte
JPH01270511A (en) Removal of tin from silver or palladium solution
JPH0454605B2 (en)
JPS6220838A (en) Installation for treating waste pickling liquid and solid residue
PL123202B1 (en) Method of treatment of lead chloride solutions
JP2008038236A (en) Method of separating zinc from aqueous nickel chloride solution
CN106630268A (en) Recycling method of nickel in stainless steel
JPS6144156B2 (en)
JPS6050192A (en) Purifying method of copper electrolyte
JPH04147927A (en) Method for refining and recovering high purity zinc oxide from dust in steelmaking
JPH04259341A (en) Method fore refining iridium