JPS6033049A - Separation of alkaline earth metal - Google Patents

Separation of alkaline earth metal

Info

Publication number
JPS6033049A
JPS6033049A JP14057083A JP14057083A JPS6033049A JP S6033049 A JPS6033049 A JP S6033049A JP 14057083 A JP14057083 A JP 14057083A JP 14057083 A JP14057083 A JP 14057083A JP S6033049 A JPS6033049 A JP S6033049A
Authority
JP
Japan
Prior art keywords
alkaline earth
earth metal
separation
indicator
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14057083A
Other languages
Japanese (ja)
Inventor
Junichi Kirie
桐栄 純一
Tetsuo Ubue
生重 哲男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP14057083A priority Critical patent/JPS6033049A/en
Publication of JPS6033049A publication Critical patent/JPS6033049A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/96Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation using ion-exchange

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PURPOSE:To enable accurate, quick and efficient sepn. in the stage of separating an alkaline earth metal by using a column packed with an ion exchange resin by using a mixed soln. contg. a buffer and a metal indicator within a specific pH range as an eluate. CONSTITUTION:A mixed eluate contg. a metal indicator such as calcichrome which colors quickly and sensibly by reacting with an alkaline earth metal and does not produce insolube complex, colloidal precipitate, etc. within a concn. range of 10<-4>-10<-3>M in 0.001-5mol soln. a buffer such as HN4Cl-NH3, sodium tetraboride-boric acid or the like which does not form complex with the alkaline earth metal and the metallic indicator in the soln. is used in order to maintain the elute at 8-12pH in the stage of using a column packed therein with a styrene/divinyl benzene sulfonic acid type macroporous cation exchange resin for separating the alkaline earth metal. A salt such as Li, Na, K or the like may be incorporated therein at about 0.005-5N or a proper amt. of an org. solvent such as methanol may be incorporated in the elutate in order to improve further the sepn. efficiency. The alkaline earth metal in bio-fluid such as blood, urine or the like or in drinking water, etc. is thus efficiently separated and is analyzed with good accuracy by measuring the coloring absorbancy of the indicator.

Description

【発明の詳細な説明】 本発明は、アルカリ土類金属の存在する溶液から精度よ
く、しかも、迅速に効率良く微量のアルカリ土類金属を
分離する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for precisely, rapidly and efficiently separating trace amounts of alkaline earth metals from solutions containing alkaline earth metals.

アルカリ土類金属を含む溶液からアルカリ土類金属を分
離することは、例えば、尿、血清中のマグネシウム、カ
ルシウムの分離に代表される臨床化学の分野でも重要と
なシ、殊に、この分野においてはこれらを精度よく迅速
に、かつ、効率よく分離する方法の開発が望まれている
The separation of alkaline earth metals from solutions containing alkaline earth metals is also important in the field of clinical chemistry, for example, in the separation of magnesium and calcium from urine and serum. There is a need for the development of a method for separating these accurately, quickly, and efficiently.

従来、これらの分離法としては沈殿法、抽出法。Conventionally, these separation methods include precipitation and extraction methods.

カラム分離法等が採用されている。このうち沈殿法は、
溶液に沈殿剤を加えアルカリ土類金属を捕集し、分離す
る方法で、この方法は分離に時間がかがシすぎると同時
に共存する他のイオンの妨害も免れない。また、抽出法
はアルカリ土類金属をキレート剤で有機溶媒に可溶な金
属錯体とし、有機相に抽出するというもので操作が煩雑
で効率の悪い欠点がある。さらに、カラム分離法は操作
や精度の面でこれら2つの欠点を改良し、樹脂を充填し
たカラムによってアルカリ土類金属を分離しようという
ものであシ、各アルカリ土類金属の陽イオン交換樹脂に
対する親和性の差を利用したものである。カラム分離法
の溶離液として社、電解質からなる溶離液が使われてい
る。しかし、アルカリ土類金属のような樹脂に対する親
和性の強い金属では完全な分離に時間がかかりすぎ、微
量のアルカリ土類金属の分離には不向きである。又、キ
レート剤を溶離液として使い分離を迅速にした例もある
が、キレート剤の濃度が高く効率が悪かったり、溶離液
の水素イオン濃度が不安定で精度のよい分離が得られな
いなど未だ多くの問題点をかかえている。また、これら
カラム分離法に特有な欠点として、微量なアルカリ土類
金属の分離について、精度および効率良く分析する手段
に欠けていた点があげられる。
Column separation methods are used. Among these, the precipitation method is
This method involves adding a precipitant to the solution to collect and separate the alkaline earth metals, but this method takes too much time to separate and is also prone to interference from other coexisting ions. In addition, the extraction method involves converting the alkaline earth metal into a metal complex soluble in an organic solvent using a chelating agent and extracting it into the organic phase, which has the disadvantage of being complicated and inefficient. Furthermore, the column separation method aims to improve these two drawbacks in terms of operation and accuracy and separate alkaline earth metals using a resin-filled column. This takes advantage of the difference in affinity. An eluent consisting of an electrolyte is used as an eluent in column separation methods. However, complete separation of metals such as alkaline earth metals that have a strong affinity for resins takes too much time, making it unsuitable for separating trace amounts of alkaline earth metals. In addition, there are examples of using chelating agents as eluents to speed up separation, but the concentration of chelating agents is high and efficiency is poor, and the hydrogen ion concentration of the eluent is unstable, making it difficult to obtain accurate separations. It faces many problems. Furthermore, a particular drawback of these column separation methods is that they lack a means to accurately and efficiently analyze the separation of trace amounts of alkaline earth metals.

本発明者らは、これらの欠点を改善しうる分離法につい
て鋭意検討した結果、イオン交換樹脂を充填したカラム
を用い、アルカリ土類金属を含む溶液からアルカリ土類
金属を精度良く、しかも効率よく分離する方法を見い出
し、本発明を完成したものである。
As a result of intensive studies on separation methods that can improve these drawbacks, the present inventors have determined that alkaline earth metals can be accurately and efficiently removed from alkaline earth metal-containing solutions using a column packed with ion exchange resin. He discovered a method of separation and completed the present invention.

すなわち、本発明はアルカリ土類金属を含む溶液からイ
オン交換樹脂を充填したカラムを用い、かつ、溶離液と
して緩衝剤お本び金属指示薬よりなるpH8〜12の混
合溶液を用い分離するアルカリ土類金属の分離方法を提
供するものである。
That is, the present invention separates alkaline earth metals from a solution containing alkaline earth metals using a column filled with an ion exchange resin and using a mixed solution of pH 8 to 12 consisting of a buffer, a metal indicator, and a metal indicator as an eluent. A method for separating metals is provided.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は液体クロマトグラフィーにおいて、分析すべき
アルカリ土類金属のイオンを含む溶液をイオン交換樹脂
層を通過させて、時間をおいて個々のイオンに分離し、
溶出させ、そのイオンの定量的な分析を行うものである
In liquid chromatography, the present invention involves passing a solution containing alkaline earth metal ions to be analyzed through an ion exchange resin layer and separating it into individual ions over time.
The ions are eluted and the ions are quantitatively analyzed.

本発明において、イオン交換樹脂としては、陽イオン交
換樹脂あるいは前記樹脂と陰イオン交換樹脂の均一混合
樹脂を用いることができるっ陽イオン交換樹脂としては
、特に制限されるものではないが、スルホン酸基を持っ
た強酸性陽イオン交換樹脂が好ましい。
In the present invention, as the ion exchange resin, a cation exchange resin or a uniform mixture of the above resin and an anion exchange resin can be used.As the cation exchange resin, there are no particular restrictions, but sulfonic acid A strongly acidic cation exchange resin having a group is preferred.

また、均一混合樹脂としては、陽イオン交換樹脂と陰イ
オン交換樹脂との任意の割合を選ぶことができるが、強
酸性陽イオン交換樹脂とその重重の3倍以下の強アルカ
リ性陰イオン交換樹脂との均一混合樹脂を用いることに
より、アルカリ土類金属の特定金属の溶出時間を変化さ
せることができるため好ましい。
Further, as a homogeneous mixed resin, any ratio of cation exchange resin and anion exchange resin can be selected, but a strong acid cation exchange resin and a strong alkaline anion exchange resin of not more than three times its weight can be selected. It is preferable to use a uniformly mixed resin of 1 because the elution time of a specific alkaline earth metal can be changed.

本発明に用いる溶離液の一成分である緩衝剤は殊に溶液
中の水素イオン濃度を分離に適したpH8〜12、好ま
しくはpH10,5〜11,5に維持する機能を持ち、
なおかつ、アルカリ土類金属や溶液中の金属指示薬を錯
形成しないものなら任意に選ぶことができるが、緩衝能
力が高く、金属指示薬に対してあまシ作用しない塩化ア
ンモニウム−アンモニア、四ホウ酸ナトリウムーホウ酸
等が好ましい。pHが8未満あるいは12を超えると感
度が悪くなり、好ましくない。
The buffer, which is a component of the eluent used in the present invention, has the function of maintaining the hydrogen ion concentration in the solution at pH 8 to 12, preferably pH 10.5 to 11.5, which is suitable for separation.
In addition, any material can be selected as long as it does not form complexes with the alkaline earth metal or the metal indicator in the solution, but ammonium chloride - ammonia, sodium tetraborate - which has a high buffering capacity and does not have a negative effect on the metal indicator. Boric acid and the like are preferred. If the pH is less than 8 or more than 12, sensitivity deteriorates, which is not preferable.

また、これらの緩衝剤の濃度は0.001〜5モル、好
ましくFio、01〜1モル用いるものである。濃度が
0.001モル未満では、分離に適した液性を維持し難
く、5モルを超えると分離能力が低下するため好ましく
ない。
The concentration of these buffers is 0.001 to 5 mol, preferably 0.01 to 1 mol Fio. If the concentration is less than 0.001 mol, it is difficult to maintain liquid properties suitable for separation, and if it exceeds 5 mol, the separation ability will decrease, which is not preferable.

本発明に用いる溶離液の一成分である金属指示薬とは、
一定のpH領域で、アルカリ土類金属と反応して鋭敏に
、しかも、速やかに発色し、不溶性錯体やコロイド状沈
殿等を作らない金属指示薬を選ぶことができるが、特に
カルシクローム、ムレキシド、クレゾールフタレインコ
ンブレキソン等が望ましい。これらの金属指示薬の濃度
は、5X10”’M以以上−るものである。0度が5X
1[!−’M未満では分離に時間がかかシすぎ、また、
高すぎると効率が悪くなったり、微量のアルカリ土類金
属の分離には精床が悪く好ましくないため、実用的には
10−′〜10−5Mが好ましい。
The metal indicator, which is a component of the eluent used in the present invention, is
Metal indicators can be selected that react with alkaline earth metals in a certain pH range, develop color rapidly and sensitively, and do not create insoluble complexes or colloidal precipitates, but especially calcichrome, murexide, and cresol. Phthalein combrexone etc. are preferable. The concentration of these metal indicators is 5X10"'M or more. 0 degree is 5X
1 [! If it is less than -'M, separation takes too long, and
If it is too high, the efficiency will be poor and the separation of trace amounts of alkaline earth metals will be difficult due to the poor quality of the refinement, so 10-' to 10-5M is practically preferred.

さらに、本発明において上記の混合溶離液に電解質、有
機溶媒を単独または混合して加え溶出能力番高めること
ができる。
Furthermore, in the present invention, an electrolyte and an organic solvent can be added to the above mixed eluent alone or in combination to increase the elution capacity.

この溶離液に添加する電解質とは、アルカリ土類金属を
迅速に効率よく分離するために溶離液に加えるもので、
金属指示薬と反応して発色しないリチウム、ナトリウム
、カリウムなどのアルカリ金属塩、あるいはアンモニウ
ムなどの塩酸塩、硫酸塩、硝酸塩およびフッ化物、臭化
物、ヨウ化物である事が好ましい。また、溶離液中の濃
度は[1005〜5N、好ましくは0.05〜[15N
用いるものである。濃度が、[LOO5N未満または5
Nt−超えると分離能力の低下をきたすため好ましくな
い。
The electrolyte added to this eluent is added to the eluent in order to quickly and efficiently separate alkaline earth metals.
Preferred are alkali metal salts such as lithium, sodium, and potassium, which do not develop color upon reaction with metal indicators, or ammonium and other hydrochlorides, sulfates, nitrates, and fluorides, bromides, and iodides. In addition, the concentration in the eluent is [1005 to 5N, preferably 0.05 to [15N
It is used. The concentration is [LOO less than 5N or 5
If it exceeds Nt-, the separation ability will decrease, which is not preferable.

また、上記溶離液に添加する有機溶媒とは水と混ざシあ
い緩衝剤、金属指示薬を可溶化させるメタノール、エタ
ノール、エチレングリコールナトのアルコール類、ジメ
チルホルムアミド、メチルホルムアミドなどのアミド類
、アセトンなどのケトン類、ジメチルスルホキサイドな
どのスルホキサイド類およびジオキサン、テトラヒドロ
フランなどの環状エーテル類などを挙げることができる
が、特にメタノール、エタノールなどのアルコール類が
好ましい。また、溶離液中の濃度は50重量−以下、好
ましくは1〜25重量多用いるものである。有機溶媒の
濃度が50重量%を超えると金属指示薬または電解質の
溶解度が悪くなるため好ま1、<ない。
The organic solvents added to the eluent include methanol, ethanol, alcohols such as ethylene glycol, dimethylformamide, amide such as methylformamide, acetone, etc., which mix with water to solubilize the buffer, metal indicator, etc. Examples include ketones, sulfoxides such as dimethyl sulfoxide, and cyclic ethers such as dioxane and tetrahydrofuran, and alcohols such as methanol and ethanol are particularly preferred. The concentration in the eluent is 50% by weight or less, preferably 1 to 25% by weight. If the concentration of the organic solvent exceeds 50% by weight, the solubility of the metal indicator or electrolyte deteriorates, so it is preferred 1, <no.

本発明は上記の溶離液を用いて、アルカリ土類金属を分
離し、溶出した各イオンの吸光度を測定することによム
アルカリ土類金属の分離を行うものであって、血清、尿
等の生体液および飲料水中のアルカリ土類金属の分離は
勿論のこと、塩水中ノマグネシウム、カルシウムの分離
に応用しうるものである。
The present invention uses the above eluent to separate alkaline earth metals and measures the absorbance of each eluted ion to separate alkaline earth metals. It can be applied not only to the separation of alkaline earth metals in body fluids and drinking water, but also to the separation of magnesium and calcium in salt water.

次に本発明を実施例および比較例を挙げて具体的に説明
する。
Next, the present invention will be specifically explained with reference to Examples and Comparative Examples.

実施例1 ポンプ、試料注入部および可視検出器よ多構成される液
体クロマトグラフ(東洋曹達工業株式会社製 商品名H
LO−aoiA型高速液体クロマトグラフ)、カラムと
してスチレンジビニルベンゼンスルホン酸型巨大多孔性
陽イオン交換ゲル(東洋曹達工業株式会社製 商品名T
SK−GEL工EX−210)を内径4.0 M 、長
さ5ny+のステンレススチール管に充填したカラムお
よびlX10−’モルクレゾールブタンインコンブレキ
ソン、0.5モル アンモニア−塩化アンモニウムpH
10,7の組成の水溶液を溶離液として用い、室温で1
.2WLl/minの流速で通液しつつ、カルシウム、
マグネシウムの濃度各20 ppmの溶液5μlをカラ
ムに注入し、その溶出液を直接、可視流動光度計(東洋
曹達工業株式会社製 商品名8F770s)に導き57
5 nmの波長で液の吸光度を測定した。
Example 1 Liquid chromatograph (manufactured by Toyo Soda Kogyo Co., Ltd., product name: H) consisting of a pump, a sample injection part, and a visible detector.
LO-aoiA type high performance liquid chromatograph), styrene divinylbenzenesulfonic acid type giant cation exchange gel (manufactured by Toyo Soda Kogyo Co., Ltd., product name T) as a column.
A column packed with SK-GEL EX-210) in a stainless steel tube with an inner diameter of 4.0 M and a length of 5 ny+, lX10-'Molecresol butaneincombrexon, 0.5M ammonia-ammonium chloride pH
Using an aqueous solution with a composition of 10.7 as an eluent, 1
.. Calcium,
5 μl of each solution with a magnesium concentration of 20 ppm was injected into the column, and the eluate was directly introduced into a visible flow photometer (manufactured by Toyo Soda Kogyo Co., Ltd., trade name 8F770s).
The absorbance of the liquid was measured at a wavelength of 5 nm.

その結果第1図に示すクロマトグラムを得た。As a result, a chromatogram shown in FIG. 1 was obtained.

実施例2 実施例1で用いた混合溶離液に5チのメタノールを添加
した以外は実施例1と同じ条件下で分離を行った結果、
第2図に示すクロマトグラムを得た。
Example 2 Separation was performed under the same conditions as in Example 1 except that 5 g of methanol was added to the mixed eluent used in Example 1. As a result,
A chromatogram shown in FIG. 2 was obtained.

実施例3 実施例1で用いた混合溶離液に0. I N Na1l
を添加した以外は実施例1と同様の溶離条件で分離を行
った。その結果実施例2と同様であった。
Example 3 0.0% was added to the mixed eluent used in Example 1. I N Na1l
Separation was carried out under the same elution conditions as in Example 1, except that . The results were the same as in Example 2.

実施例4 スチレンジビニルベンゼンスルホン酸型巨大多孔性カチ
オン交換ゲル(東洋「達工業株式会社製商品名T 5K
−GKL IEX−210)と等量のスチレンジビニル
ベンゼンlK4級アンモニウム型巨大多孔性アニオン交
換ゲル(東洋曹達工業株式%式%) f 内径4.0 +am 、 長さ7cmのステンレス
スチール管に充填したカラムを使用する以外は、実施9
1J 1と同じ溶離条件で分離を行った結果、第3図に
示すクロマトグラムを得た。
Example 4 Styrene divinylbenzene sulfonic acid type giant porous cation exchange gel (trade name T 5K manufactured by Toyo “Tatsu Kogyo Co., Ltd.”)
- GKL IEX-210) and equivalent amount of styrene divinylbenzene lK quaternary ammonium type giant porous anion exchange gel (Toyo Soda Kogyo Co., Ltd.% formula %) f Column packed in a stainless steel tube with an inner diameter of 4.0 + am and a length of 7 cm. Implementation 9 except for using
As a result of separation under the same elution conditions as 1J 1, the chromatogram shown in FIG. 3 was obtained.

実施例5 実施例1と同様の条件で該金属指示薬の濃度を変えて分
離を検討した結果を表1に示す。
Example 5 Table 1 shows the results of examining separation under the same conditions as Example 1 and varying the concentration of the metal indicator.

◎ 分離優良 △ 分離可能 ○ 〃 良好 × 〃 不可能 衣1から明らかなように金属指示薬の濃度が1X 10
−’〜I X 10−”モルであればアルカリ土類金属
の精度よい迅速な、しかも、効率よい分離は可能である
が、この範囲をはずれると分離は難しい。
◎ Excellent separation △ Separation possible 〃 Good × 〃 As is clear from Impossibility 1, the concentration of metal indicator is 1
-' to I x 10-'' moles, accurate, rapid and efficient separation of alkaline earth metals is possible, but outside this range separation is difficult.

比較例1 アンモニア−塩化アンモニウムのみを溶離液として使用
しない以外は、実施例1と同様の溶離条件で分離を行っ
た。その結果、分離が不安定であり満足のゆく分離が得
られなかった。
Comparative Example 1 Separation was performed under the same elution conditions as in Example 1, except that ammonia-ammonium chloride alone was not used as the eluent. As a result, the separation was unstable and a satisfactory separation could not be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1.2.3図は本発明の実施例1.2.3によυマグ
ネシウム、カルシウムを分離し得られたクロマトグラム
である。 特許出願人 東洋曹達工業株式会社 a 第1図 g Ca 第 2 図 MCI CCI 第 6 図
Figure 1.2.3 is a chromatogram obtained by separating υmagnesium and calcium according to Example 1.2.3 of the present invention. Patent applicant: Toyo Soda Kogyo Co., Ltd. a Figure 1 g Ca Figure 2 MCI CCI Figure 6

Claims (1)

【特許請求の範囲】[Claims] イオン交換樹脂を充填したカラムを用いてアルカリ土類
金属を分離するにあたシ、溶離液として緩衝剤および金
属指示薬からなるpH8〜12の混合溶液を用いること
を特徴とするアルカリ土類金属の分離方法
A method for separating alkaline earth metals using a column filled with an ion exchange resin, characterized in that a mixed solution of pH 8 to 12 consisting of a buffer and a metal indicator is used as an eluent. Separation method
JP14057083A 1983-08-02 1983-08-02 Separation of alkaline earth metal Pending JPS6033049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14057083A JPS6033049A (en) 1983-08-02 1983-08-02 Separation of alkaline earth metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14057083A JPS6033049A (en) 1983-08-02 1983-08-02 Separation of alkaline earth metal

Publications (1)

Publication Number Publication Date
JPS6033049A true JPS6033049A (en) 1985-02-20

Family

ID=15271754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14057083A Pending JPS6033049A (en) 1983-08-02 1983-08-02 Separation of alkaline earth metal

Country Status (1)

Country Link
JP (1) JPS6033049A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4992382A (en) * 1989-08-21 1991-02-12 Iowa State University Research Foundation, Inc. Porous polymer film calcium ion chemical sensor and method of using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4992382A (en) * 1989-08-21 1991-02-12 Iowa State University Research Foundation, Inc. Porous polymer film calcium ion chemical sensor and method of using the same

Similar Documents

Publication Publication Date Title
US3923460A (en) Dual ion chromatograph using parallel columns for ionic analysis
Gladis et al. Quinoline-8-ol-immobilized Amberlite XAD-4: synthesis, characterization, and uranyl ion uptake properties suitable for analytical applications
Blasius et al. Analytical applications of crown compounds and cryptands
Ferreira et al. Separation and preconcentration of cobalt after sorption onto Amberlite XAD-2 loaded with 2-(2-thiazolylazo)-p-cresol
Aldrich et al. The use of ion exchange columns in mineral analysis for age determination
Peyrin et al. Automated specific fluorimetric methods for epinephrine and norepinephrine assay in a single biolgical extract
Liu et al. Flame atomic absorption spectrometric determination of cobalt in biological materials using a flow-injection system with on-line preconcentration by ion-pair adsorption
Shahida et al. Flow injection on-line spectrophotometric determination of thorium (IV) after preconcentration on XAD-4 resin impregnated with oxytetracycline
Yuchi et al. Separation and preconcentration of fluoride at the ng ml− 1 level with a polymer complex of zirconium (IV) followed by potentiometric determination in a flow system
Speckman et al. Separation of diacetyl, acetoin, and 2, 3-butylene glycol by salting-out chromatography
CN111189956A (en) By means of H2O2Method for detecting content of nitrite in sodium chloride sample by combining oxidation method with ion chromatography
CN104101576A (en) Method for determining nickel content in steel or iron alloy
JPS6033049A (en) Separation of alkaline earth metal
Janauer et al. Cation exchange in dimethyl sulfoxide media
CN103175930B (en) A kind of HPLC analytical method measuring sodium sulphite content
Yamaguchi et al. Determination of ethylenediaminetetraacetic acid and nitrilotriacetic acid as their iron (III)-complexes by reversed phase high performance liquid chromatography.
Kamiura et al. Determination of nitrate in suspended particulate matter by high-performance liquid chromatography with uv detection
Zhang et al. On-site Separation of Arsenic Species in Natural Waters by Tandem Ion-Exchange Columns and Detection by ICP-MS
Bhalotra et al. Column preconcentration and second derivative spectrophotometric trace determination of scandium in standard biological and synthetic samples using 1-(2-thiazolylazo)-2-naphthol
Matsuoka et al. Application of ion-exchanger phase visible light absorption to flow analysis. Determination of vanadium in natural water and rock
Stevens et al. Determination of water by liquid chromatography using conductometric detection
Hassan et al. Solid phase extraction and spectrophotometric determination of palladium with 1-(2-benzothiazolylazo)-2-hydroxy-3-naphthoic acid
Penner et al. Determination of copper in high-purity niobium, tantalum, molybdenum and tungsten metals with bathocuproïne
JPS581383B2 (en) Automatic measurement method for ammonium ions in water
Okumura et al. A simple and rapid in situ preconcentration method for trace ammonia nitrogen in environmental water samples using a solid-phase extraction followed by spectrophotometric determination