JPS6032799B2 - Energy concentration method - Google Patents

Energy concentration method

Info

Publication number
JPS6032799B2
JPS6032799B2 JP53123525A JP12352578A JPS6032799B2 JP S6032799 B2 JPS6032799 B2 JP S6032799B2 JP 53123525 A JP53123525 A JP 53123525A JP 12352578 A JP12352578 A JP 12352578A JP S6032799 B2 JPS6032799 B2 JP S6032799B2
Authority
JP
Japan
Prior art keywords
heat
temperature
reversible
gas
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53123525A
Other languages
Japanese (ja)
Other versions
JPS5551295A (en
Inventor
和男 新居
明一 八幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP53123525A priority Critical patent/JPS6032799B2/en
Publication of JPS5551295A publication Critical patent/JPS5551295A/en
Publication of JPS6032799B2 publication Critical patent/JPS6032799B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Description

【発明の詳細な説明】 本発明は、エネルギー濃縮方法に関し、特にこれまで利
用できなかった低温の9E熱を濃縮すなわち高温の熱に
変換させて有効に利用するエネルギー濃縮方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an energy concentrating method, and particularly to an energy concentrating method in which low-temperature 9E heat, which has not been available until now, is condensed, that is, converted into high-temperature heat and effectively used.

最近の石油ショックや熱公害の多発並びにエネルギー見
通しの結果、今まで捨てられていた大量低温熱の有効回
収法が各方面から検討を迫られてきている。
As a result of the recent oil crisis, frequent occurrences of heat pollution, and energy outlook, there is an increasing need to consider effective methods for recovering large amounts of low-temperature heat, which had been wasted until now, from all directions.

現状の熱回収装置として実用化されているものは未だな
いが、実験室レベルのものとして硝酸循環プロセスを挙
げることができよう。
Although there are currently no heat recovery devices that have been put into practical use, the nitric acid circulation process can be cited as one that is at the laboratory level.

硝酸循環プロセスは濃硝酸と水との混合希釈によって発
生する熱を利用し、またこの混合液を低温の減圧蒸留に
よって分離して再使用することによるもので、硝酸と水
とが最高共沸混合物をつくることと、2種の低温熱エネ
ルギーで分離が可能なことを応用している。第1図に、
硝酸プロセスで28℃(2ず0以上ならば可)の温水と
7℃(9.700以下ならば可)の冷水を用いて、10
0午0付近の熱に変換し、回収利用できる多段システム
を示す。
The nitric acid circulation process utilizes the heat generated by mixing and diluting concentrated nitric acid and water, and also separates this mixture by low-temperature vacuum distillation and reuses it. Nitric acid and water are the highest azeotropic mixture. It applies the fact that it can be separated using low-temperature thermal energy. In Figure 1,
In the nitric acid process, using hot water of 28℃ (acceptable if it is above 2.0℃) and cold water of 7℃ (acceptable if it is below 9.700),
This shows a multi-stage system that converts heat around 0:00 to 0:00 and can be recovered and used.

1一1〜1−4は硝酸水溶液を低圧下で低温熱を用いて
水蒸気と濃硝酸に分離するための蒸留塔、2−1〜2−
4は冷水で水蒸気を水に変える凝縮器、3一1〜3一8
は生成された水と濃硝酸を温水で昇温する予熱器、4−
1〜4一4は水と濃硝酸を混合し発熱させる混合槽、5
一1〜5一3は得た熱で別系統から生成された水と濃硝
酸を昇温させる熱交換器、5−4は最終プロセスで得た
熱を消費側に供給するための熱交換器である。
1-1 to 1-4 are distillation columns for separating an aqueous nitric acid solution into water vapor and concentrated nitric acid under low pressure using low-temperature heat; 2-1 to 2-
4 is a condenser that converts water vapor into water using cold water, 3-1 to 3-8
is a preheater that heats the generated water and concentrated nitric acid with hot water, 4-
1 to 4 - 4 is a mixing tank that mixes water and concentrated nitric acid and generates heat; 5
11 to 5-3 are heat exchangers that use the heat obtained to raise the temperature of water and concentrated nitric acid produced from another system, and 5-4 is a heat exchanger that supplies the heat obtained in the final process to the consumer side. It is.

硝酸水溶液は、蒸留塔1一1内で減圧蒸留し、濃度約6
5%の共沸混合物(濃硝酸)と濃度1%下の硝酸を含む
蒸気とに分離し、蒸気は凝縮器2−1で液化させ、両液
を子熟器3一1及び3一2で昇温した後混合槽4一1で
希釈熱を発生させる。また、蒸留塔1一2内より生成さ
れ同様のプロセスを経て得た濃硝酸と水に対して、混合
槽4一1で得た熱を用いて熱交換器5−1内で昇温させ
る。昇温後混合槽4一2で混合して発熱させ、この熱を
また昇温に用いるなどして多段化し、最終プロセスで1
00oo前後の高温熱を得ようとするものである。硝酸
循環プロセスは、減圧蒸留であり、単段では温度上昇幅
が少なく、多段化したフラッシュ蒸発を用いるため、複
雑で大規模となり、また硝酸自体劇薬で腐蝕性があり有
害である上にエネルギー回収効率は実験値で約4%と低
い。
The nitric acid aqueous solution is distilled under reduced pressure in the distillation column 1-1 to a concentration of approximately 6.
It is separated into a 5% azeotropic mixture (concentrated nitric acid) and a vapor containing nitric acid with a concentration lower than 1%, the vapor is liquefied in the condenser 2-1, and both liquids are liquefied in the fermenters 3-1 and 3-2. After the temperature is raised, dilution heat is generated in the mixing tank 4-1. Further, concentrated nitric acid and water produced in the distillation column 1-2 and obtained through a similar process are heated in the heat exchanger 5-1 using the heat obtained in the mixing tank 4-1. After raising the temperature, it is mixed in the mixing tank 4-2 to generate heat, and this heat is used for raising the temperature again to create a multi-stage process.
It is an attempt to obtain high temperature heat around 00OO. The nitric acid circulation process is vacuum distillation, which has a small temperature rise in a single stage, but uses multi-stage flash evaporation, which is complex and large-scale.In addition, nitric acid itself is a powerful chemical, corrosive, and harmful, and requires energy recovery. The experimental efficiency is as low as about 4%.

そこで、本発明者等は、発電所、工場等の排熱及び自然
ェネルギ−等の熱という形で与えられるエネルギーを貯
蔵し、できれば濃縮して(すなわち高温にして)有効に
利用される分野に供給する方法につき鋭意研究の結果、
本発明方法に到達したものである。
Therefore, the present inventors have developed a field in which energy provided in the form of heat from power plants, factories, etc. and natural energy can be stored and, if possible, condensed (i.e. at high temperature) and used effectively. As a result of intensive research on supply methods,
The method of the present invention has been achieved.

すなわち本発明は低温熱源の熱を第1可逆反応物質に与
えてこれを分解することによりガスを放出させ、このガ
スを加圧した後、ガスを放出した後の第1可逆反応物質
と反応結合させることにより、前記熱源よりも温度の高
い熱を取出し、引続きこの熱を前記第1可逆反応物質よ
りも高い反応温度城を有する第2可逆反応物質に与えて
これを分解することによりガスを放出させ、このガスを
加圧した後、ガスを放出した後の第2可逆反応物質と反
応結合させることにより、さらに高温の熱を取出すこと
を特徴とするエネルギー濃縮方法に関するものである。
That is, the present invention applies heat from a low-temperature heat source to the first reversible reactant to decompose it to release gas, pressurizes this gas, and then reacts with the first reversible reactant after releasing the gas. by extracting heat at a higher temperature than the heat source, and subsequently applying this heat to a second reversible reactant having a higher reaction temperature than the first reversible reactant to decompose it, thereby releasing gas. The present invention relates to an energy concentrating method characterized in that, after the gas is pressurized, the gas is reacted and combined with a second reversible reactant from which the gas has been released, thereby extracting higher-temperature heat.

本発明方法における上記第1可逆反応物質とは、低温度
領域において加熱された際に分解してガスを発生し、該
ガスと結合反応させれば熱を発生する物質(以下、低温
可逆反応物質)、また上記第2可逆反応物質とは、高温
度領域において上記と同機の作用をなす物質(以下、高
温可逆反応物質)であり、いずれの物質も平衡分解圧曲
線が正の勾配を有するものである。以下、添付図面等を
用いて本発明方法を詳細に説明する。
In the method of the present invention, the first reversible reactant is a substance that decomposes to generate gas when heated in a low temperature region, and generates heat when combined with the gas (hereinafter referred to as a low temperature reversible reactant). ), and the second reversible reactant is a substance that acts in the same way as the above in a high temperature region (hereinafter referred to as a high temperature reversible reactant), and all of the substances have a positive slope of the equilibrium decomposition pressure curve. It is. Hereinafter, the method of the present invention will be explained in detail using the accompanying drawings and the like.

第2図は、本発明方法の一実施態様を示すフローシート
である。
FIG. 2 is a flow sheet showing one embodiment of the method of the present invention.

なお、第2図においては、低温〜高温可逆反応物質とし
て後述する金属水素化物を用いた場合について説明する
。第2図において、6は装置に与えられる熱源、7は熱
源側熱交換パイプ、8は熱蝶(プライン)循環パイプ、
9−1は金属水素化物または金属の入った水素化反応器
(1段目)、9−2は同(2段目)、……9−nは同(
n段目)、10ーーは1段目水素化反応器内熱交換パイ
プ、・・・・・・10nはn段目水素化反応器内熱交換
パイプ、11−1は熱源側熱媒流量調整用バルブ、11
一2は1,2段間熱煤流量調整用バルブ、・・・・・・
11−nは(n−1)、n段間熱媒流量調整用バルブ、
11−n十1は消費側熱媒流量調整用バルブ、12一1
は水素ガス流量調整用バルブ(1段目)、・・・・・・
12−nは同(n段目)、13は消費側被加熱物、14
は消費側熱交換パイプである。
In addition, in FIG. 2, a case will be explained in which a metal hydride, which will be described later, is used as a low-temperature to high-temperature reversible reactant. In FIG. 2, 6 is a heat source provided to the device, 7 is a heat exchange pipe on the heat source side, 8 is a thermal butterfly (pline) circulation pipe,
9-1 is a hydrogenation reactor containing metal hydride or metal (first stage), 9-2 is the same (second stage), ... 9-n is the same (
nth stage), 10- is a heat exchange pipe in the first stage hydrogenation reactor, 10n is a heat exchange pipe in the nth stage hydrogenation reactor, 11-1 is a heat medium flow rate adjustment on the heat source side valve, 11
12 is a valve for adjusting the flow rate of hot soot between the 1st and 2nd stages...
11-n is (n-1), a valve for adjusting the flow rate of heat medium between n stages;
11-n11 is a consumption side heat medium flow rate adjustment valve, 12-1
is the hydrogen gas flow rate adjustment valve (first stage),...
12-n is the same (nth stage), 13 is the consumer heated object, 14
is the consumption side heat exchange pipe.

先ず、熱源6が与えられ、反応器9−1に金属M,の水
素化物が入っているものとする。
First, it is assumed that the heat source 6 is provided and the reactor 9-1 contains a hydride of metal M.

バルブ11一2を閉じ、バルブ11一1を開き、熱煤を
循環させることによって、熱交換パイプ7及び10一1
を通して熱が反応器9−1に与えられる。熱は反応器9
‐1内での温度T,Lに対して一定の水素分離圧P,L
を生じ、この圧力P,Lをもつ水素を水素バルブ12−
1を開くことによって別容器V,(図示せず)に貯える
。熱源6の供給が終れば、上記容器V,内の水素をP,
Lより高い圧力温度P川で反応器9一1に与えてやるこ
とによって、金属M,はこの水素と再反応し、反応器9
−1の温度はT,Lより高い温度T川となる。次に、バ
ルブ11−1及び11−3を閉じ、バルブ11一2を開
き、熱煤を循環させることによって、温度T,日の熱を
熱交換パイプ10−1及び10一2を通して反応器9−
1から9一2へ移し変えることができる。反応器9一2
には始め反応器9−1内の金属M,とは異なる金属M2
の水素化物が入っているものとすると、与えられた熱に
よって温度LL=T,日で圧力P.Lなる水素がこの金
属水素化物から放出され、水素バルブ12一2を開き別
容器V2(図示せず)に貯える。同様の動作を繰り返し
、低温の熱を高温の熱に変換し、所要の温度に達したと
き、消費側熱交換パイプ14を通して消費側被加熱物1
3に熱を与えるものである。金属水素化物の水素化及び
水素分解の反応は、温度と水素圧にのみ依存し、第3図
のようなPCT線図(平衡圧と水素化物成分比と温度と
の関係を示したもの)に示す特性をもつものが多い(第
3図中、温度Tの関係はL>T2>T,である)。第4
図は、多数の金属水素化物について平衡圧と温度との関
係をブロットしたもので、原理的には複数の金属を使用
すれば約一20〜950℃の範囲内で熱エネルギーの温
度変換が可能なことを示すものである。
Heat exchange pipes 7 and 10-1 are closed by closing valves 11-2 and opening valves 11-1 to circulate hot soot.
Heat is provided to reactor 9-1 through. Heat is in reactor 9
-Hydrogen separation pressure P, L constant for temperature T, L within 1
, and the hydrogen with these pressures P and L is passed through the hydrogen valve 12-
1 and stored in a separate container V, (not shown). When the supply of the heat source 6 is finished, the hydrogen in the container V is transferred to P,
By supplying reactor 9-1 with a higher pressure and temperature P than L, metal M, re-reacts with this hydrogen and reactor 9-1
The temperature of −1 is the temperature T river higher than T and L. Next, the valves 11-1 and 11-3 are closed, the valves 11-2 are opened, and the hot soot is circulated to transfer the heat of the temperature T to the reactor 9 through the heat exchange pipes 10-1 and 10-2. −
You can move from 1 to 9-2. Reactor 9-2
At the beginning, a metal M2 different from the metal M in the reactor 9-1 is
Assuming that there is a hydride in the container, the heat given will cause the temperature LL=T and the pressure P. Hydrogen L is released from the metal hydride and is stored in a separate container V2 (not shown) by opening the hydrogen valve 12-2. The same operation is repeated to convert low-temperature heat into high-temperature heat, and when the required temperature is reached, it is passed through the consumer-side heat exchange pipe 14 to the consumer-side heated object 1.
It gives heat to 3. The hydrogenation and hydrogen decomposition reactions of metal hydrides depend only on temperature and hydrogen pressure, and are shown in a PCT diagram (showing the relationship between equilibrium pressure, hydride component ratio, and temperature) as shown in Figure 3. Many of them have the following characteristics (in FIG. 3, the relationship of temperature T is L>T2>T). Fourth
The figure is a blot of the relationship between equilibrium pressure and temperature for a number of metal hydrides.In principle, if multiple metals are used, thermal energy can be converted into temperature within a range of approximately 120 to 950 degrees Celsius. It shows that.

なお、第4図中、グラフ1はCa比、グラフ2はLiH
、グラフ3はTj山、グラフ4はNaHグラフQMg比
、グラフ6はM鞍NiH4(マグネシウム・ニッケル合
金の水素化物)、グラフ7はMg2C岬g3(マグネシ
ウム・鋼合金の水素化物)、グラフ3はPdH船、グラ
フ9はVH2、グラフ10はFeTiH(チタン・鉄合
金の水素化物)、グラフ11はMmNi虹6(ミッシュ
メタル・ニッケルの合金の水素化物)を示す。
In addition, in Figure 4, graph 1 is Ca ratio, graph 2 is LiH
, graph 3 is Tj mountain, graph 4 is NaH graph QMg ratio, graph 6 is M saddle NiH4 (hydride of magnesium-nickel alloy), graph 7 is Mg2C cape g3 (hydride of magnesium-steel alloy), graph 3 is PdH ship, graph 9 shows VH2, graph 10 shows FeTiH (hydride of titanium-iron alloy), and graph 11 shows MmNi Rainbow 6 (hydride of misch metal nickel alloy).

Z金属水素化物の一定温度における水
素化圧は、水素分解圧に比べて一般的に若干高い。比較
的低温側で水素と反応する金属MLと比較的高温側で水
素と反応する金属MHがあり、両金属の反応温度帯に共
通部分があれば、水素化圧と水素分解圧の差圧をも考慮
して、熱の温度変換が行なえることを第5図を用いて説
明する。なお、第5図中、グラフ1は上記金属NL水素
化物の平衡水素分解圧曲線、グラフ2は該金属MLの平
衡水素代圧曲線、グラフ3は上記金属MH水素化物の平
衡水素分解圧曲線、グラフ4は該金属h心の平衡水素化
圧曲線である。第5図において、低温熱源の温度がT,
のとき金属Mしの水素化物に熱を与えることによって、
金属MLの水素化反物は吸熱作用をし、水素を圧力金属
PL.で放出する(グラフ1)。
The hydrogenation pressure of a Z metal hydride at a constant temperature is generally slightly higher than the hydrogen decomposition pressure. If there is a metal ML that reacts with hydrogen at a relatively low temperature side and a metal MH that reacts with hydrogen at a relatively high temperature side, and if there is a common part in the reaction temperature range of both metals, then the differential pressure between the hydrogenation pressure and the hydrogen decomposition pressure can be calculated. The fact that temperature conversion of heat can be performed will be explained with reference to FIG. 5, taking into consideration the following. In addition, in FIG. 5, graph 1 is an equilibrium hydrogen decomposition pressure curve of the metal NL hydride, graph 2 is an equilibrium hydrogen decomposition pressure curve of the metal ML, graph 3 is an equilibrium hydrogen decomposition pressure curve of the metal MH hydride, Graph 4 is an equilibrium hydrogenation pressure curve of the metal core. In Figure 5, the temperature of the low temperature heat source is T,
By applying heat to the hydride of metal M,
The hydrogenated anti-material of the metal ML has an endothermic effect and transfers hydrogen to the pressure metal PL. (Graph 1).

放出した水素を貯えておき、水素分解反応が完了した後
、水素の圧力を金属Pし2(>PL.)に高めてもとの
金属MLに与えてやれば発熱作用をし温度T2(>T,
)の熱に変換できる(グラフ2)。この熱を比較的高温
側で反応する金属MHの水素化物に与えれば、吸熱作用
をし、水素を圧力PH,で放出する(グラフ3)。放出
した水素を貯えておき、水素分解反応が完了した後、水
素の圧力をPH2(>PH,)に高めて金属MHに与え
てやれば発熱作用をし温度T3(>T2)の熱をとり出
せることになる。(グラフ4)。従って、本発明方法に
おいて、低温〜高温可逆反応物質として金属水素化物を
利用する一実施態様によれば、次のような効果を奏する
ことができる。
The released hydrogen is stored, and after the hydrogen decomposition reaction is completed, the pressure of hydrogen is raised to 2 (> PL.) on the metal P and then applied to the original metal ML, causing an exothermic effect and increasing the temperature to T2 (> PL.). T,
) can be converted into heat (Graph 2). If this heat is applied to a metal MH hydride that reacts at a relatively high temperature, it will absorb heat and release hydrogen at a pressure of PH (Graph 3). If the released hydrogen is stored and the hydrogen decomposition reaction is completed, the pressure of hydrogen is increased to PH2 (>PH,) and given to the metal MH, it has an exothermic effect and takes the heat of temperature T3 (>T2). I will be able to put it out. (Graph 4). Therefore, in the method of the present invention, according to an embodiment in which a metal hydride is used as a reversible reactant at low to high temperatures, the following effects can be achieved.

{1} 複数の金属水素化物を有効に用いて、エネルギ
ー濃縮効果を大幅に飛躍させうろこと。
{1} A scale that dramatically increases the energy concentration effect by effectively using multiple metal hydrides.

すなわち、1回の熱の入出操作によって得られる温度上
昇幅が、硝酸プロセスのような20qo前後のオ−ダー
でなく、数十〜数百℃のオーダーであること、及び複数
回の操作によってその効果の重ね合せが効くことである
。従って、従来のもの及び従来考えられてきたものより
も、エネルギー回収効率を向上させうる可能性が高い。
‘21 低質熱源から高密度の熱エネルギーを得られる
ことから、得られた高温源の一部をエネルギー濃縮プロ
セス用の内部動力に利用することによって、最初の熱源
以外は他に依存しない独立したシステムを紙立てること
ができる。‘3’利用面では、排熱等の熱公害を防止し
、給湯、スチーム供給等に有効に利用したり、化学工場
の各プロセスの熱収支をバランスさせる等省エネルギー
面で広範囲な応用がある。
In other words, the range of temperature rise obtained by one heat input/output operation is not on the order of around 20 qo as in the nitric acid process, but on the order of tens to hundreds of degrees Celsius, and that it can be increased by multiple operations. The superposition of effects is effective. Therefore, there is a high possibility that the energy recovery efficiency can be improved compared to the conventional method and the conventional method.
'21 Since high-density thermal energy can be obtained from a low-quality heat source, a part of the obtained high-temperature source can be used as internal power for the energy concentration process, creating an independent system that does not depend on any other sources except the first heat source. can be made into paper. In terms of '3' uses, it has a wide range of applications in terms of energy conservation, such as preventing heat pollution such as waste heat, effectively using it for hot water supply and steam supply, and balancing the heat balance of each process in a chemical factory.

なお、本発明方法においては、上記の金属水素化物に限
定されることなく、アンモニア、その他前記した作用を
なす低温〜高温可逆反応物質であれば第2図と同様にし
て使用するとができる。
The method of the present invention is not limited to the metal hydrides mentioned above, and any other reversible reactant at low to high temperatures that exhibits the above-mentioned action can be used in the same manner as shown in FIG. 2.

更に本発明方法において、放出されたガスの貯蔵容器と
、該ガス放出後の可逆反応物質との結合反応器とを同一
の容器とし、該容器を各可逆反応物質ごとに2容器づっ
設けたものをバィナリーュニツトとし、該バイナリーユ
ニツトをバイナリーシステムにて動作させることによっ
て、熱源のある限り、稼動率の高いかつ連続式のエネル
ギー濃縮方法とすることができる。第6図は上記万法の
一実施態様例を示すもので、熱源から常時熱が得られる
とき、低温可逆反応物質と高温可逆反応物質の2種を用
い(いわゆる2断式となる)、分解放出ガス貯蔵容器と
してガス結合反応器と同一の容器を用いることによって
稼動率を高めるものである。
Furthermore, in the method of the present invention, the storage container for the released gas and the combination reactor for the reversible reactant after the release of the gas are the same container, and two containers are provided for each reversible reactant. By using the binary unit as a binary unit and operating the binary unit in a binary system, it is possible to achieve a continuous energy concentrating method with a high operating rate as long as a heat source is available. Figure 6 shows an example of an embodiment of the above-mentioned method. When heat is constantly obtained from a heat source, two types of reversible reactants, a low-temperature reversible reactant and a high-temperature reversible reactant, are used (a so-called two-interrupt system) to decompose the The utilization rate is increased by using the same container as the gas coupling reactor as the discharged gas storage container.

なお、分解放出ガス貯蔵容器とガス結合反応器を同一の
容器とし、低・高温可逆物質用毎に2容器とするため、
プロセス構成上区別してQ系統とa系統とする。第6図
において、15は熱源、16は熱源側熱交換パイプ、1
7は熱蝶(ブラィン)循環パイプ、18一1は低温可逆
反応物質またはこの分解物質(例えば、金属Mし)の入
ったQ係統1段目反応器、18一2は同様のB係統1段
目反応器、18−3は高温可逆反応物質またはこの分解
物質(例えば金属MH)の入ったQ係統2段目反応器、
18一4は同機のB係統2段目反応器、19−I〜19
一4はそれぞれ反応器18−1〜18−4内の熱交換パ
イプ、20一1〜20一6は熱煤流量調整バルブ、21
−1〜21−4は分解放出ガスの流量調整バルブ、22
は消費側被加熱物、23は消費側熱交換バルブ、24−
1〜24−4は熱媒を循環させるためのポンプ、25−
1〜25一4は熱媒の流量を調整したとき横溢する熱媒
を貯めたり熱輸送する前に閉ループを組み予熱したりす
るための熱煤タンク、26−1〜26−2は分解生成ガ
スを昇圧する圧縮機である。分解放出ガス貯蔵容器とガ
ス結合反応器を同一容器とし、かつ該容器を低・高温可
逆物質用毎に2容器としたものをバイナリーユニツトと
すれば、第6図に示すプロセスは、Q係統と3係統との
2組のバィナリーニットからなるバィナリーシステムと
なる。
In addition, since the decomposition release gas storage container and the gas coupling reactor are the same container, and there are two containers each for low and high temperature reversible substances,
They are differentiated into Q system and A system based on the process structure. In FIG. 6, 15 is a heat source, 16 is a heat exchange pipe on the heat source side, 1
7 is a thermal brine circulation pipe, 18-1 is a Q-channel first-stage reactor containing a low-temperature reversible reactant or its decomposition material (for example, metal M), and 18-2 is a similar B-channel first stage reactor. 18-3 is a Q-connected second-stage reactor containing a high-temperature reversible reactant or its decomposition material (for example, metal MH);
18-4 is the second stage reactor of the same aircraft, 19-I~19
14 are heat exchange pipes in the reactors 18-1 to 18-4, respectively, 20-1 to 20-16 are hot soot flow rate adjustment valves, and 21
-1 to 21-4 are flow rate adjustment valves for decomposition release gas, 22
23 is the consumption-side heated object, 23 is the consumption-side heat exchange valve, 24-
1 to 24-4 are pumps for circulating the heat medium; 25-
1 to 25-4 are hot soot tanks for storing the heating medium that overflows when the flow rate of the heating medium is adjusted and for preheating by forming a closed loop before transporting the heat, and 26-1 to 26-2 are decomposition product gases. This is a compressor that boosts the pressure. If the decomposition release gas storage container and the gas coupling reactor are the same container, and two containers are used for low-temperature and high-temperature reversible substances, which constitutes a binary unit, the process shown in Fig. 6 is equivalent to the Q system. It is a binary system consisting of two sets of binary knits with three threads.

第7図A,Bは、第6図に示すプロセスすなわち上記バ
ィナリーシステムの動作の一例を平易に示した説明図で
ある。
FIGS. 7A and 7B are explanatory diagrams simply showing an example of the process shown in FIG. 6, that is, the operation of the binary system.

第7図AはモードAを、第7図BはモードBを示すもの
で、モードAとモードBは、ある時間帯においてプロセ
ス全体がいずれかのモードの状態にあることを示し、反
応が完了すればバルブ操作によって他のモードへ移し替
えることを示すものである。
Figure 7A shows mode A, and Figure 7B shows mode B. Modes A and B indicate that the entire process is in one of the modes at a certain time, and the reaction is complete. This indicates that the mode can be changed to another mode by operating the valve.

第7図中、Q,は低温の、Q2は中温の、Q3は高温の
熱量、Mし,Mし日2は低温可逆反応物質の分解物質(
金属ML)とガス結合反応物質(金属水素化物MLH2
)、MH, MHH2は高温可逆反応物質の分解物質(
金属Nh)とガス結合反応物質(金属水素化物MH比)
を示す。
In Figure 7, Q is the amount of heat at low temperature, Q2 is at medium temperature, and Q3 is at high temperature.
metal ML) and gas-bonded reactant (metal hydride MLH2
), MH, MHH2 are decomposition products of high-temperature reversible reactants (
Metal Nh) and gas bonding reactant (metal hydride MH ratio)
shows.

第7図に示した熱の変換作用によって、第6図に示すプ
ロセスは常時熱濃縮作用を行なう。
Due to the heat conversion action shown in FIG. 7, the process shown in FIG. 6 always performs a heat concentrating action.

なお、本発明方法において、可逆反応物質を3種以上用
いる場合は、第6図に示すQ,8係続をそれぞれ3容器
以上としたものをバイナリ−ユニットとし、このバィナ
リーュニットを第7図に示すようなバイナリーシステム
とすればよい。以上説明した本発明方法によれば次のよ
うな効果を奏することができる。m 二種以上の可逆反
応物質を利用した熱エネルギーの温度変換プロセスとし
利用でき、取出溢度は(約−20〜950qoの)広範
囲とすることができる。
In addition, in the method of the present invention, when three or more types of reversible reactants are used, a binary unit consisting of three or more containers each of Q and 8 connections shown in FIG. A binary system as shown in the figure may be used. According to the method of the present invention explained above, the following effects can be achieved. m It can be used as a temperature conversion process of thermal energy using two or more types of reversible reactants, and the extraction degree can be set over a wide range (about -20 to 950 qo).

■ 一般に緋熱源は約2ぴ0以上であり、該緋熱を有効
に利用できる。
■ In general, the scarlet heat source is about 2 pi0 or more, and the scarlet heat can be used effectively.

‘31 熱源のある限り、稼動率を高め連続式エネルギ
ー濃縮プロセスを形成できる。
'31 As long as there is a heat source, the operating rate can be increased and a continuous energy concentration process can be formed.

■ 熱源かち得たエネルギーの一部を内部動力源とする
ことができ、外部から電力などの供V給を必要としない
■ Part of the energy obtained from the heat source can be used as an internal power source, and no external power supply is required.

【5} 熱濃縮効果によって省エネルギー、熱公害防止
にも利用できる。
[5] It can also be used to save energy and prevent thermal pollution due to its thermal condensation effect.

‘6} 分解放出ガス貯蔵容器が不要となる。'6} No decomposition release gas storage container is required.

‘7} 反応器の顕熱損失を最小にでき、ひいては熱濃
縮効率を大幅に高めることができる。以下に、本発明方
法の効果を具体例を挙げて説明する。
'7} The sensible heat loss of the reactor can be minimized, and the heat concentration efficiency can be greatly increased. The effects of the method of the present invention will be explained below by giving specific examples.

第6図の実施態様に従って、低温可逆反応物質としてチ
タン・鉄合金の水素化物を、高温可逆反応物質としてラ
ンタン・ニッケル合金の水素化物を用い、2800の温
水を100℃以上の熱水または水蒸気に変える実験を行
った。熱の移動ルートは次の通りである。先ず、280
0の温水の熱(約3.8×1ぴkcal反応器18−1
内のFeTiH,.o4に与えて日2を放出させ、該日
2(11.$tm)を6蟹tm迄昇圧(この昇圧に要す
る圧縮仕事量は1×1ぴモル当り約1×1ぴkcal)
して反応器18−2内のFeTi比..oに与えてこれ
を水素化し、この時64ooの水素化反応熱(1×1ぴ
モル当り約4×1ぴkcaそ)を発生させた。
According to the embodiment shown in FIG. 6, a titanium-iron alloy hydride is used as a low-temperature reversible reactant, and a lanthanum-nickel alloy hydride is used as a high-temperature reversible reactant, and hot water at 2800 °C is converted to hot water or steam at 100 °C or higher. I conducted an experiment to change it. The heat transfer route is as follows. First, 280
0 heat of hot water (approximately 3.8 x 1 pkcal reactor 18-1
FeTiH, . o4 to release day 2, and pressurize day 2 (11. $tm) to 6 crab tm (the amount of compression work required for this pressure increase is approximately 1 x 1 pkcal per 1 x 1 pmol).
and the FeTi ratio in the reactor 18-2. .. o to hydrogenate it, generating 64 oo of heat of hydrogenation reaction (approximately 4 x 1 pkca per 1 x 1 pmol).

この熱量のうち約3.5×1ぴkcalの熱量を取出す
ことができた(以上を説明の便宜のために第1段という
)。次いで、第1段で得られた熱(lxlぴモル当り約
5.2×1びkcal)を反応器18−4内のLaNj
5HBに与えて馬を放出させ、該日2(9.鱗tm)を
乳数m迄昇圧して反応器1 8一3内のLaNi5に与
えてこれを水素化し、この時110)○の水素化反応熱
(1×1ぴモル当り約5×IQkcal)を発生させた
Of this amount of heat, approximately 3.5×1 pkcal of heat could be extracted (the above is referred to as the first stage for convenience of explanation). Next, the heat obtained in the first stage (approximately 5.2
5HB to release the horse, and on the same day 2 (9. scales tm) was pressurized to milk number m and fed to LaNi5 in reactor 18-3 to hydrogenate it, at this time 110)○ hydrogen The reaction heat (approximately 5×IQ kcal per 1×1 pimol) was generated.

この熱量のうち約4.8×1ぴkcalの熱量を取出す
ことができた(以上を説明の便宜のために第2段という
)。なお、上記は第1段、第2段とも1×1ぴモルで実
施した場合であるため、第1段の取出熱量(約3.球c
al)以上の熱量(約5.2×1ぴkcal)を第2段
の入熱量とする必要があったものである。
Of this amount of heat, approximately 4.8×1 pkcal was able to be extracted (the above is referred to as the second stage for convenience of explanation). Note that the above is for the case where both the first stage and the second stage are carried out at 1 × 1 pimol, so the amount of heat extracted in the first stage (approximately 3.
It was necessary to set the amount of heat (approximately 5.2×1 pkcal) as the heat input for the second stage.

実際は第1段、第2段を連続フローで行い、第1段の取
出熱量を第2段の入熱量とする必要がある。この場合、
第1段の使用モル数より第2段の使用モル数を若干少な
くすればよい(第1段を1×1ぴモルとすれば、第2段
は約6.7×1ぴモルとすればよい)。2籍0の温水(
約3.8×1ぴkcal)を使用し、連続フローで行っ
た場合の最終的な取出熱量は約約3.3×1ぴkcal
であった。
In reality, it is necessary to perform the first stage and the second stage in a continuous flow, and make the amount of heat taken out in the first stage equal to the amount of heat input in the second stage. in this case,
The number of moles used in the second stage may be slightly smaller than the number of moles used in the first stage (if the first stage is 1 x 1 pimol, the second stage is about 6.7 x 1 pimol) good). 2 0 hot water (
When continuous flow is used, the final amount of heat extracted is approximately 3.3 x 1 pkcal.
Met.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の硝酸循環プロセスのフローシート、第2
図および第6図は本発明方法の一実施態様を示すフロー
シート、第3図は金属水素化物のPCT線図、第4図は
金属水素化物群の平衡分解圧曲線を示す図、第5図は低
温側で水素と反応する金属と高温側で水素と反応する金
属の平衡水素化圧曲線と平衡水素分解圧曲線を示す図、
第7図A,Bは第6図に示すプロセスの動作の一例を平
易に示した説明図である。 オー図 矛2図 矛6図 矛7図 矛3図 矛ム図 矛5図
Figure 1 is the flow sheet of the conventional nitric acid circulation process, Figure 2
6 and 6 are flow sheets showing one embodiment of the method of the present invention, FIG. 3 is a PCT diagram of a metal hydride, FIG. 4 is a diagram showing an equilibrium decomposition pressure curve of a group of metal hydrides, and FIG. is a diagram showing the equilibrium hydrogenation pressure curve and equilibrium hydrogen decomposition pressure curve of a metal that reacts with hydrogen on the low temperature side and a metal that reacts with hydrogen on the high temperature side,
FIGS. 7A and 7B are explanatory diagrams simply showing an example of the operation of the process shown in FIG. 6. O picture spear 2 picture spear 6 picture spear 7 picture spear 3 picture spear 5 picture spear

Claims (1)

【特許請求の範囲】[Claims] 1 低温熱源の熱を可逆反応物質(以下、第1可逆反応
物質)に与えてこれを分解することによりガスを放出さ
せ、このガスを加圧した後、ガスを放出した後の第1可
逆反応物質と反応結合させることにより、前記熱源より
も温度の高い熱を取出し、引続きこの熱を前記第1可逆
反応物質よりも高い反応温度域を有する可逆反応物質(
以下、第2可逆反応物質)に与えてこれを分解すること
によりガスを放出させ、このガスを加圧した後、ガスを
放出した後の第2可逆反応物質と反応結合させることに
より、さらに高温の熱を取出すことを特徴とするエネル
ギー濃縮方法。
1 Heat from a low-temperature heat source is applied to a reversible reactant (hereinafter referred to as the first reversible reactant) to decompose it to release a gas, pressurize this gas, and then release the gas, followed by a first reversible reaction. By reacting and bonding with the substance, heat having a temperature higher than that of the heat source is extracted, and this heat is subsequently transferred to the reversible reactant having a reaction temperature range higher than that of the first reversible reactant (
The second reversible reactant (hereinafter referred to as "second reversible reactant") is decomposed to release a gas, and after this gas is pressurized, it is reacted and bonded with the second reversible reactant after releasing the gas, thereby increasing the temperature to an even higher temperature. An energy concentration method characterized by extracting heat from.
JP53123525A 1978-10-09 1978-10-09 Energy concentration method Expired JPS6032799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53123525A JPS6032799B2 (en) 1978-10-09 1978-10-09 Energy concentration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53123525A JPS6032799B2 (en) 1978-10-09 1978-10-09 Energy concentration method

Publications (2)

Publication Number Publication Date
JPS5551295A JPS5551295A (en) 1980-04-14
JPS6032799B2 true JPS6032799B2 (en) 1985-07-30

Family

ID=14862759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53123525A Expired JPS6032799B2 (en) 1978-10-09 1978-10-09 Energy concentration method

Country Status (1)

Country Link
JP (1) JPS6032799B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57184891A (en) * 1981-05-08 1982-11-13 Matsushita Electric Ind Co Ltd Repeated heating-cooling cycle device for marine use
EP0131869B1 (en) * 1983-07-08 1988-09-28 Matsushita Electric Industrial Co., Ltd. Thermal system based on thermally coupled intermittent absorption heat pump cycles

Also Published As

Publication number Publication date
JPS5551295A (en) 1980-04-14

Similar Documents

Publication Publication Date Title
Huang et al. Analysis of sulfur–iodine thermochemical cycle for solar hydrogen production. Part I: decomposition of sulfuric acid
Juangsa et al. Integrated system of thermochemical cycle of ammonia, nitrogen production, and power generation
US4044819A (en) Hydride heat pump
US10208665B2 (en) Methods and systems for energy conversion and generation
Lovegrove et al. A solar-driven ammonia-based thermochemical energy storage system
CA2674245C (en) Upgrading waste heat with heat pumps for thermochemical hydrogen production
US5127470A (en) Apparatus for heat recovery and method for operating the apparatus
JPH0228232B2 (en)
US4784217A (en) Thermochemical method and device for storing and unstoring heat
Ni et al. Thermodynamic analysis of a novel hydrogen–electricity–heat polygeneration system based on a very high-temperature gas-cooled reactor
JPS6032799B2 (en) Energy concentration method
Suda Recent development of hydride energy systems in Japan
CN114335635B (en) Adjustable proton exchange membrane fuel cell heat, electricity and cold co-production system
CN113669942B (en) Multistage series heat storage system based on chemical upgrading and heat storage
Jeong et al. Optimization of the hybrid sulfur cycle for hydrogen generation
Carden et al. The efficiencies of thermochemical energy transfer
CN113669941B (en) Low-temperature waste heat enthalpy-increasing heat storage system
Granovskii et al. Thermodynamic analysis of the use a chemical heat pump to link a supercritical water-cooled nuclear reactor and a thermochemical water-splitting cycle for hydrogen production
CN113686187A (en) Low-temperature waste heat enthalpy-increasing heat storage system based on chemical upgrading and heat storage
DK2984434T3 (en) Thermochemical storage system with improved storage efficiency
US4829768A (en) Fluid dissociation solar energy collection system
Carden Direct work output from thermochemical energy transfer systems
US4484618A (en) Thermochemical energy transport using a hydrogen rich working fluid
CN219841580U (en) Multi-steel slag hot-closed tank waste heat recovery system
US6298665B1 (en) Power generating device employing hydrogen absorbing alloys and low heat