JPS6032650B2 - Method for producing crosslinked polyolefin molded product - Google Patents

Method for producing crosslinked polyolefin molded product

Info

Publication number
JPS6032650B2
JPS6032650B2 JP13796878A JP13796878A JPS6032650B2 JP S6032650 B2 JPS6032650 B2 JP S6032650B2 JP 13796878 A JP13796878 A JP 13796878A JP 13796878 A JP13796878 A JP 13796878A JP S6032650 B2 JPS6032650 B2 JP S6032650B2
Authority
JP
Japan
Prior art keywords
solvent
temperature
crosslinked polyolefin
crosslinked
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13796878A
Other languages
Japanese (ja)
Other versions
JPS5565238A (en
Inventor
文雄 杉本
光 四井
和夫 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP13796878A priority Critical patent/JPS6032650B2/en
Publication of JPS5565238A publication Critical patent/JPS5565238A/en
Publication of JPS6032650B2 publication Critical patent/JPS6032650B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

【発明の詳細な説明】 この発明は物性の向上された架橋ポリオレフィン成形体
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a crosslinked polyolefin molded article with improved physical properties.

ポリオレフィン成形体など結晶性高分子からなる成形体
の物性は、該成形体を構成している微細構造により決定
される。
The physical properties of a molded body made of a crystalline polymer, such as a polyolefin molded body, are determined by the microstructure constituting the molded body.

一般にかかる熱可塑性高分子からなる固体は100%結
晶質である場合は少なく工業的に生産されている成形品
は非晶質部分を半分近く含むものが殆んどである。
In general, solids made of such thermoplastic polymers are rarely 100% crystalline, and most industrially produced molded products contain nearly half of the amorphous portion.

このような成形体に対して、伸縮性及び化学的な反応性
など前記非晶質が主に示す現象を利用しようとする場合
は、高度に結晶性を示す材料は用い難い。
When attempting to utilize the phenomena mainly exhibited by the amorphous material, such as elasticity and chemical reactivity, for such a molded article, it is difficult to use a highly crystalline material.

しかし他方談成形体に対し、弾性率、耐クリープ性及び
耐電圧性など前記結晶部分に主として依存する物性を求
めようとするときは、密度の大きい結晶化度の高い材料
が有利となる。このように結晶性高分子材料の固体を形
成している二つの相の分率を種々に変えることにより該
材料固体に対する適切な物性を引き出そうとする考え方
の外に、該材料固体を構成する分子鎖間を架橋させ耐熱
性を向上させる技術もあることは良く知られている。し
かしポリエチレンなどの高結晶性ポリマーに架橋を導入
した場合、溶融体から固化するとき、結晶化が阻害され
たり、結晶の完全性がそこなわれる結果、前記架橋点の
数に比例して融点が下り、付加的効果として密度も低下
する。
On the other hand, when it is desired to obtain physical properties of the molded body that mainly depend on the crystalline portion, such as elastic modulus, creep resistance, and voltage resistance, a material with a large density and high crystallinity is advantageous. In addition to the concept of trying to bring out appropriate physical properties for a solid crystalline polymer material by varying the fractions of the two phases that make up the solid material, it is also possible to It is well known that there is a technique for crosslinking chains to improve heat resistance. However, when crosslinking is introduced into a highly crystalline polymer such as polyethylene, when it solidifies from a melt, crystallization is inhibited or the integrity of the crystal is damaged, resulting in a melting point that is proportional to the number of crosslinking points. As it descends, the density also decreases as an additional effect.

この場合、上記分子鎖が部分的に架橋されていることに
は変りがないので、融点以上の温度城の物性は各種機械
的性質をはじめとしてその改善が著しく認められるのに
対して、融点以下の温度域の物性は上記密度の低下が原
因となって誘電ロスの増大、耐電圧性能の低下など他の
物性の低下する原因にもなりかねない。
In this case, the above molecular chains are still partially cross-linked, so the physical properties at temperatures above the melting point are significantly improved, including various mechanical properties, whereas below the melting point The physical properties in the temperature range may be caused by the decrease in density, which may cause a decrease in other physical properties such as an increase in dielectric loss and a decrease in withstand voltage performance.

又従来一般にかかる結晶性高分子材料に対してその結晶
化度を高めて物性を向上させる方法として該材料を熱処
理する方法が知られている。
Furthermore, as a conventional method for increasing the degree of crystallinity of such a crystalline polymer material and improving its physical properties, a method of heat-treating the material is known.

しかし該材料が架橋ポリマーの場合は、これに熱処理を
施しても、既に分子鎖が架橋により相互に固定されてい
ることにより再結晶化による物性の改善は殆んど認めら
れないのが実情である。更に近年研究が進められている
高圧力下での結晶化技術では、ポリマー構造の欠陥部分
をほぼ100%取り除いた形で結晶の成長が進行するこ
とになるので、例えば非架橋ポリエチレンを用いた場合
、観測される融点は理論計算により得られる融点(14
1.5qo)とほぼ一致する。しかしこの場合も架橋ポ
リエチレンに対し同様の高圧下での結晶化技術を施した
場合、前述した分子鎖間の架橋が障害となり結晶化度の
向上が僅かしか認められず物性の向上が期待した程に得
られないのである。ここに発明者等は、上述した架橋ポ
リオレフィンの優れた各種物性、及びこれを極度に結晶
化させたポリマー微細構造の特性を基本的に再評価する
と共に、上述の如く従来知られていないこれら両特質を
兼ね備えた新材料の可能性について鋭意検討を重ねた結
果、架橋ポリオレフィンの網目構造の溶剤による膨潤化
及びこれによる全く新規な分子鎖の凝集様式による高度
の結晶化が起り得ることを認めこの発明を完成したので
ある。
However, if the material is a cross-linked polymer, even if it is heat-treated, the molecular chains are already fixed to each other by cross-linking, so there is almost no improvement in physical properties due to recrystallization. be. Furthermore, in the crystallization technology under high pressure that has been studied in recent years, crystal growth proceeds with almost 100% of the defects in the polymer structure removed. , the observed melting point is the melting point obtained by theoretical calculation (14
1.5qo). However, in this case, when the same crystallization technology under high pressure was applied to cross-linked polyethylene, the aforementioned cross-linking between molecular chains became an obstacle, and only a slight improvement in crystallinity was observed, which was not as good as the expected improvement in physical properties. It cannot be obtained. Here, the inventors fundamentally re-evaluated the various excellent physical properties of the crosslinked polyolefin mentioned above and the characteristics of the polymer microstructure obtained by extremely crystallizing it, and, as mentioned above, discovered both of these previously unknown properties. As a result of intensive research into the possibility of creating new materials with these properties, we recognized that the network structure of cross-linked polyolefins could be swollen by solvents, and this could lead to a high degree of crystallization due to a completely new mode of aggregation of molecular chains. He completed his invention.

即ちこの発明は、架橋させたポリオレフィン成形体を溶
剤にて膨潤させた後、この溶剤を乾燥等により除去する
ことを特徴とする架橋ポリオレフィン成形体の製造方法
である。
That is, the present invention is a method for producing a crosslinked polyolefin molded article, which is characterized in that the crosslinked polyolefin molded article is swollen with a solvent, and then the solvent is removed by drying or the like.

この発明において、上記の如く溶媒中での材料の膨?閏
と結晶化現象とが起るのを具体的に観測できるのは架橋
材料を溶媒中に置いて昇温あるし、は降塩過程にある材
料の相変化を測定する方法である。
In this invention, swelling of the material in a solvent as described above is possible. The occurrence of crystallization phenomena can be specifically observed by placing a crosslinked material in a solvent and raising the temperature, and by measuring the phase change of the material during the salting process.

第1図は、熱電対を用いて試験管中に構成された示差熱
測定系である。A,B二本のシース熱電対を用いて、一
方は標準物質A′(例えば四ふっ化エチレンのブロック
)、他方は測定物質B′(架橋ポリエチレン)の温度を
測定し、B′の相変化にともなう温度変化をA′との温
度差としてレコーダーに記録する試験管D中には用いる
溶媒Cが入っている。Eは熱媒体で温度制御装置により
連続的に等速昇温、降溢させることができる。第2図は
溶媒(キシレン)の昇塩、降温過程における架橋サンプ
ル(低密度PE)のキシレン中における相変化の模様を
観測したものである。P,Q,Rの部分は昇温過程にお
いてサンプルが膨潤しながら溶解するとき認められる吸
熱であり、S,T,U,Vは隆温過程で現われる結晶化
による発熱を示している。Pにおいては、架橋ポリエチ
レンと溶媒は相分離した状態にあり、昇温と共に溶解が
始まり吸熱が起る。Qでは溶解速度が最大になり、Rで
溶解は完了する。この時点Rで、架橋ポリエチレンは溶
媒を含んだ無定形であり謂ゆる膨潤状態(膨潤ゲル)を
呈する。溶媒中の膨潤ゲルの結晶化は溶媒の温度を下げ
ていくことにより発熱ピークとして観測される。
FIG. 1 shows a differential thermal measurement system constructed in a test tube using thermocouples. Using two sheathed thermocouples A and B, one measures the temperature of the standard substance A' (for example, a block of tetrafluoroethylene) and the other measures the temperature of the measurement substance B' (crosslinked polyethylene), and the phase change of B' is measured. The solvent C to be used is contained in the test tube D, in which the temperature change accompanying the temperature change is recorded on a recorder as the temperature difference with A'. E is a heat medium that can be heated and cooled continuously at a constant rate by a temperature control device. Figure 2 shows the observation of the phase change pattern of a crosslinked sample (low-density PE) in xylene during the process of increasing the salt content of the solvent (xylene) and decreasing the temperature. Parts P, Q, and R represent endotherms observed when the sample swells and dissolves during the heating process, and S, T, U, and V represent heat generation due to crystallization that appears during the heating process. In P, the crosslinked polyethylene and the solvent are in a phase-separated state, and as the temperature rises, dissolution begins and endotherm occurs. At Q, the dissolution rate is maximum, and at R, dissolution is complete. At this point R, the crosslinked polyethylene is amorphous containing a solvent and exhibits a so-called swollen state (swollen gel). Crystallization of a swollen gel in a solvent is observed as an exothermic peak as the temperature of the solvent is lowered.

これがS,T,U,Vである。Tは結晶化開始温度であ
り、Uにおいて結晶化速度が最大となる。Vでは、結晶
化が終了する。これらの特定の温度は溶剤の存在しない
場合と比べて全て、低い温度城にある。この温度低下の
大きさはポリマーと溶剤との親和性、溶剤中に置かれた
ポリマー濃度によっても変化する。従って具体的に架橋
ポリマーを膨潤させる場合は材料を溶剤中でのポリマー
融点以上の温度に保った溶剤中に置くことによってなさ
れる。
These are S, T, U, and V. T is the crystallization start temperature, and the crystallization rate is maximum at U. At V, crystallization ends. These specific temperatures are all at a lower temperature than in the absence of solvent. The magnitude of this temperature drop also varies depending on the affinity between the polymer and the solvent and the concentration of the polymer placed in the solvent. Therefore, specifically swelling a crosslinked polymer is done by placing the material in a solvent maintained at a temperature above the melting point of the polymer in the solvent.

さらに、ポリオレフィンの場合、温度を降下させること
により溶剤中で結晶化が進み、しかるのち、溶剤を除去
することにより所望の材料を得ることができる。
Furthermore, in the case of polyolefins, crystallization proceeds in a solvent by lowering the temperature, and the desired material can then be obtained by removing the solvent.

この発明で用いられるポリオレフインとは、ポリエチレ
ン、ポリプロピレン、ポリブテンー1、ポリー4ーメチ
ル−ペンテン−1、ポリへキセン−1などのような単一
重合体、あるいはこれらの二以上の成分からなる共重合
体、又は、酢酸ビニル、アクリル酸エチルなど他の重合
性モノマーとの共重合体、更にこれら単一重合体、共重
合体、グラフト重合体から選ばれた二種以上の混合物が
含まれる。
The polyolefin used in this invention is a homopolymer such as polyethylene, polypropylene, polybutene-1, poly4-methyl-pentene-1, polyhexene-1, or a copolymer consisting of two or more of these components. Alternatively, copolymers with other polymerizable monomers such as vinyl acetate and ethyl acrylate, and mixtures of two or more selected from these homopolymers, copolymers, and graft polymers are also included.

そしてこれらのポリオレフィン成形体とは、通常用いら
れる押出成形機、射出成形機などで成形したものでフィ
ルム、シート、繊維、パイプ、チューフ、ロッドなど、
又更に各種不定形状品などを含むものである。
These polyolefin molded products are molded using commonly used extrusion molding machines, injection molding machines, etc., and include films, sheets, fibers, pipes, tubes, rods, etc.
It also includes various irregularly shaped products.

又上記ポリオレフィン成形体の架橋方法には特に限定は
なく、有機過酸化物、アジド化合物、多官能性モノマ−
などを用いて、化学架橋方法、成形体にy線、電子線、
X線など放射線照射による架橋方法、更に過酸化物、シ
ラン化合物及びシラノール縮合触媒の存在下にシラン架
橋させる方法などいずれであっても良い。
There are no particular limitations on the crosslinking method for the polyolefin molded article, and organic peroxides, azide compounds, polyfunctional monomers, etc.
Using a chemical crosslinking method, Y-ray, electron beam,
Any crosslinking method using radiation irradiation such as X-rays or a method of silane crosslinking in the presence of a peroxide, a silane compound, and a silanol condensation catalyst may be used.

この発明の架橋ポリオレフィンの架橋度はゲル率で4の
重量%以上、好ましくは6の重量%以上が適当である。
The degree of crosslinking of the crosslinked polyolefin of the present invention is suitably at least 4% by weight, preferably at least 6% by weight in terms of gel percentage.

この下限以下では膨潤時に成形体の形状がくずれてしま
う恐れがあり好ましくない。上記架橋ポリオレフイン成
形体の膨潤のために用いられる溶剤としそては、ポリオ
レフィンとの相漆性を考慮してソリュビリティパラメー
ターが6.0〜10.のもの、具体的にはベンゼン、キ
シレン、トルェン、デカリン、テトラリンなどの炭化水
素系環状化合物、n−へブタン、n−デカンなどの直鎖
状炭化水素化合物などが良い。実際にはこれらの溶剤に
浸潰したり、該溶剤蒸気中に放置して処理するが、該溶
剤の種類、温度又は架橋ポリオレフィン成形体の形状、
寸法、架橋度、更に処理時間などによって成形体の物性
をいろいろに変えることができる。
Below this lower limit, the shape of the molded article may be distorted during swelling, which is not preferable. The solvent used for swelling the crosslinked polyolefin molded article has a solubility parameter of 6.0 to 10.0 in consideration of compatibility with the polyolefin. Examples include hydrocarbon cyclic compounds such as benzene, xylene, toluene, decalin, and tetralin, and linear hydrocarbon compounds such as n-hebutane and n-decane. In practice, the treatment is carried out by immersing it in these solvents or leaving it in the solvent vapor, but the type of solvent, temperature, shape of the crosslinked polyolefin molded article,
The physical properties of the molded article can be changed in various ways depending on the dimensions, degree of crosslinking, processing time, etc.

又成形体に対しこの処理を軽度に施し、該成形体の表面
部でのみ結晶化密度を向上させることにより、該成形体
の耐摩耗性の向上が得られる。
Furthermore, by lightly subjecting the molded body to this treatment to improve the crystallization density only on the surface portion of the molded body, the wear resistance of the molded body can be improved.

更にこの処理を極度に施した場合は成形物全体が高密度
化されることになり、特に耐電圧性、耐油性等に厳しい
特性が要求されるOFケーブルのプラスチック絶縁紙な
どに適当である。このように膨潤させた架橋ポリオレフ
ィン成形体は、溶剤との共存下で冷却した後溶剤を除去
することにより高密度化されてものとなるのである。
Furthermore, if this treatment is carried out to an extreme, the entire molded product will become highly densified, and is particularly suitable for plastic insulating paper for OF cables that require strict characteristics such as voltage resistance and oil resistance. The crosslinked polyolefin molded article swollen in this manner becomes highly densified by cooling it in the presence of a solvent and then removing the solvent.

この場合残存する溶剤はこれをなるべく少なくする必要
がある。ポリオレフィンが溶剤と共存している際、該成
形体の軟化温度、融解温度などの耐熱性を低下させたり
他の電気特性にも悪影響を与えるからである。具体的に
は上記残存溶剤は成形体に対し0.5重量%以下、好ま
しくは0.2以下にする必要がある。
In this case, it is necessary to reduce the amount of remaining solvent as much as possible. This is because when a polyolefin coexists with a solvent, it lowers the heat resistance such as the softening temperature and melting temperature of the molded article, and also adversely affects other electrical properties. Specifically, the residual solvent needs to be at most 0.5% by weight, preferably at most 0.2% by weight, based on the molded article.

溶剤除去の具体的な方法としては、風乾、加熱乾燥、真
空乾燥あるいは低沸点の溶剤で置換する方法などいろい
ろ挙げられる。この発明においてその特性を損わない範
囲で他の、酸化防止剤、架橋助剤などを適宜加えて差支
えない。
Specific methods for removing the solvent include air drying, heating drying, vacuum drying, and replacing the solvent with a low boiling point solvent. In the present invention, other antioxidants, crosslinking auxiliaries, etc. may be added as appropriate to the extent that the properties thereof are not impaired.

以上の説明及び後記実施例から明らかなように、この発
明は架橋ポリオレフィン成形体を溶剤で膨潤させた後潟
剤を除去すると云う単純な作業で物性の向上した成形体
が得られるのであり、この実施のために特殊な装置をな
んら必要としないなどの効果がありその工業的価値は非
常に大きい。
As is clear from the above explanation and the Examples described later, in this invention, a molded product with improved physical properties can be obtained by a simple operation of swelling a crosslinked polyolefin molded product with a solvent and then removing the lag agent. It has the advantage of not requiring any special equipment, and has great industrial value.

以下実施例によりこの発明を具体的に説明する。The present invention will be specifically explained below with reference to Examples.

実施例 1、比較例 1,2 高密度ポリエチレン(MII.0)をTダィ押出機によ
りダイス温度220午0にて押出し0.5脚厚のフィル
ムを得た(比較例1品)。
Example 1, Comparative Examples 1 and 2 High-density polyethylene (MII.0) was extruded using a T-die extruder at a die temperature of 220 pm to obtain a film with a thickness of 0.5 mm (Comparative Example 1 product).

このフィルムを真空中にてy線を30Mrad照射しゲ
ル分率70%の架橋ポリエチレンフィルムとした(比較
例2品)。
This film was irradiated with Y-rays at 30 Mrad in a vacuum to obtain a crosslinked polyethylene film with a gel fraction of 70% (Comparative Example 2).

次にこの架橋ポリエチレンフィルムを12000のキシ
レン中に1び分間浸潰した後放冷風乾し更に真空乾燥し
た(実施例1品)。
Next, this crosslinked polyethylene film was immersed in 12,000 g of xylene for 1 minute, left to cool, and then dried in vacuum (Example 1 product).

これら各フィルムの特性値を調べ結果を表1に示す。The characteristic values of each of these films were examined and the results are shown in Table 1.

表1 尚比較例2の架橋ポリエチレンフィルムを120℃のシ
リコンオイルバス中で5独特間熱処理したが密度は0.
956までしか上らず、特性の向上は殆んど認められな
かった。
Table 1 The crosslinked polyethylene film of Comparative Example 2 was heat-treated in a silicone oil bath at 120°C for 5 hours, but the density was 0.
It only increased to 956, and almost no improvement in characteristics was observed.

実施例 2、比較例 3 低密度ポリエチレン(MII.0、密度0.914タ′
cc)10の重量部及びジクミルパーオキサィド2重量
部とをロールで混練し、次に電熱プレスを用い、金型中
135ooで成形後そのままその温度を200℃に昇温
し10分間保持してゲル分率8頚重量%の2肌厚架橋ポ
リエチレンシートを得た(比較例3品)。
Example 2, Comparative Example 3 Low density polyethylene (MII.0, density 0.914ta'
cc) 10 parts by weight of dicumyl peroxide and 2 parts by weight of dicumyl peroxide are kneaded with a roll, then molded in a mold at 135 oo by using an electric press, and then the temperature is raised to 200°C and held for 10 minutes. A two-thickness crosslinked polyethylene sheet with a gel fraction of 8% by weight was obtained (Comparative Example 3).

この架橋ポリエチレンシートを100℃のキシレン中に
10分間浸潰して膨潤させた後放冷し、更にアセトン中
でキシレンを洗糠し風乾真空乾燥した(実施例2品)。
This crosslinked polyethylene sheet was immersed in xylene at 100° C. for 10 minutes to swell, and then allowed to cool. The sheet was further washed to remove the xylene in acetone, and air-dried and vacuum-dried (Example 2 product).

これらのシートの特性を調べ結果を表2に示す。表2 但し上表中、 ※印:AC,DDB油中での値、その他は表1に準ずる
The properties of these sheets were investigated and the results are shown in Table 2. Table 2 However, in the above table, *mark: Values in AC and DDB oil, and other values are in accordance with Table 1.

尚比較例3の架橋ポリエチレンシートを、圧力媒体とし
てシリコンオイルを用いたピストンシリンダー方式の高
圧容器中で膨潤させることなく300傍気圧、250℃
に保持した後、そのままの圧力下で降溢して高圧結晶化
させたものの密度は0.9102であり、軟化温度その
他の特性値に向上は認められなかった。
The cross-linked polyethylene sheet of Comparative Example 3 was heated at 300 atmospheric pressure and 250° C. without swelling in a piston-cylinder type high-pressure container using silicone oil as a pressure medium.
The density of the product, which was maintained at 100° C. and then allowed to fall under the same pressure for high-pressure crystallization, was 0.9102, and no improvement was observed in the softening temperature or other characteristic values.

実施例 3、比較例 4 ポリプロピレン(MII.畔費度0.895多/cc)
100重量部とジビニルベンゼン2重量部との混合物を
、Tダィ押出機により0.5側厚のフィルムに押出成形
し、更にy線を則心ad照射してゲル分率65重量%の
架橋ポリプロピレンフィルムを得た(比較例4品)。
Example 3, Comparative Example 4 Polypropylene (MII. rate of 0.895/cc)
A mixture of 100 parts by weight and 2 parts by weight of divinylbenzene was extruded into a film with a side thickness of 0.5 using a T-die extruder, and then cross-linked with a gel fraction of 65% by weight by irradiating Y-rays with regular AD. A polypropylene film was obtained (comparative example 4 products).

このフィルムを13000のデカリン中に20分間浸潰
したあと、取出して放令し、更にアセトン中で超音波洗
浄して風乾真空乾燥した(実施例3品)。
This film was soaked in 13,000 decalin for 20 minutes, taken out, allowed to stand, and further ultrasonically cleaned in acetone and air-dried and vacuum-dried (Example 3 product).

これら両フィルムの特性を調べ結果を表3に示した。The properties of both films were investigated and the results are shown in Table 3.

表3 上の実施例、特に表1〜3の結果から、この発明による
成形体は架橋構造と共に高密度化されていることにより
、比較例品に比べ耐熱性、機械的性質及び電気的性質等
各種特性を著しく向上させたものであることが明らかで
ある。
Table 3 From the results of the above examples, especially Tables 1 to 3, it is clear that the molded product according to the present invention has a crosslinked structure and high density, so it has better heat resistance, mechanical properties, electrical properties, etc. than the comparative example products. It is clear that various properties have been significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は熱電対を用いて試験管中に構成された示差熱測
定系図、第2図は溶媒(キシレン)の昇温、降温過程に
おける架橋サンプルのキシレン中における相変化の模様
を表したものである。 第2図第1図
Figure 1 is a diagram of a differential thermal measurement system configured in a test tube using a thermocouple, and Figure 2 shows the phase change pattern of a crosslinked sample in xylene during the temperature rising and cooling process of the solvent (xylene). It is. Figure 2 Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1 架橋させたポリオレフイン成形体を、そのポリマー
の融点以上の温度に保つた溶剤中に置くことによつて膨
潤させた後、この溶剤を乾燥等により除去することを特
徴とする架橋ポリオレフイン成形体の製造方法。
1. A crosslinked polyolefin molded product, which is characterized in that the crosslinked polyolefin molded product is swollen by placing it in a solvent kept at a temperature higher than the melting point of the polymer, and then the solvent is removed by drying or the like. Production method.
JP13796878A 1978-11-10 1978-11-10 Method for producing crosslinked polyolefin molded product Expired JPS6032650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13796878A JPS6032650B2 (en) 1978-11-10 1978-11-10 Method for producing crosslinked polyolefin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13796878A JPS6032650B2 (en) 1978-11-10 1978-11-10 Method for producing crosslinked polyolefin molded product

Publications (2)

Publication Number Publication Date
JPS5565238A JPS5565238A (en) 1980-05-16
JPS6032650B2 true JPS6032650B2 (en) 1985-07-29

Family

ID=15210940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13796878A Expired JPS6032650B2 (en) 1978-11-10 1978-11-10 Method for producing crosslinked polyolefin molded product

Country Status (1)

Country Link
JP (1) JPS6032650B2 (en)

Also Published As

Publication number Publication date
JPS5565238A (en) 1980-05-16

Similar Documents

Publication Publication Date Title
Peppas et al. Poly (vinyl alcohol) hydrogels: Reinforcement of radiation‐crosslinked networks by crystallization
Kao et al. Crystallinity in chemically crosslinked low density polyethylenes: 1. Structural and fusion studies
US3886056A (en) Process for producing a high melting temperature polyethylene employing irradiation and orienting
TWI247778B (en) Resin composition for producing biaxially oriented polypropylene films
JPS5861129A (en) Preparation of foam
Sirisinha et al. Comparison in processability and mechanical and thermal properties of ethylene–octene copolymer crosslinked by different techniques
WO1996027633A1 (en) Microporous polyethylene film and process for producing the film
JP2021082596A5 (en)
JP2022002211A5 (en)
Crystal The crystalline morphology of poly (N-vinylcarbazole)
Lovinger et al. Inhomogeneous thermal degradation of poly (vinylidene fluoride) crystallized from the melt
KR910003718B1 (en) Thermoformed polyarylene sulfide container
JP2015224996A (en) Method for evaluating degree of crosslinking of polyethylene resin
EP0239637A1 (en) Crystalline vinylidene fluoride.
JPH10501297A (en) Propylene polymer composition, method of processing the same, and articles made therefrom
JPS6032650B2 (en) Method for producing crosslinked polyolefin molded product
US5221728A (en) Film of an aromatic polyetherketone suitable for further thermoplastic processing
Perkins et al. Effect of gamma radiation and annealing on ultra‐oriented polyethylene
Weinhold et al. The effect of surface nucleation on the crystallization of the α phase of poly (vinylidene fluoride)
US3293341A (en) Heat treatment of hollow-shaped structures
JP3570850B2 (en) Method for producing cross-linked polycaprolactone
Torikai et al. Radiation‐Induced degradation of polyethylene: Polymer structure and stability
US3162623A (en) Crosslinking of polymers with nitrogen fluorides
JPS61193836A (en) Preparation of ultra-high molecular weight alpha-olefin polymer film
Nicolás et al. Thermal Properties and SSA Fractionation of Metallocene Ethylene‐Oct‐1‐ene Copolymers with High Comonomer Content Cross‐linked by Dicumyl Peroxide or β‐Radiation