JPS6033152B2 - Coal liquefaction method - Google Patents

Coal liquefaction method

Info

Publication number
JPS6033152B2
JPS6033152B2 JP19726482A JP19726482A JPS6033152B2 JP S6033152 B2 JPS6033152 B2 JP S6033152B2 JP 19726482 A JP19726482 A JP 19726482A JP 19726482 A JP19726482 A JP 19726482A JP S6033152 B2 JPS6033152 B2 JP S6033152B2
Authority
JP
Japan
Prior art keywords
hydrogenation
solvent
oil
fraction
oil fraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19726482A
Other languages
Japanese (ja)
Other versions
JPS5986690A (en
Inventor
敬夫 中子
哲夫 松村
信義 広幸
陽一 蔭山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Kobe Steel Ltd
Mitsubishi Kasei Corp
Original Assignee
Idemitsu Kosan Co Ltd
Kobe Steel Ltd
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd, Kobe Steel Ltd, Mitsubishi Kasei Corp filed Critical Idemitsu Kosan Co Ltd
Priority to JP19726482A priority Critical patent/JPS6033152B2/en
Priority to AU21104/83A priority patent/AU547073B2/en
Priority to DE19833340538 priority patent/DE3340538A1/en
Publication of JPS5986690A publication Critical patent/JPS5986690A/en
Publication of JPS6033152B2 publication Critical patent/JPS6033152B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は石炭の液化方法に関し、詳細には、石炭粉末、
水添触媒及び炭化水素系溶剤よりなる原料スラリ−を水
添して液化するに当り、1次水添生成物中の重質油分よ
り高分子量成分を分離し、該高分子量成分を再び1次水
添すると共に残部重質油分のみを2次水添することによ
り、水添の合理化を図った方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for liquefying coal.
When hydrogenating and liquefying a raw material slurry consisting of a hydrogenation catalyst and a hydrocarbon solvent, a high molecular weight component is separated from the heavy oil in the primary hydrogenation product, and the high molecular weight component is recycled to the primary hydrogenation product. The present invention relates to a method that streamlines hydrogenation by performing hydrogenation and secondary hydrogenation of only the remaining heavy oil.

石炭粉末を含む前記の様な原料スラリーを1次水添し、
該1次水添生成物中の重質油分を更に2次水添してこれ
を軽質・液状化する技術は公知であり、代表的なものと
しては特関昭53一45304号や同53−25606
号等がある。
Primary hydrogenation of the above-mentioned raw material slurry containing coal powder,
The technique of further secondary hydrogenating the heavy oil content in the primary hydrogenated product to lighten and liquefy it is well known, and typical examples include Tokkan Sho 53-145304 and Sho 53- 25606
There are numbers etc.

これらの石炭液化法は、原料スラリーを1次水添反応塔
に供給して高温高圧下で水添し、得られた1次水添生成
物を蒸留してガス分、鰹質油留分、中質油留分、灰分及
び触媒等の固形分を含んだ重質油分に分離し、竪質油留
分及び中質油留分は夫々製品油として取出し或いは溶剤
としてリサイクルする他、車質油分は固形分を除去(脱
灰)し或いは除去することなくそのまま2次水添工程に
送り、触媒の存在下で水添して軽質化する方法である。
ここで2次水添前に各種留分を分離して重質油分のみを
2次水添するのは、中・軽質油留分の水添による生成ガ
ス量を減少し液体製品の収率を高めると共に、水素使用
量の不必要な増加を防止する為であるが、2次水添工程
に供給される重質油分は1次水添工程で容易に水添でき
なかった高分子量の灘水添成分を多量含有しているので
、これらの成分を2次水添して目的とする留分にまで軽
質化するには多くの問題があった。これらの問題を炭化
水素系物質の性状を示す第1図によって説明すると次の
通りである。即ち1次水添生成物中には炭素数1のC比
から分子量が数千以上のプレアスフアルテン、チャー及
び灰分や触媒等の無機物質に至る多種類の物質が含まれ
ているので、まず気液分離によって炭素数1〜4のガス
分Aを分離し、次いで液分を蒸留して沸点180〜20
0℃程度までの軽質油蟹分(ナフサ)B、沸点350〜
420℃程度までの中質油留分(灯油、軽油)Cを分離
し、残部の重質油分Dのみを2次水添工程に供給するが
、車質油分D中には灰分や水添反応に通さないチャ−及
びベンゼン可溶(氏nzeneSol肋le:BS)で
へキサン不溶(HexaneInsoluble:HI
)のアスフアルテンE並びにピリジン可溶(Pのidi
neSoluble:PS)でベンゼン不溶(Beme
neInsoluble:BI)のプレアスフアルテン
Fが含まれている。この重質油分を脱灰処理することな
くそのまま2次水添工程に供給すると、灰分および徴量
含まれているアルカリ金属などによって2次水添触媒が
被毒されるという問題がある。また高分子量で鍵水添性
のアスフアルテン及びプレアスフアルテンを多量含んで
いる為に水添条件としてより高温高圧の厳しいものが要
求されると共に、これらの成分は不飽和度が高いので水
素吸収量が多く且つ必要水素量の添加に長時間を要する
から巨大な反応容器が必要になる。更に不飽和度の高い
アスフアルテンは高温下で極めてコーキングを生じ易い
ので、反応容器或いは配管内でコーキングを起こし連続
運転に支障をきたすと共に、コーキングによる水添触媒
の劣化も著しい。一方童質油分を脱灰して2次水添に供
する場合でもチャー及び無機物質(灰分及び1次水添触
媒)が除去されるだけであり、前述のアスフアルテンや
プレアスフアルテンを多量含んだままで2次水素工程に
供給される点では同一であるから、前述の様な問題は回
避できない。
In these coal liquefaction methods, a raw material slurry is supplied to a primary hydrogenation reaction tower and hydrogenated under high temperature and pressure, and the obtained primary hydrogenated product is distilled to produce a gas component, a bonito oil fraction, It is separated into medium oil fraction, heavy oil containing solid content such as ash and catalyst, and the vertical oil fraction and medium oil fraction are respectively extracted as product oil or recycled as a solvent. This is a method in which the solid content is removed (deashed) or the solid content is directly sent to the secondary hydrogenation step without being removed, and the solid content is hydrogenated in the presence of a catalyst to make it lighter.
Separating various fractions before secondary hydrogenation and performing secondary hydrogenation of only heavy oil fractions reduces the amount of gas produced by hydrogenation of medium and light oil fractions and increases the yield of liquid products. This is to prevent an unnecessary increase in the amount of hydrogen used, but the heavy oil supplied to the secondary hydrogenation process is high molecular weight Nada water that could not be easily hydrogenated in the primary hydrogenation process. Since it contains a large amount of additive components, there were many problems in carrying out secondary hydrogenation of these components to lighten them to the desired fraction. These problems will be explained below with reference to FIG. 1, which shows the properties of hydrocarbon materials. In other words, the primary hydrogenation product contains many types of substances ranging from C ratio with a carbon number of 1 to preasphaltenes with a molecular weight of several thousand or more, char, ash, and inorganic substances such as catalysts. A gas component A having 1 to 4 carbon atoms is separated by gas-liquid separation, and then the liquid component is distilled to a boiling point of 180 to 20
Light oil crab fraction (naphtha) B up to about 0℃, boiling point 350~
The medium oil fraction (kerosene, light oil) C up to about 420°C is separated, and only the remaining heavy oil fraction D is supplied to the secondary hydrogenation process, but the vehicle oil fraction D contains ash and hydrogenation reaction. Char that does not pass through and benzene soluble (BS) and hexane insoluble (HI).
) asphaltene E and pyridine soluble (idi of P)
neSoluble: PS) and benzene insoluble (Beme
Contains preasphaltene F (neInsoluble: BI). If this heavy oil is fed as it is to the secondary hydrogenation step without being deashed, there is a problem that the secondary hydrogenation catalyst will be poisoned by the ash and the alkali metals contained therein. In addition, since it contains a large amount of asphaltene and pre-asphaltene, which have high molecular weight and are key to hydrogenation, strict hydrogenation conditions such as high temperature and pressure are required, and since these components have a high degree of unsaturation, the amount of hydrogen absorbed is low. Since there is a large amount of hydrogen and it takes a long time to add the required amount of hydrogen, a huge reaction vessel is required. Furthermore, asphaltene with a high degree of unsaturation is extremely susceptible to coking at high temperatures, which causes coking in the reaction vessel or piping, which impedes continuous operation, and also causes significant deterioration of the hydrogenation catalyst due to coking. On the other hand, even when young oil is deashed and subjected to secondary hydrogenation, only char and inorganic substances (ash and primary hydrogenation catalyst) are removed, and a large amount of asphaltenes and pre-asphaltenes mentioned above are still contained. Since they are the same in that they are supplied to the secondary hydrogen step, the above-mentioned problems cannot be avoided.

更に脱灰工程では一般にチャーなど重質プレアスフアル
テン及び「無機物質を沈降分離する方法が採用されてい
るので、微細粒子の沈降に長時間を要し、且つ現在まで
に報告されている最高分離率のものでも、2次水添工程
に供給される車質油分中には130功皿以上の灰分が含
まれている。その為この灰分中に含まれる徴量のアルカ
リ金属などによる2次水添触媒の被秦も、依然として大
きな問題となっている。本発明は上記の様な問題に鑑み
、2次水添工程の効率向上を図ると共に、脱灰工程にお
ける灰分の分離効率を高めて触媒被毒成分たるアルカリ
金属混入の低減を図ることを目的とするものであって、
かかる目的を達成する為、1次水添生成物中の車質油分
の脱灰工程でチャー及び無機物質と共に高分子量のプレ
アスフアルテンF並びにアスフアルテンBの中の高分子
量成分を除去し、残部の比較的軽質の成分のみを2次水
添工程に供給する他、分離したプレアスフアルテンF及
び高分子量城のアスフアルテンEは溶剤として原料スラ
リーと混合し再び1次水漆する方法を採用している。即
ち本発明に係る石炭液化方法とは、石炭を含む原料スラ
リーを順次1次水添及び2次水添して■ 1次水添生成
物を蒸留分離して軽質油留分、中質油留分及び不落成分
を含む重質油分に分離し、@ 上記中質油留分の一部は
原料スラリ−化溶剤として返還すると共に、車質油分に
隆質油溶剤を添加してこれを溶解成分と不落成分とに分
離し、Q 該不落成分に前記中質油蟹分の一部を添加し
て再度溶解成分と灰分及び水添触媒を含む不熔成分とに
分離し、該溶解成分の少なくとも一部を前記スラリ−化
溶剤として返還し、@ 前記@項の溶解成分より前記軽
質油溶剤を留去して車質油を得、該車質油の少なくとも
一部を水添触媒の存在下、高温高圧で2次水添して鰹質
化した後夫々の蟹分に分離する、ところに要旨が存在す
る。
Furthermore, in the deashing process, a method is generally adopted in which heavy pre-asphaltenes such as char and inorganic substances are separated by sedimentation, so it takes a long time to sediment the fine particles, and the highest separation rate reported to date is Even if the car oil is supplied to the secondary hydrogenation process, it contains more than 130 ash.Therefore, the secondary water is caused by the amount of alkali metals contained in this ash. The presence of added catalysts is still a major problem.In view of the above problems, the present invention aims to improve the efficiency of the secondary hydrogenation process, and improves the efficiency of ash separation in the deashing process to improve the efficiency of catalyst addition. The purpose is to reduce the contamination of alkali metals, which are poisonous components.
In order to achieve this objective, the high molecular weight components of pre-asphaltene F and asphaltene B are removed together with char and inorganic substances in the deashing process of the car oil content in the primary hydrogenated product, and the remaining components are removed. In addition to supplying only relatively light components to the secondary hydrogenation process, the separated preasphaltene F and high molecular weight asphaltene E are mixed with the raw material slurry as a solvent and used again for primary water lacquering. . That is, the coal liquefaction method according to the present invention involves sequentially performing primary hydrogenation and secondary hydrogenation of a raw material slurry containing coal, and separating the primary hydrogenation product by distillation to obtain a light oil fraction and a medium oil fraction. A part of the above medium oil fraction is returned as a raw material slurrying solvent, and a heavy oil solvent is added to the car oil fraction to dissolve it. Q. A part of the medium oil crab is added to the non-falling component to separate it again into dissolved components and non-melting components including ash and hydrogenation catalyst, and the dissolved component is separated into At least a part of the components is returned as the slurrying solvent, the light oil solvent is distilled off from the dissolved components of the @ term to obtain car oil, and at least a part of the car oil is treated with a hydrogenation catalyst. The gist is that the crab is subjected to secondary hydrogenation at high temperature and high pressure in the presence of bonito to make it into bonito, and then separated into each crab component.

本発明では、1次水添生成物を蒸留して得られる車質油
分を脱灰する工程で、まず竪質油溶剤を添加し、第1図
に示したHS分とアスフアルテンの低分子量域を含む溶
解成分Gと、軽質油溶剤に不溶の高分子量城のアスフア
ルテン、プレアスフアルテンF、チャー及び無機物質か
らなる不溶成分日とに分離し、溶解成分Gのみを2次水
添工程に供給する。
In the present invention, in the step of deashing the car oil obtained by distilling the primary hydrogenated product, a vert oil solvent is first added to reduce the HS content and the low molecular weight range of asphaltenes shown in Figure 1. The dissolved component G is separated from the insoluble component consisting of high molecular weight asphaltene, pre-asphaltene F, char, and inorganic substances that are insoluble in light oil solvents, and only the dissolved component G is supplied to the secondary hydrogenation step. .

一方不溶成分日には中質油溶剤を添加してチャ−及び無
機物質からなる不溶成分Kと、前記高分子量域のアスフ
アルテン及びプレァスフアルテンFからなる溶解成分J
とに分離し、溶解成分Jは原料のスラリ−化溶剤として
返還する。従って2次水添工程に供給される成分Gは、
水添が困難なブレアスフアルテン及び高分子量アスフア
ルテンを含んでいないから、2次水添を極めて効率良く
行なうことができる。一方ブレアスファルテン及び高分
子量アスフアルテンは、原料スラリーと共に再び1次水
添工程に供給されて低分子量城へと軽質化され、前記G
の領域まで軽質化されなかった成分は繰り返し1次水添
に戻されることになり、最終的にはこれらの鶏水添成分
も目的とするHS領域まで軽質化されるから、製品油の
回収率も向上する。以下実施例を示す図面に基づいて本
発明の構成及び作用効果を説明するが、下記は代表例で
あって本発明を限定する性質のものではない。
On the other hand, on the day of the insoluble component, a medium oil solvent is added to form an insoluble component K consisting of char and inorganic substances, and a soluble component J consisting of asphaltenes and preasphaltenes F in the high molecular weight range.
The dissolved component J is returned as a slurrying solvent for the raw materials. Therefore, the component G supplied to the secondary hydrogenation step is:
Since it does not contain breasphaltene or high molecular weight asphaltene, which are difficult to hydrogenate, secondary hydrogenation can be carried out extremely efficiently. On the other hand, the Breasphaltenes and high molecular weight asphaltenes are fed together with the raw material slurry to the primary hydrogenation step again, where they are lightened into low molecular weight particles, and the G
The components that have not been lightened to the HS range will be repeatedly returned to the primary hydrogenation, and eventually these hydrogenated components will also be lightened to the target HS range, so the recovery rate of the product oil will increase. It also improves. The configuration and effects of the present invention will be described below based on drawings showing examples, but the following are representative examples and do not limit the present invention.

第2図は本発明の実施例を示すフローシートであり、褐
炭、リグナィト、亜炭、ビート等の低品位炭粉砕物と酸
化鉄、硫化鉄、赤泥等の水添触媒、及び後述する主とし
てリサイクル溶剤からなる炭化水素系スラリー化溶剤を
混合して原料スラリーを調製し、該スラリーを高圧ポン
プP,で1次水添反応圧とほぼ等しい150〜30正気
圧程度に昇圧する。そして配管21で、水素製造装置1
4から配管22を通して供給される1次水添用日2の混
入を受けて加熱炉1に供給し、1次水添温度にほぼ等し
い350〜500qoに昇温した後1次水添反応塔2に
供給する。該反応塔2で水添された石炭粉は、1次水添
生成物として塔頂から配管23を通って気液分離器3に
供給され、残留日2及びC.〜C4の揮発分は配管24
より水素製造装置14に送って水添反応用の日2に改質
し、一方残部のスラIJ一は配管25より蒸留塔4に供
給する。蒸留塔4では、沸点が200o0程度までの軽
質油蟹分と沸点が200〜45000程度の中質油留分
及び塔底の残留油分に分離し、竪質油留分は塔頂部の配
管26からナフサとして回収し、中質油留分は配管27
から抽出しその一部は配管28経由でスラリー化溶剤と
して返還し、塔底の軍質油分は配管29から混合槽9へ
送給する。残部については後述する。尚図では1基の1
次水添反応塔しか示していないが、処理量、滞留時間或
いは反応方式等に応じて複数基の反応塔を並列又は直列
に配置したものの方が一般的であり、分離器は高圧分離
器、中間分離器、減圧装置などから構成されるのが普通
であり、また蒸留塔4も軽質油蟹分と中質油留分を分離
する常圧蒸留塔と、中質油留分と童質油分を分離する減
圧蒸留塔とを絹合せたものが一般的である。
Figure 2 is a flow sheet showing an embodiment of the present invention, in which pulverized low-rank coal such as brown coal, lignite, lignite, and beet, hydrogenation catalysts such as iron oxide, iron sulfide, and red mud, and mainly recycled materials as described below are used. A raw material slurry is prepared by mixing a hydrocarbon-based slurry-forming solvent consisting of a solvent, and the slurry is pressurized to about 150 to 30 positive pressure, which is approximately equal to the primary hydrogenation reaction pressure, using a high-pressure pump P. Then, with the pipe 21, the hydrogen production device 1
The primary hydrogenation reaction column 2 is mixed with the primary hydrogenation day 2 supplied through the pipe 22 from 4, and is supplied to the heating furnace 1, and after being heated to 350 to 500 qo, which is approximately equal to the primary hydrogenation temperature, the primary hydrogenation reaction tower 2 supply to. The coal powder hydrogenated in the reaction tower 2 is supplied as a primary hydrogenated product from the top of the tower through a pipe 23 to a gas-liquid separator 3, where residual day 2 and C.I. ~ Volatile content of C4 is in pipe 24
It is then sent to the hydrogen production device 14 and reformed on day 2 for hydrogenation reaction, while the remaining slug IJ1 is fed to the distillation column 4 through the pipe 25. In the distillation column 4, the light oil fraction with a boiling point of up to about 200o0, the medium oil fraction with a boiling point of about 200 to 45,000, and the residual oil at the bottom of the column are separated, and the vertical oil fraction is extracted from the pipe 26 at the top of the column. Recovered as naphtha, medium oil fraction is pipe 27
A part of it is returned as a slurrying solvent via piping 28, and the military oil at the bottom of the tower is sent to mixing tank 9 through piping 29. The rest will be explained later. In addition, in the diagram, one
Although only the secondary hydrogenation reaction tower is shown, it is more common to have multiple reaction towers arranged in parallel or in series depending on the throughput, residence time, reaction method, etc., and the separator is a high-pressure separator, It is usually composed of an intermediate separator, a pressure reducing device, etc., and the distillation column 4 also includes a normal pressure distillation column that separates a light oil fraction and a medium oil fraction, and a medium pressure distillation column that separates a medium oil fraction and a young oil fraction. It is common to use a vacuum distillation column that separates the

混合槽9に供給された重貿油分には、溶剤回収塔6から
配管30経由で供給される沸点180q○程度までの軽
質油溶剤、或いは2次水添生成物からナフサとして蒸留
分離これ配管31経由で供給される同郷点程度の軽質油
溶剤が混合される。
The heavy oil component supplied to the mixing tank 9 is either a light oil solvent with a boiling point of up to about 180q○ supplied from the solvent recovery tower 6 via the pipe 30, or distilled and separated as naphtha from the secondary hydrogenation product. A light oil solvent of about the same level as the one supplied via the pump is mixed.

その結果車質油分中の低分子量成分は竪質油溶剤に溶解
し、第1図に示した如くHS分と低分子量城のアスフア
ルテンとからなる溶解成分Gと、高分子量域のアスフア
ルテン、プレアスフアルテンF、チャー及び無機物質か
らなる不溶成分日とに分離し、この混合スラリーは配管
32を通して沈降槽5に送られる。この沈降槽5では前
記不落成分日が沈降分離され、溶解成分Gは頂部の配管
33から溶剤回収塔6に送られ、不溶成分日は底部の配
管34から排出される。本発明では重貿油分からの事実
上の脱灰がこの沈降槽5で行なわれるもので、不落成分
として沈降分離されるのは従来法におけるなどプレアス
フアルテン中の重質留分チャー及び無機物質だけでなく
、全プレアスフアルテン及び高分子量域アスフアルテン
も含んでおり、これらがあたかも凝集剤の如き働きを発
揮するから、チャー及び無機物質の沈降速度が早まると
共にそれらの分離効率も著しく向上する。
As a result, the low molecular weight components in the car oil are dissolved in the vertical oil solvent, and as shown in Figure 1, dissolved component G consisting of HS component and low molecular weight asphaltene, high molecular weight asphaltene, and pre-asphaltene are dissolved. The slurry is separated into alten F, char, and insoluble components consisting of inorganic substances, and this mixed slurry is sent to the settling tank 5 through the pipe 32. In this sedimentation tank 5, the unfallen components are sedimented and separated, the dissolved components G are sent to the solvent recovery tower 6 from the piping 33 at the top, and the insoluble components are discharged from the piping 34 at the bottom. In the present invention, the deashing of the heavy oil fraction is actually carried out in the sedimentation tank 5, and what is separated by sedimentation as non-falling components is the heavy distillate char and inorganic components in the pre-asphaltene, such as in the conventional method. It contains not only substances but also all pre-asphaltenes and high molecular weight asphaltenes, and these act as if they were flocculants, which accelerates the sedimentation rate of char and inorganic substances and significantly improves their separation efficiency. .

その結果、2次水添工程に供給される車質油分中の無機
物含有量を、従来法では至難とされていた100雌m以
下の低レベルに下げることができる。次に沈降槽5から
溶剤回収塔6に送られた溶解成分は、ここで蒸留されて
塔頂の軽質油溶剤と塔底の前記HS分及び低分子量城ア
スフアルテンからなる車質油に分離され、竪質油溶剤は
前記の通り配管30から混合槽9に返還する。一方重質
油は昇圧ポンプP2で2次水添反応圧力付近まで昇圧し
、配管35内において、水素製造装置14から配管36
経由で供給される2次水添用の高圧水素の混合を受け、
加熱炉11に至り、同反応温度近傍まで加熱された後配
管37から2次水添反応塔10‘こ供給される。この反
応塔1川こは例えばCo−Mo−Ni系等の車質油水添
触媒が充填されており、必要に応じて直列又は並列に複
数基設置されるが、ここでは1次水添反応条件よりも穏
やかな温度及び圧力が適用される。例えば1次水添に鉄
系触媒を使用し430〜48000、230〜28ぴ気
圧程度の条件を採用したときは、2次水添工程ではCo
−Mo−Nj系触媒を用い380〜430q○、150
〜250気圧程度の条件が採用される。この様に本発明
では、2次水添工程に供給される重質油中に水添困難な
プレアスフアルテン及び高分子量城アスフアルテンが含
まれていないので、比較的穏やかな条件で十分に2次水
添を行なうことができ、しかも該重質油中の無機物質(
灰分)量も極めて少ないのでアルカリ成分による触媒被
毒の問題も激減する。尚2次水添生成物は配管38を通
って気液分離器に12に送られ、ここで未反応水素及び
炭素数1〜4のガス分とそれ以上の油分とに分離され、
ガス分は配管39より水素製造装置14に送って水添用
水素に改質し、一方油分は配管40から蒸留塔1 3に
送り沸点180q○程度までの軽質油分(ナフサ)、沸
点180〜30000程度の中間油留分、沸点300〜
400qo程度の中質油留分及び沸点400oC以上の
重質油分に分離し、竪質油蟹分の一部は製品ナフサとし
て抽出されると共に、残部は前述の通り配管31から軽
質油溶剤として混合槽9へ返還される。
As a result, the content of inorganic substances in the car oil supplied to the secondary hydrogenation process can be reduced to a low level of 100 mm or less, which was considered extremely difficult with conventional methods. Next, the dissolved components sent from the settling tank 5 to the solvent recovery tower 6 are distilled here and separated into a light oil solvent at the top of the tower and a vehicle oil consisting of the HS component and low molecular weight asphaltene at the bottom of the tower. The vertical oil solvent is returned to the mixing tank 9 from the pipe 30 as described above. On the other hand, the pressure of the heavy oil is increased to around the secondary hydrogenation reaction pressure by the pressure booster pump P2, and in the pipe 35, it is passed from the hydrogen production device 14 to the pipe 36.
Receives the mixing of high-pressure hydrogen for secondary hydrogenation supplied via
After reaching the heating furnace 11 and being heated to near the reaction temperature, it is supplied from the pipe 37 to the secondary hydrogenation reaction tower 10'. This reaction column 1 is filled with a vehicle oil hydrogenation catalyst such as a Co-Mo-Ni system, and multiple units may be installed in series or parallel as necessary, but here, the primary hydrogenation reaction conditions are as follows. milder temperatures and pressures are applied. For example, when an iron-based catalyst is used for the primary hydrogenation and conditions of approximately 430 to 48,000 or 230 to 28 ppm are adopted, Co
-380 to 430q○, 150 using Mo-Nj catalyst
A condition of approximately 250 atmospheres is adopted. As described above, in the present invention, since the heavy oil supplied to the secondary hydrogenation process does not contain pre-asphaltenes and high molecular weight asphaltene, which are difficult to hydrogenate, the secondary hydrogenation process can be sufficiently performed under relatively mild conditions. Hydrogenation can be carried out, and inorganic substances (
Since the amount of ash is extremely low, the problem of catalyst poisoning due to alkaline components is drastically reduced. The secondary hydrogenation product is sent to the gas-liquid separator 12 through a pipe 38, where it is separated into unreacted hydrogen, a gas component having 1 to 4 carbon atoms, and an oil component having more than 4 carbon atoms.
The gas component is sent from the pipe 39 to the hydrogen production device 14 to be reformed into hydrogen for hydrogenation, while the oil component is sent to the distillation column 13 from the pipe 40 to light oil (naphtha) with a boiling point of about 180q○, boiling point 180 to 30,000. intermediate oil fraction, boiling point 300~
It is separated into a medium oil fraction of about 400 qo and a heavy oil fraction with a boiling point of 400 oC or more, and a part of the vertical oil fraction is extracted as a product naphtha, and the remainder is mixed as a light oil solvent from the pipe 31 as described above. It is returned to tank 9.

また配管42及び43から抽出される中間油留分は重質
油分と混合され燃料油として取り出す。一方前記沈降槽
5で分離されたプレァスフアルテン及び高分子量城アス
ファルテンを含む不溶成分日は、配管34より混合槽7
に送給され、そして前記蒸留塔4で分離され配管44経
由で供給される1次水添生成物の中質油留分の一部が混
合槽7に混合されるので、前述のプレアスフアルテン及
び高分子量域アスフアルテンが溶解され、チャー及び無
機物質(灰分、1次水添触媒等)を不溶成分とするスラ
リー状となって沈降槽8に供給される。
Further, the intermediate oil fraction extracted from the pipes 42 and 43 is mixed with heavy oil and taken out as fuel oil. On the other hand, the insoluble components including preasphaltenes and high molecular weight asphaltenes separated in the settling tank 5 are transferred from the pipe 34 to the mixing tank 7.
A part of the medium oil fraction of the primary hydrogenated product that is sent to the distillation column 4 and supplied via the pipe 44 is mixed into the mixing tank 7, so that the pre-asphaltenes mentioned above are mixed into the mixing tank 7. and high molecular weight range asphaltene are dissolved and supplied to the settling tank 8 in the form of a slurry containing char and inorganic substances (ash, primary hydrogenation catalyst, etc.) as insoluble components.

沈降槽8では、前記プレアスフアルテン及び高分子量城
アスフアルテンを溶解した溶解成分Jと前記不熔成分K
とに分離し、不熔成分Kは配管45よりガス化炉15に
送って残留炭化水素をガス化し、生成ガスは水素製造装
置14に送って水添用水素の製造に利用する。一方熔解
成分Jは、その全量を配管46よりスラリー化溶剤とし
て返還することにより、この中に含まれているプレァス
フアルテン及び高分子量城ァスフアルテンを1次水添工
程に戻して更に軽質化することもできるが、図示した様
に溶解成分の一部を配管47から溶剤精製炭(SRC)
回収塔16に供給して蒸留分離することにより、炭素材
製造用のSRCを創製品として回収するのが有利である
。この場合該回収塔の頂部から蟹出するアスフアルテン
及び前記混合槽7で添加された1次水添生成物中の中質
油留分を主とする塔頂留分は、配管48からスラリー化
溶剤として返還する。次に第3図は本発明の他の実施例
を示すフローシートであり、重質油分かるの軽質油蟹分
回収率を更に高め得る様にしている。
In the sedimentation tank 8, the dissolved component J in which the pre-asphaltene and the high molecular weight asphaltene are dissolved, and the unmelted component K
The unmelted component K is sent to the gasification furnace 15 through the pipe 45 to gasify residual hydrocarbons, and the generated gas is sent to the hydrogen production device 14 to be used for production of hydrogen for hydrogenation. On the other hand, the entire amount of the melted component J is returned as a slurrying solvent through the pipe 46, and the presphaltene and high molecular weight asphaltene contained therein are returned to the primary hydrogenation step and further lightened. However, as shown in the figure, a part of the dissolved components is transferred from pipe 47 to solvent refined charcoal (SRC).
It is advantageous to recover SRC for carbon material production as a created product by supplying it to the recovery column 16 and separating it by distillation. In this case, the top fraction, which is mainly composed of asphaltenes coming out from the top of the recovery column and the medium oil fraction in the primary hydrogenated product added in the mixing tank 7, is transferred from the pipe 48 to the slurry solvent. It will be returned as Next, FIG. 3 is a flow sheet showing another embodiment of the present invention, in which the recovery rate of light oil crab fraction from heavy oil can be further increased.

即ち第2図の例では1次水添生成物中の比較的高沸点(
420〜450qo程度以上)の残留分を重質油分とし
て分離し、該車質油分のうち比較的軽質分のみを固定床
反応器10を備えた2次水添工程に供給する方式を採用
していたが、第3図の例では重質油分を更に低沸点のも
のまでも含めて分離し、そのうち比較的竪質の留分を移
動層反応器17を備えた2次水添工程に送給する方式を
採用している。即ち1次水添生成物を蒸留塔4で沸点2
0000程度までの軽質油留分(ナフサ)と沸点200
〜35000程度の中質油留分及び沸点35000以上
の車質油分に分離し、重質油分を混合槽9で沸点180
o0以下の軽質油溶剤と混合して比較的低分子量の成分
を溶解し、沈降槽5で溶解成分と不溶成分に分離した後
、溶解成分は溶剤回収塔6に送って薮質油溶剤を除去し
、残部の車質油Gは触媒混合槽18に供給する。この重
質油は、1次水添生成物のうち沸点350oC以上のの
ものを含んでいるから、第2図の例に比べて軽質留分の
含有量が相対的に多く、2次水添反応もより穏やかな条
件で行なうことができる。その為1次水添触媒と同一の
触媒、例えば鉄系触媒を配管49から触媒混合槽18に
供給してスラリー化し、該スラリーを懸濁床式2次水添
反応器17に供給する様にしている。即ち該スラリーを
、昇圧ポンプP2で所定の2次水添圧力付近まで昇圧し
、配管36から送られてくる水素と混合して加熱器11
に送り、ここで所定の水添温度近傍まで昇温して2次水
添反応器17に供給し、1次水添反応条件と同程度或い
はそれ以下の条件で2次水添反応を行なう。2次水添生
成物はまず気液分離器12にフラッシュされて気液分離
し、ガス分は水素製造装置14へ、液分は蒸留塔13へ
夫々送られる。
That is, in the example shown in Figure 2, the relatively high boiling point (
420 to 450 qo or more) is separated as heavy oil, and only relatively light components of the vehicle oil are supplied to a secondary hydrogenation process equipped with a fixed bed reactor 10. However, in the example shown in FIG. 3, the heavy oil components are further separated, including those with low boiling points, and a relatively vertical fraction is sent to a secondary hydrogenation step equipped with a moving bed reactor 17. The method is adopted. That is, the primary hydrogenated product is heated to a boiling point of 2 in the distillation column 4.
Light oil fraction (naphtha) up to about 0,000 and boiling point 200
Separate into a medium oil fraction with a boiling point of ~35,000 and a car oil fraction with a boiling point of 35,000 or more, and mix the heavy oil in a mixing tank 9 with a boiling point of 180.
After mixing with a light oil solvent of o0 or less to dissolve relatively low molecular weight components and separating them into dissolved and insoluble components in a sedimentation tank 5, the dissolved components are sent to a solvent recovery tower 6 to remove the bushy oil solvent. However, the remaining vehicle quality oil G is supplied to the catalyst mixing tank 18. Since this heavy oil contains primary hydrogenation products with a boiling point of 350oC or higher, the content of light fractions is relatively large compared to the example in Figure 2, and the secondary hydrogenation product The reaction can also be carried out under milder conditions. Therefore, the same catalyst as the primary hydrogenation catalyst, for example, an iron-based catalyst, is supplied from the pipe 49 to the catalyst mixing tank 18 to form a slurry, and the slurry is supplied to the suspended bed secondary hydrogenation reactor 17. ing. That is, the slurry is pressurized to around a predetermined secondary hydrogenation pressure by the pressure boost pump P2, mixed with hydrogen sent from the pipe 36, and then heated to the heater 11.
Here, the temperature is raised to around a predetermined hydrogenation temperature, and then supplied to the secondary hydrogenation reactor 17, where the secondary hydrogenation reaction is carried out under conditions comparable to or lower than the primary hydrogenation reaction conditions. The secondary hydrogenated product is first flashed to a gas-liquid separator 12 to separate gas and liquid, and the gas component is sent to the hydrogen production device 14 and the liquid component to the distillation column 13, respectively.

蒸留塔13では沸点180qo程度までの竪質油(ナフ
サ)と沸点180〜350qo程度の中質油及び塔底の
前記水添触媒を含む残油とに分離し、軽質油はナフサと
して回収したり或いは前述の軽質油溶剤として混合槽に
返還し、中質油は配管53から抜出し配管50から送ら
れてくる1次水添生成物から分離された重質油の一部と
混合し、燃料油として取り出す。これは、該車質油が第
2図の場合に比べて軽質分を相対的に多量含んでおり、
2次水添生成物中の中質油と混合するだけで燃料油とし
て十分使用し得るためである。尚中質油の一部を配管5
2経由で2次水添用重質油の溶剤として返還することも
可能である。一方前記塔底磯油は、触媒を除去すること
なく配管51から原料のスラリー化溶剤として返還する
。即ち最終製品を製造する為の2次水添工程で使用する
触媒としては、配管49から新鮮なものを供給し、1次
水添用触媒としては主として2次水添で使用され配管5
1から供給される触媒を用いる様にしており、1次水添
用の新鮮な触媒は不足分を補充する程度でよい。即ち本
発明法で2次水添工程に供給される重質油は、灰分プレ
アスフアルテン及び高分子量城アスフアルテンを含有し
ておらず、コーキングなどによる触媒被毒が殆んど起ら
ないことから、2次水添工程での触媒の劣化・被毒が少
なく1次水添用触媒として十分に再利用することができ
る。但し、1次水添工程は原料石炭の水添であり、灰分
など触媒被毒成分が多く且つコーキングを起こし易い物
質が多量含まれているので、1次水添で使用した触媒の
劣化・被毒は著しく別段の再生処理を行なわない限り再
利用することはできない。従って第2,3図の例ではい
ずれも1次水添生成分の車質油分から分離した灰分及び
1次水添触媒を含む無機物質はガス化炉15に導き、同
伴する炭化水素分をガス化して回収した後アッシュとし
て廃棄する。以上説明した通り本発明では、1次水添生
成物を軽質油留分、中質油蟹分及び重質油分に分離し、
車質油分を2次水添工程に供給する前にまず軽質油溶剤
で洗浄することによって、チャ−及び灰分1次水添触媒
等の固形物のみならず、2次水添反応を阻害するプレァ
スフアルテン及び高分子量城アスフアルテンも不溶物と
して除去し、残部の低分子量城アスファルテンとHS分
のみを2次水添工程に供給する様にしているから、極め
て穏やかな条件で効率良く2次水添を行なうことができ
、製品の品質も安定化する。
In the distillation column 13, it is separated into vertical oil (naphtha) with a boiling point of about 180 qo, medium oil with a boiling point of about 180 to 350 qo, and residual oil containing the hydrogenation catalyst at the bottom of the column, and the light oil is recovered as naphtha. Alternatively, the medium oil is returned to the mixing tank as the above-mentioned light oil solvent, and the medium oil is extracted from the pipe 53 and mixed with a portion of the heavy oil separated from the primary hydrogenated product sent from the pipe 50, to form fuel oil. Take it out as This is because the car oil contains a relatively large amount of light components compared to the case shown in Figure 2.
This is because it can be used as a fuel oil simply by mixing it with the medium oil in the secondary hydrogenation product. In addition, some of the medium oil is piped 5
It is also possible to return it as a solvent for heavy oil for secondary hydrogenation via 2. On the other hand, the column bottom rock oil is returned as a slurrying solvent for the raw material through the pipe 51 without removing the catalyst. That is, the catalyst used in the secondary hydrogenation process for producing the final product is supplied fresh from pipe 49, and the catalyst for primary hydrogenation is supplied mainly through pipe 5, which is mainly used in the secondary hydrogenation.
The catalyst supplied from No. 1 is used, and fresh catalyst for primary hydrogenation is sufficient to replenish the shortage. That is, the heavy oil supplied to the secondary hydrogenation step in the method of the present invention does not contain ash pre-asphaltenes or high molecular weight asphaltenes, and catalyst poisoning due to coking etc. hardly occurs. There is little deterioration or poisoning of the catalyst in the secondary hydrogenation step, and it can be fully reused as a catalyst for primary hydrogenation. However, the primary hydrogenation process is hydrogenation of raw coal, and contains a large amount of catalyst poisoning components such as ash and substances that easily cause coking, so the catalyst used in the primary hydrogenation may deteriorate or be damaged. Poison cannot be reused unless it is significantly recycled. Therefore, in both the examples shown in Figs. 2 and 3, the ash separated from the vehicle oil, which is the primary hydrogenation product, and the inorganic substances containing the primary hydrogenation catalyst are led to the gasifier 15, and the accompanying hydrocarbons are removed from the gas. It is collected and disposed of as ash. As explained above, in the present invention, the primary hydrogenated product is separated into a light oil fraction, a medium oil fraction, and a heavy oil fraction,
By first washing vehicle oil with a light oil solvent before supplying it to the secondary hydrogenation process, not only solids such as char and ash primary hydrogenation catalyst but also precipitates that inhibit the secondary hydrogenation reaction are removed. Asphaltenes and high molecular weight asphaltenes are also removed as insoluble materials, and only the remaining low molecular weight asphaltenes and HS components are supplied to the secondary hydrogenation process, so secondary water can be efficiently processed under extremely mild conditions. This also stabilizes the quality of the product.

また前記溶解成分と不溶成分の分離に当っては、不落成
分として除去されるプレアスフアルテン及び高分子量域
アスフアルテンが灰分その他の固形物分離の為の凝集剤
として作用するから、2次水添工程に供給される重質油
中の無機物含有量を激減することができる。その結果2
次水添反応時の触媒の劣化及び被毒が抑えられ、2次水
添に用いた触媒を1次水添用触媒として再利用すること
ができ、触媒の有効利用が可能になると共に、製品油中
の無機物含有量も少なくなり製品油の品質も向上する。
一方前記不溶成分としてチャー及び無機物質と共に分離
されたプレァスフアルテン及び高分子量城アスフアルテ
ンは、これから更に分離されて原料のスラリー化溶剤と
して返還され、原料炭と共に1次水添に付されて軽質化
されるから、製品の回収率も向上する。
In addition, in separating the dissolved components and insoluble components, pre-asphaltenes and high molecular weight asphaltenes, which are removed as unfallen components, act as flocculants for separating ash and other solids, so secondary hydrogenation The inorganic content in the heavy oil supplied to the process can be drastically reduced. Result 2
Deterioration and poisoning of the catalyst during the secondary hydrogenation reaction are suppressed, and the catalyst used for the secondary hydrogenation can be reused as a catalyst for the primary hydrogenation. The inorganic content in the oil is also reduced and the quality of the product oil is improved.
On the other hand, the plasphaltenes and high molecular weight asphaltenes that were separated together with char and inorganic substances as insoluble components are further separated and returned as a raw material slurrying solvent, and subjected to primary hydrogenation together with coking coal to form light This improves the product recovery rate.

尚本発明において第1次水添生成物中の車質油分に軽質
油溶剤を加えて熔解成分と不溶成分とに分離する場合、
使用する軽質油溶剤の種類によつて第1図中Gで示した
溶解成分と日で示した不溶成分との境界が変動する。
In the present invention, when a light oil solvent is added to the car oil content in the primary hydrogenated product to separate it into soluble components and insoluble components,
Depending on the type of light oil solvent used, the boundary between the soluble component indicated by G in FIG. 1 and the insoluble component indicated by day varies.

従って2次水添触媒の性能、2次水添条件(温度、圧力
、滞留時間)及び1次水添生成物の組成等に応じて軽質
油溶剤の種類(沸点範囲)を適当に選定するのがよいが
、前述の様な諸効果を確保する為には少なくとも沸点が
200oo以下、より好ましくは180qo以下の竪質
油を使用すべきである。また本発明では、前記不溶成分
中のプレアスファルテン及び高分子量城ァスフアルテン
の一部を溶剤精製炭(SRC)として回収することがで
き液体製品のみならず固体製品も得られるので、製品の
多様化が可能になる。
Therefore, the type of light oil solvent (boiling point range) should be appropriately selected depending on the performance of the secondary hydrogenation catalyst, the secondary hydrogenation conditions (temperature, pressure, residence time), and the composition of the primary hydrogenation product. However, in order to ensure the above-mentioned effects, a vertical oil with a boiling point of at least 200 qo or less, more preferably 180 qo or less should be used. Furthermore, in the present invention, a part of the pre-asphaltenes and high-molecular-weight asphaltenes in the insoluble components can be recovered as solvent refined carbon (SRC), and not only liquid products but also solid products can be obtained, so that product diversification is possible. It becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は石炭の液化によって生じる炭化水素の分子量及
び沸点並びに溶剤溶解性の関係を示す説明図、第2,3
図は本発明の実施例を示すフローシートである。 1,11・・・・・・加熱炉、2・・・・・・1次水添
反応塔、3,12・・・・・・気液分離槽、4,13・
・・・・・蒸留塔、5,8・・…・沈降槽、6・・・…
溶剤回収塔、7,9・・・・・・混合槽、10,17・
・・・・・2次水添反応塔、14・・・・・・水素製造
装置、15・・・・・・ガス化炉、16・・・・・・S
RC回収塔、18・・・・・・触媒混合槽。 第2図第1図 第3図
Figure 1 is an explanatory diagram showing the relationship between the molecular weight, boiling point, and solvent solubility of hydrocarbons produced by coal liquefaction, Figures 2 and 3
The figure is a flow sheet showing an example of the present invention. 1, 11... Heating furnace, 2... Primary hydrogenation reaction tower, 3, 12... Gas-liquid separation tank, 4, 13...
... Distillation column, 5, 8 ... Sedimentation tank, 6 ...
Solvent recovery tower, 7, 9... Mixing tank, 10, 17.
...Secondary hydrogenation reaction tower, 14...Hydrogen production device, 15...Gasification furnace, 16...S
RC recovery tower, 18... Catalyst mixing tank. Figure 2 Figure 1 Figure 3

Claims (1)

【特許請求の範囲】 1 石炭、水添触媒及び炭化水素系スラリー化溶剤から
なる原料スラリーを高温高圧下で処理して1次水添を行
ない、この1次水添生成物を更に水添触媒の存在下で2
次水添して軽質化する石炭の液化方法において、(イ)
前記1次水添生成物を蒸留分離して軽質油留分、中質
油留分及び不溶成分を含む重質油分に分離し、(ロ)
中質油留分の一部は前記スラリー化溶剤として返還する
と共に、重質油分に軽質油溶剤を添加してこれを溶解成
分と不溶成分に分離し、(ハ) 該不溶成分に前記中質
油留分の一部を添加して再度溶解成分と灰分及び水添触
媒を含む不溶成分とに分離し、該溶解成分の少なくとも
一部を前記スラリー化溶剤として返還し、(ニ) 前記
(ロ)項の溶解成分より前記軽質油溶剤留分を蒸留分離
して重質油を得、該重質油の少なくとも一部を水添触媒
の存在下、高温高圧で2次水添して軽質化した後夫々の
留分に分離することを特徴とする石炭の液化方法。 2 特許請求の範囲第1項において、(ハ)項で得られ
る溶解成分の一部を蒸留して塔底の溶剤精製炭を回収し
、留分をスラリー化溶剤として返還する石炭の液化方法
。 3 特許請求の範囲第1又は2項において、(ハ)項で
得られる灰分及び水添触媒を含む不溶成分をガス化炉に
供給し、生成ガスより水添用水素を得る石炭の液化方法
。 4 特許請求の範囲第1〜3項のいずれかにおいて、2
次水添反応を固定床触媒下で行なう石炭の液化方法。 5 特許請求の範囲第1〜4項のいずれかにおいて、(
ニ)項で得られる重質油中に水添用触媒を添加して2次
水添反応を行う石炭の液化方法。 6 特許請求の範囲第1〜5項のいずれかにおいて、1
次水添触媒及び2次水添触媒が共に同一鉄系触媒であり
、2次水添生成物を蒸留分離して得られる触媒含有塔底
残油を、そのままスラリー化溶剤として返還する石炭の
液化方法。 7 特許請求の範囲第1〜4項のいずれかにおいて、(
イ)項の軽質油留分の沸点が200℃以下、中質油留分
の沸点が200〜420℃である石炭の液化方法。 8 特許請求の範囲第1〜3,5及び6項のいずれかに
おいて、(イ)項の軽質油留分の沸点が200℃以下、
中質油留分の沸点が200〜350℃である石炭の液化
方法。 9 特許請求の範囲第8項において、(ニ)項で蒸留分
離して得た重質油留分の一部に、2次水添生成物を蒸留
分離して得た中質油留分を混合して燃料油として抽出す
る石炭の液化方法。 10 特許請求の範囲第1〜9項のいずれかにおいて、
2次水添生成物を蒸留分離して得られる留分のうち沸点
が180℃以下の軽質油留分の一部を前記(ロ)項の軽
質油溶剤として供給する石炭の液化方法。 11 特許請求の範囲第10項において、(ニ)項で蒸
留分離した軽質油溶剤留分を前記(ロ)項の軽質油溶剤
として返還する石炭の液化方法。 12 特許請求の範囲第1〜11項のいずれかにおいて
、2次水添生成物を蒸留分離して得られる中質油留分の
一部を、2次水添用溶剤として2次水添前の重質油に添
加する石炭の液化方法。
[Claims] 1. A raw material slurry consisting of coal, a hydrogenation catalyst, and a hydrocarbon slurry solvent is treated at high temperature and high pressure to perform primary hydrogenation, and this primary hydrogenation product is further treated with a hydrogenation catalyst. 2 in the presence of
In a method for liquefying coal by subhydrogenating it to make it lighter, (a)
(b) separating the primary hydrogenated product by distillation into a light oil fraction, a medium oil fraction, and a heavy oil fraction containing insoluble components;
A part of the medium oil fraction is returned as the slurrying solvent, and a light oil solvent is added to the heavy oil to separate it into a soluble component and an insoluble component, and (c) the medium oil fraction is added to the insoluble component. Adding a part of the oil fraction and separating it again into dissolved components and insoluble components containing ash and hydrogenation catalyst, and returning at least a part of the dissolved components as the slurry-forming solvent; ) The light oil solvent fraction is separated by distillation from the dissolved components in item ) to obtain heavy oil, and at least a part of the heavy oil is subjected to secondary hydrogenation at high temperature and high pressure in the presence of a hydrogenation catalyst to make it lighter. A method for liquefying coal, which is characterized by separating it into its respective fractions. 2. A coal liquefaction method as set forth in claim 1, in which a portion of the dissolved components obtained in item (c) is distilled to recover solvent-refined coal at the bottom of the column, and the fraction is returned as a slurry solvent. 3. A coal liquefaction method according to claim 1 or 2, in which the insoluble components including the ash and hydrogenation catalyst obtained in item (c) are supplied to a gasifier, and hydrogen for hydrogenation is obtained from the produced gas. 4 In any one of claims 1 to 3, 2
A coal liquefaction method in which the secondary hydrogenation reaction is carried out under a fixed bed catalyst. 5 In any one of claims 1 to 4, (
A coal liquefaction method in which a hydrogenation catalyst is added to the heavy oil obtained in item d) to perform a secondary hydrogenation reaction. 6 In any one of claims 1 to 5, 1
Both the secondary hydrogenation catalyst and the secondary hydrogenation catalyst are the same iron-based catalyst, and the catalyst-containing column bottom residue obtained by distilling the secondary hydrogenation product is returned as it is as a slurry solvent.Coal liquefaction Method. 7 In any one of claims 1 to 4, (
The coal liquefaction method according to item (a), wherein the light oil fraction has a boiling point of 200°C or less, and the medium oil fraction has a boiling point of 200 to 420°C. 8. In any of claims 1 to 3, 5 and 6, the boiling point of the light oil fraction in item (a) is 200°C or less,
A method for liquefying coal in which a medium oil fraction has a boiling point of 200 to 350°C. 9 In claim 8, a medium oil fraction obtained by distilling and separating a secondary hydrogenation product is added to a part of the heavy oil fraction obtained by distilling and separating in item (d). A method of liquefying coal that is mixed and extracted as fuel oil. 10 In any one of claims 1 to 9,
A method for liquefying coal, in which a part of a light oil fraction having a boiling point of 180° C. or less among fractions obtained by distilling and separating a secondary hydrogenated product is supplied as the light oil solvent according to item (b) above. 11. A coal liquefaction method as set forth in claim 10, in which the light oil solvent fraction distilled and separated in item (d) is returned as the light oil solvent in item (b). 12 In any one of claims 1 to 11, a part of the medium oil fraction obtained by distilling the secondary hydrogenation product is used as a solvent for secondary hydrogenation before the secondary hydrogenation. A method of liquefying coal by adding it to heavy oil.
JP19726482A 1982-11-09 1982-11-09 Coal liquefaction method Expired JPS6033152B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP19726482A JPS6033152B2 (en) 1982-11-09 1982-11-09 Coal liquefaction method
AU21104/83A AU547073B2 (en) 1982-11-09 1983-11-09 Method of liquefying coal using an iron based catalyst
DE19833340538 DE3340538A1 (en) 1982-11-09 1983-11-09 Process for liquefying lignite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19726482A JPS6033152B2 (en) 1982-11-09 1982-11-09 Coal liquefaction method

Publications (2)

Publication Number Publication Date
JPS5986690A JPS5986690A (en) 1984-05-18
JPS6033152B2 true JPS6033152B2 (en) 1985-08-01

Family

ID=16371575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19726482A Expired JPS6033152B2 (en) 1982-11-09 1982-11-09 Coal liquefaction method

Country Status (1)

Country Link
JP (1) JPS6033152B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2768542B2 (en) * 1990-08-31 1998-06-25 マイクロン株式会社 Prepaid card system

Also Published As

Publication number Publication date
JPS5986690A (en) 1984-05-18

Similar Documents

Publication Publication Date Title
AU2005266712B2 (en) A process for direct liquefaction of coal
US10202552B2 (en) Method to remove metals from petroleum
RU2360944C2 (en) Complex method of converting coal containing raw material into liquid products
RU2403275C2 (en) Production refinement of bitumen with common or different solvents
US4081359A (en) Process for the liquefaction of coal and separation of solids from the liquid product
US3607718A (en) Solvation and hydrogenation of coal in partially hydrogenated hydrocarbon solvents
RU2005117790A (en) METHOD FOR PROCESSING HEAVY RAW MATERIALS, SUCH AS HEAVY RAW OIL AND CUBE RESIDUES
JP2016138277A (en) Method and device for producing hydrocarbon fuel and composition
JPS6215599B2 (en)
US4411767A (en) Integrated process for the solvent refining of coal
US4081358A (en) Process for the liquefaction of coal and separation of solids from the liquid product
CN107267186A (en) The method that coal mild hydrogenation pyrolysis prepares liquid hydrocarbon
US4565622A (en) Method of liquefying brown coal
US4077866A (en) Process for producing low-sulfur liquid and solid fuels from coal
US4374725A (en) Process for coal liquefaction
CN109486518B (en) Method and system for modifying low-quality oil
US4552725A (en) Apparatus for co-processing of oil and coal
CN109486519B (en) Upgrading method and system for producing high-octane gasoline from low-quality oil
JPS6033152B2 (en) Coal liquefaction method
US4764270A (en) Simultaneous upgrading of tar sand bitumen and coal by corefining
EP0121343B1 (en) Integrated ionic liquefaction process
US4390409A (en) Co-processing of residual oil and coal
CN114426860A (en) Heavy oil supercritical extraction separation method and device
CN111040808B (en) Inferior oil upgrading method and system for high-yield heavy upgraded oil
CN109486521B (en) Method and system for efficiently utilizing catalytic cracking slurry oil