JPS6032668B2 - Liquefaction method of lignite - Google Patents

Liquefaction method of lignite

Info

Publication number
JPS6032668B2
JPS6032668B2 JP13108980A JP13108980A JPS6032668B2 JP S6032668 B2 JPS6032668 B2 JP S6032668B2 JP 13108980 A JP13108980 A JP 13108980A JP 13108980 A JP13108980 A JP 13108980A JP S6032668 B2 JPS6032668 B2 JP S6032668B2
Authority
JP
Japan
Prior art keywords
water
lignite
slurry
temperature
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13108980A
Other languages
Japanese (ja)
Other versions
JPS5755991A (en
Inventor
彦夫 松浦
道夫 栗原
隆雄 亀井
章 中村
啓一 駒井
武司 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Kawasaki Motors Ltd
Original Assignee
Electric Power Development Co Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Kawasaki Jukogyo KK filed Critical Electric Power Development Co Ltd
Priority to JP13108980A priority Critical patent/JPS6032668B2/en
Publication of JPS5755991A publication Critical patent/JPS5755991A/en
Publication of JPS6032668B2 publication Critical patent/JPS6032668B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 本発明は褐炭、亜炭、亜経青炭などの水分を多量に含む
低級石炭類(以下、、単に褐炭という)の液化方法、詳
しくは褐炭を効果的に脱水して液化するとともに、脱水
および液化工程に必要な圧力や熱量を相互に有効に利用
する褐炭の液化方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for liquefying low-grade coals containing a large amount of water (hereinafter simply referred to as lignite) such as lignite, lignite, and sub-green coal, and more specifically, a method for effectively dehydrating lignite. The present invention relates to a method for liquefying lignite, in which the pressure and heat required for dehydration and liquefaction processes are effectively used.

石炭類を液化する方法としては、今日までに多くの方法
が提案されているが、これら先行技術においては液化の
前処理として石炭類に含まれている水分を除去するため
に、水分を蒸発させる方法がとられていた。
Many methods have been proposed to date to liquefy coal, but these prior art methods involve evaporating water in order to remove water contained in coal as a pretreatment for liquefaction. A method was taken.

すなわち、石炭類を予め気流乾燥などの方法で蒸発乾燥
してから、液化反応を行なうために必要な溶剤と混合す
る方法や、石炭類を高温の溶剤と混合したり、石炭類と
溶剤との混合物である流動体を加熱したりすることによ
り水分を蒸発させる方法が用いられていた。これらの蒸
発乾燥法では、水分を蒸発させるために多大な潜熱を必
要とするので経済的に不利であり、とくに水分の多い褐
炭などの石炭化度の低い石炭類においては問題がある。
たとえばオーストラリアのある種の褐炭では、無水褐炭
lk9に対して2k9もの水分が包蔵されており、この
水分を蒸発させるために必要な熱量は褐炭の発熱量の2
5%にも達する。また褐炭などの低石炭化度の石炭類に
は、カルボキシル基、水酸基、カルボニル基などの含酸
素官能基が多く含まれ、酸素含有率が高い。このため液
化反応の前処理として褐炭などを油性の液体として流動
化しようとすると、褐炭などを構成する殆どの石炭水素
類が親油性であるのに対し、カルボキシル基などの含酸
素官能基は親水性であってて油性の液となじみ難く、流
動体が不安定であったり、流動体の安定のための界面活
性剤の消費量が大であったりする問題点がある。さらに
液化反応の際、含有酸素が液化用の添加水素または溶剤
中の水素と反応して水となり、高価な水素を浪費する問
題点がある。本発明は上記の問題点を解決するためにな
されたもので、褐炭などの低石炭化度の石炭類を水分が
蒸発し得ない雰囲気で昇温させると、石炭化度が進行し
含有水分が液状のまま脱水する現象を有効に利用するこ
とにより、熱消費、水素消費、添加剤消費を大幅に少な
くすることができる褐炭などの液化方法を提供せんとす
るものである。
In other words, there are methods in which coal is evaporated and dried in advance using a method such as flash drying, and then mixed with the solvent necessary for the liquefaction reaction, coal is mixed with a high-temperature solvent, or coal is mixed with a solvent. A method has been used in which water is evaporated by heating a fluid mixture. These evaporative drying methods are economically disadvantageous because they require a large amount of latent heat to evaporate moisture, and are particularly problematic for coals with a low degree of coalification, such as lignite, which has a high moisture content.
For example, some types of brown coal in Australia contain as much as 2k9 of water per lk9 of anhydrous lignite, and the amount of heat required to evaporate this water is 2 times the calorific value of the lignite.
It reaches as much as 5%. In addition, coals with a low degree of coalification such as lignite contain many oxygen-containing functional groups such as carboxyl groups, hydroxyl groups, and carbonyl groups, and have a high oxygen content. Therefore, when attempting to fluidize brown coal as an oily liquid as a pretreatment for liquefaction reactions, most of the coal hydrogens that make up brown coal are lipophilic, whereas oxygen-containing functional groups such as carboxyl groups are hydrophilic. There are problems in that it is difficult to mix with oil-based liquids, making the fluid unstable, and consuming a large amount of surfactant to stabilize the fluid. Furthermore, during the liquefaction reaction, the contained oxygen reacts with hydrogen added for liquefaction or hydrogen in the solvent to form water, resulting in the problem of wasting expensive hydrogen. The present invention has been made to solve the above problems, and when coal with a low degree of coalification such as lignite is heated in an atmosphere where moisture cannot evaporate, the degree of coalification progresses and the moisture content decreases. It is an object of the present invention to provide a method for liquefying lignite, etc., which can significantly reduce heat consumption, hydrogen consumption, and additive consumption by effectively utilizing the phenomenon of dehydration while in a liquid state.

以下、本発明の構成を低級石炭類として褐炭を処理する
場合について図面に基づいて説明する。第1図に示すよ
うに、生褐炭はたとえば振動スクリーンのような分級器
1および緑式ミルなどの破砕機2により破砕、分級調整
された後、後述の廃水(分離水)と櫨杵槽3内で瀦梓、
混合されて水・褐炭スラリーに調製される。この水・褐
炭スラリーはポンプ4によりたとえば50k9/泳Gの
高圧に昇圧された後、熱交換器5,6に送入され、前記
50k9/塊Gの高圧における飽和温度より低い温度ま
で、たとえば26000前後まで昇温されて褐炭中の水
分が液状で脱水される。このようにして脱水による濃度
低下および昇温による粘度低下がなされた水・褐炭スラ
リーをサイクロンなどの固液分離器7に導入して分離水
と褐炭濃厚相とに分離し、分離水を熱交換器5に導入し
て前記ポンプ4により昇圧された水・褐炭スラリーと熱
交換させた後、前記蝿梓槽3に導入して破砕された褐炭
に混合して水・褐炭スラリーの水の供給源とする。一方
、分離された褐炭濃厚相を後述の液化による生成油など
からなる溶剤と混合して流動体を調製し気液分離器8に
送入する。気液分離器8内は僅かに減圧(水・褐炭スラ
リー温度における水の飽和圧力以下)されており、水・
褐炭スラリー中の残水分を蒸発させてさらに含有水分を
低下させる。液化生成油などからなる溶剤が高温である
場合には、その保有熱を熱源とすることにより水・褐炭
スラリー中の残水分を蒸発させて脱水することができる
。なお脱水率をさらに良好にするために、溶剤の温度が
高温であっても気液分離器8内を僅かに減圧することも
ある。気液分離器8で分離された気相は分縮器9で冷却
され、水分が凝縮されて揮発性製品(一部排ガスを含む
)が回収される。1川ま気液分離器、11は揮発性製品
回収管、12は廃水抜出管である。
EMBODIMENT OF THE INVENTION Hereinafter, the structure of this invention is demonstrated based on drawing about the case where lignite is processed as a low grade coal. As shown in Fig. 1, raw lignite is crushed and classified by a classifier 1 such as a vibrating screen and a crusher 2 such as a green mill, and then mixed with waste water (separated water) described later and a pestle tank 3. Azusa inside,
It is mixed and prepared into a water/lignite slurry. This water/lignite slurry is pressurized to a high pressure of, for example, 50 k9/lump G by the pump 4, and then sent to the heat exchangers 5, 6 to a temperature lower than the saturation temperature at the high pressure of 50 k9/lump G, for example, 26,000 g. The temperature is raised to around 300 degrees, and the water in the lignite is dehydrated into liquid form. The water/lignite slurry, whose concentration has been reduced by dehydration and viscosity by raising the temperature, is introduced into a solid-liquid separator 7 such as a cyclone, where it is separated into separated water and a lignite-rich phase, and the separated water is subjected to heat exchange. After being introduced into the vessel 5 and subjected to heat exchange with the water and the lignite slurry pressurized by the pump 4, the mixture is introduced into the fly-azusa tank 3 and mixed with the crushed lignite to form a water supply source for the water and lignite slurry. shall be. On the other hand, the separated lignite thick phase is mixed with a solvent made of oil produced by liquefaction, which will be described later, to prepare a fluid, and the fluid is sent to the gas-liquid separator 8. The pressure inside the gas-liquid separator 8 is slightly reduced (below the saturation pressure of water at the water/brown coal slurry temperature), and the water/liquid separator 8 is
The remaining moisture in the lignite slurry is evaporated to further reduce the moisture content. When the solvent made of liquefied oil is at a high temperature, residual moisture in the water/brown coal slurry can be evaporated and dehydrated by using its retained heat as a heat source. In order to further improve the dehydration rate, the pressure inside the gas-liquid separator 8 may be slightly reduced even if the temperature of the solvent is high. The gas phase separated by the gas-liquid separator 8 is cooled by a dephlegmator 9, moisture is condensed, and volatile products (including some exhaust gas) are recovered. 1 is a gas-liquid separator, 11 is a volatile product recovery pipe, and 12 is a waste water discharge pipe.

一方、気液分離器8からの流動体、すなわち油・褐炭ス
ラリーは十分高温、高圧であるが、必要ならばさらに液
化反応に好適な温度、圧力まで加熱、昇温させるととも
に、水素供給管13により必要量の水素を添加し液化反
応器14に送入して液化させる。15は昇圧ポンプ、1
6は加熱器である。
On the other hand, the fluid from the gas-liquid separator 8, that is, the oil/brown coal slurry, is at a sufficiently high temperature and pressure, but if necessary, it is further heated and raised to a temperature and pressure suitable for the liquefaction reaction, and the hydrogen supply pipe 13 A necessary amount of hydrogen is added thereto, and the mixture is fed into the liquefaction reactor 14 and liquefied. 15 is a boost pump, 1
6 is a heater.

液化反応物は前記熱交換器6に導入されて水・褐炭スラ
リーと熱交換し、水・褐炭スラリーを昇満させるととも
に、液化反応物は蒸留に好適な温度まで低下される。つ
いでこの液化反応物は固液分離器17に導入されて液状
液化反応物、固状液化残燈、液化中に生成した水に分離
される。18は液化残澄抜出管、19は廃水抜出管であ
る。
The liquefied reactant is introduced into the heat exchanger 6 and exchanges heat with the water/lignite slurry to raise the water/lignite slurry, and the liquefied reactant is lowered to a temperature suitable for distillation. This liquefied reactant is then introduced into a solid-liquid separator 17 and separated into a liquefied liquefied reactant, a solid liquefied residual light, and water produced during liquefaction. 18 is a liquefaction residue extraction pipe, and 19 is a wastewater extraction pipe.

液状液化反応物物は蒸留塔20‘こ送入され蒸留されて
軽質油、重質油などの液化反応物油を得るとともに、こ
の液化反応油、たとえば軽質油の一部または全部、要す
るに少なくとも一部分を前記溶剤の少はくとも一部分と
して循環使用して油、褐炭スラリー調製に供する。この
ように溶剤として、液化反応油のみを用いる場合、また
は液化反応油と液化用溶剤供給管21から供給される溶
剤とを用いる場合がある。22は隆質油抜出管、23は
童質油抜出管、24は昇圧ポンプである。
The liquid liquefied reactant is fed into the distillation column 20' and distilled to obtain a liquefied reactant oil such as light oil, heavy oil, etc., and a part or all of the liquefied reactant oil, such as light oil, in short, at least a portion. is recycled as at least a portion of the solvent to prepare an oil and lignite slurry. In this way, as the solvent, only the liquefied reaction oil may be used, or the liquefied reaction oil and the solvent supplied from the liquefaction solvent supply pipe 21 may be used. 22 is a bulge oil extraction pipe, 23 is a virgin oil extraction pipe, and 24 is a boost pump.

なお固液分離器17で分離された液化残燈は、既存のガ
ス化技術により .を製造して液化工程において使用す
る水素源とすることもできる。前記燈梓槽3において、
水・褐炭スラリー調製の際の余剰水はサイクロンなどの
固液分離器25に送入されて、褐炭粒子を分離、回収し
た後、廃水抜出管26により廃棄される。なお液状脱水
工程における操作温度を上げれば、それに従って脱水量
も増加し殆ど無水の脱水炭を得ることができるが、脱水
炭粒子間に水分が拘束されるため気液分離器8などの粒
子間拘束水を除去する手段を設ける方が好ましい。液状
脱水工程での操作圧力は、液化工程での操作圧力に前記
気液分離器8などにおける圧力降下を加えた圧力とすれ
ば、液化工程前の昇圧、昇温を省略することもできる。
ただし温度維持するための加熱が必要であることはいう
までもない。脱水を充分に高温・高圧で行うように操作
条件を設定しておけば、液化工程で温度を上昇させる必
要は殆どなくなる。ただし本発明においては、液化の製
品油の温度を熱回収して脱水を行っているので、温度維
持のため液化工程で外部からの熱供給は必要である。い
ずれにせよ、液状脱水工程を経た水・褐炭スラリーは高
温、高圧を維持しているため、液化工程で必要とする高
温、高圧にするためのェネルギを著しく節約することが
できる。つぎに本発明の他の実施態棒を 2 に つ、
て説明する。本実施態様は、気液分離器8において流動
体(油・褐炭スラリー)から分離された気相と、ポンプ
4により高圧に昇圧された水・褐炭スラリーとを熱交換
器27において熱交換させて、気相を冷却、分縦させる
とともに、水・褐炭スラリーを子熱するようにして、さ
らに熱の有効利用をはるかにしたものである。他の構成
、作用は第1図に示す場合と同様である。本発明は上記
のように構成されているから、前処理としての脱水工程
において、褐炭を非蒸発雰囲気で加熱すると含有水分が
液状で脱水し、従釆の蒸発乾燥法に比べて脱水に消費さ
れるェネルギが半分以下となり、しかも水・褐炭スラリ
ーの加熱源として高温の離脱水分および高温の液化反応
物を使用するため、系外から加えるべき熱量はきわめて
少なく、経済上著しく有利である。
The liquefied residual light separated by the solid-liquid separator 17 is processed using existing gasification technology. can also be produced and used as a hydrogen source for use in the liquefaction process. In the lantern tank 3,
Excess water during the preparation of the water/lignite slurry is sent to a solid-liquid separator 25 such as a cyclone to separate and collect lignite particles, and then disposed of through a wastewater extraction pipe 26. Note that if the operating temperature in the liquid dehydration step is increased, the amount of dehydration increases accordingly, and almost anhydrous dehydrated coal can be obtained. It is preferable to provide means for removing trapped water. If the operating pressure in the liquid dehydration step is the operating pressure in the liquefaction step plus the pressure drop in the gas-liquid separator 8, etc., the pressure and temperature increases before the liquefaction step can be omitted.
However, it goes without saying that heating is required to maintain the temperature. If the operating conditions are set so that dehydration is carried out at sufficiently high temperature and pressure, there is almost no need to raise the temperature during the liquefaction process. However, in the present invention, since the temperature of the liquefied product oil is recovered to perform dehydration, heat supply from the outside is necessary in the liquefaction process to maintain the temperature. In any case, since the water and lignite slurry that has gone through the liquid dehydration process maintains high temperature and high pressure, it is possible to significantly save the energy needed to reach the high temperature and pressure required in the liquefaction process. Next, two other embodiment rods of the present invention,
I will explain. In this embodiment, the gas phase separated from the fluid (oil/lignite slurry) in the gas-liquid separator 8 and the water/lignite slurry boosted to high pressure by the pump 4 are heat exchanged in the heat exchanger 27. In addition to cooling and dividing the gas phase, the water/lignite slurry is also heated, making the use of heat much more effective. Other structures and functions are the same as those shown in FIG. Since the present invention is configured as described above, when lignite is heated in a non-evaporating atmosphere in the dehydration step as a pretreatment, the water content is dehydrated in a liquid state, and is consumed in dehydration compared to the conventional evaporative drying method. In addition, since high-temperature separated moisture and high-temperature liquefied reactants are used as the heating source for the water/lignite slurry, the amount of heat that needs to be added from outside the system is extremely small, which is economically advantageous.

またこの脱水工程を経て生成される水・褐炭スラリーは
、サイクロンなどの圃液分離器7によって水が液状で分
離されるため蒸発による温度低下がなく、かつ高温度の
ため粘度が小さく、しかも脱水分による濃度低下のため
固液分離の効率が高い。しかもこのように固液分離効率
が高いために、この工程に続く気液分離器8での蒸発水
分量が少なくなるので、気液分離器8での温度、圧力の
低下が小さく、気液分離器8からのスラリーは高温、高
圧を維持しており、液化工程に導入される際に加えるべ
きェネルギが少なくて済む。このため従来の蒸発乾燥法
や液状脱水法によって一旦生成された脱水炭を液化する
のに比べて著しく有利である。一方、水・褐炭スラリー
からは、熱交換器5を経てさらに鷹梓槽3に返送されて
その顕熱が十分に回収される。
In addition, the water and brown coal slurry produced through this dehydration process is separated in liquid form by a field liquid separator 7 such as a cyclone, so there is no temperature drop due to evaporation, and the viscosity is low due to the high temperature. The efficiency of solid-liquid separation is high because the concentration decreases over time. Moreover, due to this high solid-liquid separation efficiency, the amount of evaporated water in the gas-liquid separator 8 following this step is small, so the drop in temperature and pressure in the gas-liquid separator 8 is small, and the gas-liquid separation is The slurry from vessel 8 maintains high temperature and pressure, requiring less energy to be added when introduced into the liquefaction process. For this reason, it is significantly advantageous compared to liquefying dehydrated coal that has been once produced by conventional evaporative drying methods or liquid dehydration methods. On the other hand, the water/lignite slurry is further returned to the Takaazusa tank 3 via the heat exchanger 5, and its sensible heat is sufficiently recovered.

さらに液化の際に添加される溶剤として、液化工程で生
成した軽質油などの少なくとも一部分を使用し、また添
加水素も液化工程での残笹を利用して製造できるので、
大量の添加油(溶剤)および水素を外部から導入する必
要がなく、きわめて経済的である。また脱水工程を経た
褐炭は、液状脱水現象特有の酸素含有基の減少などによ
る酸素含有量の低下が見られ、液化工程で添加される水
素のうち酸素と反応して浪費される割合が減じることが
でき、また脱水炭は親油性が増し、油・褐炭スラリーの
調製も容易である。上記の実施態様においては、液化法
として溶剤抽出法を用いる場合について説明したが、直
接水添法など他の液化法を用いて前処理として本発明に
おける液化脱水工程を組み合わせれば同様の効果を奏す
るものである。
Furthermore, as the solvent added during liquefaction, at least a portion of the light oil produced in the liquefaction process is used, and additional hydrogen can also be produced using the residue from the liquefaction process.
It is extremely economical as there is no need to introduce large amounts of added oil (solvent) and hydrogen from the outside. In addition, lignite that has gone through the dehydration process shows a decrease in oxygen content due to a decrease in oxygen-containing groups, which is characteristic of liquid dehydration, and the proportion of hydrogen added in the liquefaction process that is wasted by reacting with oxygen is reduced. In addition, the dehydrated coal has increased lipophilicity, and it is easy to prepare an oil/brown coal slurry. In the above embodiment, the case where the solvent extraction method is used as the liquefaction method has been described, but the same effect can be obtained by combining the liquefaction dehydration step of the present invention as a pretreatment using another liquefaction method such as a direct hydrogenation method. It is something to play.

つぎに本発明の実施例について説明する。Next, embodiments of the present invention will be described.

実施例 水分含有量63%の生褐炭を破砕して100k9/Hr
の割合で損梓槽に供給し、以下第1図に示す装置を用い
て実験した。
Example Raw lignite with a moisture content of 63% is crushed to 100k9/Hr.
The following experiment was conducted using the apparatus shown in FIG. 1.

各部(a〜j)の流量は次表の如くであった。以上説明
したように、本発明の方法は液状脱水を採用しているの
で、熱消費量および水素消費量が少なく、また脱水工程
での高温、高圧を維持して液化工程に利用することがで
きるのでェネルギ消費量も少なくなり、さらに液状脱水
で生成する熱水・褐炭スラリーの予熱に使用しているの
で、液状脱水であることと相俊って熱経済性に優れてお
り、かつ熱水を熱回収した後は、これの一部を水・褐炭
スラリー調製用の水源として使用し、また液化工程での
抽出溶剤として、高温の液化反応物油を使用しているの
で、全体としてきわめて大幅な省エネルギ化をはかるこ
とができるという効果を有している。
The flow rates of each part (a to j) were as shown in the following table. As explained above, since the method of the present invention employs liquid dehydration, the heat consumption and hydrogen consumption are small, and the high temperature and pressure in the dehydration process can be maintained and used in the liquefaction process. This reduces energy consumption, and since it is used to preheat the hot water and lignite slurry produced by liquid dehydration, it has excellent thermoeconomic efficiency as it is liquid dehydration. After heat recovery, a portion of this is used as a water source for preparing water/lignite slurry, and the high-temperature liquefied reactant oil is used as an extraction solvent in the liquefaction process, so the total cost is extremely large. This has the effect of saving energy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施する装置の一例を示すフロ
ーシート、第2図は本発明の方法を実施する装置の他の
例を示すフローシートである。 1…分級器、2・・・破砕機、3・・・鷹伴槽、4・・
・ポンプ、5,6・・・熱交換器、7・・・固液分離器
、8・・・気液分離器、9・・・分縮器、10・・・気
液分離器、13・・・水素供給管、14・・・液化反応
器、15・・・昇圧ポンプ、16・・・加熱器、17・
・・園液分離器、20・・・蒸留塔、22・・・竪質油
抜出管、23・・・重質油抜出管、24・・・昇圧ポン
プ、27・・・熱交換器。 第1図第2図
FIG. 1 is a flow sheet showing an example of an apparatus for implementing the method of the present invention, and FIG. 2 is a flow sheet showing another example of an apparatus for implementing the method of the present invention. 1...Classifier, 2...Crusher, 3...Takatomo tank, 4...
・Pump, 5, 6... Heat exchanger, 7... Solid-liquid separator, 8... Gas-liquid separator, 9... Decentralizer, 10... Gas-liquid separator, 13. ... Hydrogen supply pipe, 14 ... Liquefaction reactor, 15 ... Boosting pump, 16 ... Heater, 17.
... Garden liquid separator, 20 ... Distillation column, 22 ... Vertical oil withdrawal pipe, 23 ... Heavy oil withdrawal pipe, 24 ... Boosting pump, 27 ... Heat exchanger . Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1 破砕された褐炭と水とを混合して水・褐炭スラリー
を調製し、この水・スラリーを高圧に昇圧した後、この
圧力における飽和温度より低い温度まで昇温して褐炭中
の水分を脱水し水・褐炭スラリーの褐炭濃度を低下させ
、ついでこの水・褐炭スラリーを固液分離して分離水を
前記昇圧された水・褐炭スラリーと熱交換させた後、前
記破砕された褐炭に混合して水・褐炭スラリーの水の供
給源とし、一方、分離された褐炭濃厚相を溶剤と混合し
て流動体を調製し、この流動体を減圧することによりま
たは/および溶剤の保有熱を熱源とすることにより残水
分を蒸発させて分離し、分離した気相を冷却し水分を凝
縮させて揮発性製品を回収し、一方、流動体を液化反応
に好適な温度、圧力まで加熱、昇温させるとともに必要
量の水素を添加して液化させた後、この液化反応物を前
記水・褐炭スラリーと熱交換させて蒸留に好適な温度ま
で低下せしめ、ついでこの液化反応物を蒸留して液化反
応油を得るとともに、この液化反応油の少なくとも一部
分を前記溶剤の少なくとも一部分として循環使用するこ
とを特徴とする褐炭の液化方法。 2 流動体から分離された気相と、高圧に昇圧された水
・褐炭スラリーとを熱交換させて、気相を冷却、分縮さ
せるとともに水・褐炭スラリーを予熱することを特徴と
する特許請求の範囲第1項記載の褐炭の液化方法。
[Claims] 1. A water-lignite slurry is prepared by mixing crushed lignite and water, and the water-lignite slurry is pressurized to a high pressure, and then heated to a temperature lower than the saturation temperature at this pressure. The water in the brown coal is dehydrated to reduce the brown coal concentration in the water/brown coal slurry, and then the water/brown coal slurry is separated into solid and liquid, the separated water is heat exchanged with the pressurized water/brown coal slurry, and then the crushing The separated lignite thick phase is mixed with a solvent to prepare a fluid, and the fluid is depressurized to provide a water source for the water-lignite slurry. The remaining water is evaporated and separated by using the retained heat of After liquefying the liquefied reaction product by heating and raising the temperature to a temperature of A method for liquefying lignite, comprising distilling it to obtain a liquefied reaction oil, and recycling at least a portion of the liquefied reaction oil as at least a portion of the solvent. 2. A patent claim characterized in that the gas phase separated from the fluid and the water/lignite slurry that has been pressurized to a high pressure are subjected to heat exchange to cool and partial condense the gas phase and to preheat the water/lignite slurry. The method for liquefying lignite according to item 1.
JP13108980A 1980-09-19 1980-09-19 Liquefaction method of lignite Expired JPS6032668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13108980A JPS6032668B2 (en) 1980-09-19 1980-09-19 Liquefaction method of lignite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13108980A JPS6032668B2 (en) 1980-09-19 1980-09-19 Liquefaction method of lignite

Publications (2)

Publication Number Publication Date
JPS5755991A JPS5755991A (en) 1982-04-03
JPS6032668B2 true JPS6032668B2 (en) 1985-07-29

Family

ID=15049715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13108980A Expired JPS6032668B2 (en) 1980-09-19 1980-09-19 Liquefaction method of lignite

Country Status (1)

Country Link
JP (1) JPS6032668B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2129438B (en) * 1982-10-29 1987-04-29 Hri Inc Coal slurry drying and deoxygenating process for coal liquefaction

Also Published As

Publication number Publication date
JPS5755991A (en) 1982-04-03

Similar Documents

Publication Publication Date Title
US4935567A (en) Process for liquefying cellulose-containing biomass
US4340446A (en) Heat recovery in distillation process
US4486959A (en) Process for the thermal dewatering of young coals
JP2012522629A (en) Hydrothermal carbonization of renewable raw materials and organic residues
DE112006002722T5 (en) Catalytic vapor gasification of petroleum coke to methane
CN103588231B (en) Prepare the method for magnesium sulfate
CN102198991A (en) Treatment method of sewage containing coal tar
JP2002542007A (en) Method and apparatus for concentrating a slurried solid
JPS6032668B2 (en) Liquefaction method of lignite
US3444072A (en) Method for minimizing hydrogen losses in high pressure processes
US4411765A (en) Method for liquefying low rank coal
EA019190B1 (en) A method of liquefaction of inflammable minerals
CN109777546A (en) Gasify ash comprehensive utilization system and method
KR101317772B1 (en) Modification method for low rank coal
US5269910A (en) Method of coil liquefaction by hydrogenation
US4248691A (en) Process of producing a suspension of brown coal and oil for hydrogenation
US4741822A (en) Procedure for hydrogenation of coal by means of liquid phase and fixed-bed catalyst hydrogenation
JPH0780000B2 (en) Sludge oiling device
US4344837A (en) Process for the dehydration and liquefaction of water-containing coal
JPH0212998B2 (en)
JPS6139033B2 (en)
EP0132526B1 (en) Process for coal hydrogenation incorporating a refining step
CN1166610C (en) Diglycol material for preparing morpholine
JPH0142992B2 (en)
US4714543A (en) Method of treating brown coal for liquefaction