JPS6032526A - Reactive power controller of composite generating plant - Google Patents

Reactive power controller of composite generating plant

Info

Publication number
JPS6032526A
JPS6032526A JP58137841A JP13784183A JPS6032526A JP S6032526 A JPS6032526 A JP S6032526A JP 58137841 A JP58137841 A JP 58137841A JP 13784183 A JP13784183 A JP 13784183A JP S6032526 A JPS6032526 A JP S6032526A
Authority
JP
Japan
Prior art keywords
reactive power
excitation
avr
control
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58137841A
Other languages
Japanese (ja)
Other versions
JPH0477328B2 (en
Inventor
森 良美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58137841A priority Critical patent/JPS6032526A/en
Publication of JPS6032526A publication Critical patent/JPS6032526A/en
Publication of JPH0477328B2 publication Critical patent/JPH0477328B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は複数台のガスタービンと蒸気タービンを結合し
て成る複合発電プラント(以下、コンバインドサイクル
と称す)の無効電力制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a reactive power control device for a combined cycle power plant (hereinafter referred to as a combined cycle) formed by combining a plurality of gas turbines and steam turbines.

[発明の技術的背景とその問題点] 発電システムトータルとしての効率を向上させる方法の
1つとして、ガスタービンU1気により蒸気を発生させ
、その蒸気により蒸気タービンを駆動し、ガスタービン
および蒸気タービンの駆動力を合わせて発電機を回して
発電を行なうというコンバインドサイクルシステムが最
近使用されるようになってきている。
[Technical background of the invention and its problems] One method of improving the efficiency of the power generation system as a whole is to generate steam using gas turbine U1 air, drive a steam turbine with the steam, and drive the gas turbine and the steam turbine. Combined cycle systems have recently come into use, in which the combined driving forces of two motors rotate a generator to generate electricity.

第1図に上記コンバインドサイクルの構成の一例を示す
FIG. 1 shows an example of the configuration of the above-mentioned combined cycle.

ガスタービン1.蒸気タービン22発電機3は一軸上に
結合され、発電機3の出力は主変圧器4にて昇圧された
後しゃ断器5を介して系統6に接続される。
Gas turbine 1. The steam turbine 22 and the generator 3 are coupled on one shaft, and the output of the generator 3 is boosted by the main transformer 4 and then connected to the grid 6 via the breaker 5.

発電機3の出力は100MII程度の中小容量のものが
用いられ、上記システムを複数台(5〜6程度)並列に
接続して1つの発電プラントを構成している。
The output of the generator 3 used is one with a small to medium capacity of about 100 MII, and a plurality of the above systems (about 5 to 6) are connected in parallel to form one power generation plant.

このように複数台の発電機によりプラントを構成した場
合、−軸が故障してもプラント全体としての発電風には
大きな影響を与えないという利点があるが、発電機の台
数が増える全運転員を増やすわけにはいかないため、複
数台をまとめて1つのシステムとして制御するための制
御装置が必要となる。
When a plant is configured with multiple generators in this way, there is an advantage that even if the -shaft breaks down, it does not have a major impact on the generated wind as a whole, but the increased number of generators means that all operators Since it is not possible to increase the number of units, a control device is required to control multiple units together as one system.

」二記制御装置の1つとして無効電力制御装置の概略制
御ブロック図を第2図に示す。中央給電所あるいはオペ
レータの手動スイッチによる無効電力の増減指令7によ
り変化率制限器8を介して積分器9にて無効電力指令値
を作る。運転台数により決まる上下限制御器10にて制
限をかけた後比較器11に入力し、各軸の無効電力12
を加算器13にてたし合わせた値とを比較する。上記比
較器]1にて無効電力の指令値と実際値の比較を行ない
、その差分のみを分配器14に入力して各軸に無効電力
の目標を分配する。−F記無効電力目標値は各軸制御部
J5に入力し、変化率制限器16.上下限制限器17に
て制限をかtづだ後、比較器18にて制御を行なってい
る軸の実無効電力19と比較し、両者の差分を無効電力
増減指令として発電機の励磁量[20に入力し、上記無
効電力増減指令にて自動電力調整器(以下、AVRとい
う)21の電圧設定器22の増減をイjなう。
FIG. 2 shows a schematic control block diagram of a reactive power control device as one of the two control devices. A reactive power command value is generated by an integrator 9 via a change rate limiter 8 in response to a reactive power increase/decrease command 7 from a central power supply station or a manual switch of an operator. After being limited by the upper and lower limit controller 10 determined by the number of operating units, the reactive power 12 of each axis is input to the comparator 11.
are added together by the adder 13 and compared. The comparator 1 compares the command value and the actual value of reactive power, and only the difference is input to the distributor 14 to distribute the target reactive power to each axis. - The reactive power target value indicated in F is input to each axis control section J5, and the rate of change limiter 16. After setting the upper and lower limit limiter 17, the comparator 18 compares it with the actual reactive power 19 of the axis being controlled, and the difference between the two is used as a reactive power increase/decrease command to set the excitation amount of the generator [ 20, and the voltage setting device 22 of the automatic power regulator (hereinafter referred to as AVR) 21 is inputted to the reactive power increase/decrease command.

AVRは発電機の励磁電流を制御して発電機の弯餡子電
圧を調整する装置であるが発電機力入電力系Mtと接続
されており、系統電圧が一定不変の状態しこおいては励
磁電流を増やせば無効電力力<S曽え、坊1ノ磁電流を
減らせば無効電力が減少する。すなjフち、AVRにて
無効電力の増減制御を行なうことカス再訂になわけであ
る。
AVR is a device that controls the excitation current of the generator to adjust the voltage of the generator, but it is connected to the generator input power system Mt, and when the system voltage remains constant, If you increase the excitation current, the reactive power <S>, and if you decrease the excitation current, the reactive power will decrease. In other words, controlling the increase/decrease of reactive power in AVR is basically a waste of time.

第3図に励磁装置の構成図の一例を示す。木イシリはす
・rリスタ直接励磁方式による代表例を示したものであ
る。サイリスタ直接励磁とI′j:第3図[こて発電機
23の出力電圧を励磁用変圧器24シこで)内当な電圧
レベルに電圧を落した後サイリスタブ1ノツジ25にて
整流を行ない界磁しゃ断器26を介して界磁巻線27に
供給するという励磁方式であ1、発電4幾23の励磁源
として自分の出力を使用するブ巳め、イ也の励磁源を必
要としない励磁方式である。励磁装置としては従来より
発電機の出力電圧を屍る設定値に合わせるためのAVR
21と、このAVIt21の故障時あるいは界磁電流を
ある設定値にあわせるという制御を行なう定励磁調整器
(以下、阿ECという)28の2つの調整器を持ってい
る。
FIG. 3 shows an example of a configuration diagram of an excitation device. This figure shows a typical example of the wood-isiri-hasu-r lister direct excitation method. Thyristor direct excitation and I'j: Figure 3 [The output voltage of the iron generator 23 is reduced to an appropriate voltage level by the excitation transformer 24], and then rectified by the thyristor stub 1 node 25. The excitation method is to supply the field winding 27 via the field breaker 26, and since the output is used as the excitation source for the power generator 4 and 23, no other excitation source is required. It is an excitation method. Conventionally, as an excitation device, AVR is used to adjust the output voltage of the generator to the set value of the generator.
21, and a constant excitation regulator (hereinafter referred to as AEC) 28, which performs control to adjust the field current to a certain set value when the AVIt 21 fails or to adjust the field current to a certain set value.

AVR21による制御が行なわわている場合は、発電機
23の出力電圧はM1器用変圧器29を介してAVR2
1に入力され、AVR21の電圧設定器22の設定値と
合うようにサイリスタブリッジ25の各サイリスクのゲ
ー1−にパルス信号が送られ励磁電流の制御が行なわれ
る。発電機の出力電圧電流は、計器用変圧器29あるい
は計器用変流器30を介して過励磁。
When the control is performed by the AVR 21, the output voltage of the generator 23 is transferred to the AVR 2 via the M1 power transformer 29.
1, and a pulse signal is sent to the gate 1- of each thyristor bridge 25 to control the excitation current so as to match the set value of the voltage setting device 22 of the AVR 21. The output voltage and current of the generator is over-excited via the voltage transformer 29 or current transformer 30.

低励磁等の各制限器31よりAVR21に信号が送られ
励磁量が制限され安定運転限界を越えないよう制御され
る。
A signal is sent to the AVR 21 from each limiter 31 for low excitation, etc., and the amount of excitation is limited so as not to exceed the stable operation limit.

MEC28による制御が行なわれている場合は、界磁電
圧あるいは界磁電流がMEC2gに入力し、この値が電
圧設定器32の設定値と合うようにサイリスクブリッジ
25の各サイリスタのゲートにパルス信号が送られ励磁
電流が制御される。
When control is performed by the MEC 28, the field voltage or field current is input to the MEC 2g, and a pulse signal is sent to the gate of each thyristor of the thyristor bridge 25 so that this value matches the setting value of the voltage setting device 32. is sent to control the excitation current.

上記AVR21による制御と肛C28による制御との違
いは、電圧設定値22.32の値と発電機端子電圧と比
較するか、あるいは、界磁電圧、電流と比較するかとい
う違いである。発電機が系統に接続されている状態では
系統電圧が変動すれば発電機電圧も変動する。このとき
、AVRにて制御している場合は、電圧変動を抑制する
方向で励磁電流の制御が行なわれるため、系統全体の安
定度が向上する。
The difference between the control by the AVR 21 and the control by the port C28 is whether the voltage setting value 22.32 is compared with the generator terminal voltage or the field voltage and current. When the generator is connected to the grid, if the grid voltage fluctuates, the generator voltage will also fluctuate. At this time, when the AVR is used for control, the excitation current is controlled in a direction that suppresses voltage fluctuations, thereby improving the stability of the entire system.

それに対してMECにて制御している場合は、系統が変
動しても自分の励磁量は変化させなINため系統の安定
化の向上は望めない。
On the other hand, when the MEC is used for control, the amount of excitation is not changed even if the system fluctuates, so no improvement in the stability of the system can be expected.

このため、従来より通常運転ではAVRにて制御を行な
い、AVR故障時あるいは起動時のみNlECにて制御
を行なうという運転が行なわれてしする。すなわち、A
VR故障によるMBC制御中は中給指令ある6tは系統
の状態等の条件をオペ・レータが監視し、NECの電圧
設定器を手動で変化させると5tう運転が行なわれる。
For this reason, conventionally, the AVR performs control during normal operation, and the NlEC performs control only when the AVR fails or starts up. That is, A
During MBC control due to a VR failure, the operator monitors conditions such as the state of the system for 6t when there is an intermediate supply command, and if the NEC voltage setting device is manually changed, 5t operation is performed.

しかし、コンバインドサイクルtこおいては複数の発電
機をあたかも1台として制御を行なっているため、ある
軸のAVR故障した場合、オペレータがその軸のMBC
の電圧設定器を常し;手動制御することは困難である。
However, in a combined cycle, multiple generators are controlled as if they were one unit, so if the AVR of a certain axis fails, the operator can control the MBC of that axis.
voltage setting device; manual control is difficult.

そこで、従来のコンバインドサイクル向は無効電力制御
装置では、A V、R故障にて故障した軸をトリップさ
せる制御を行なっていた。しかし、このような従来方式
によると、コンバインドサイクルは複数軸で1つのプラ
ントを形成しているため、1軸1−リップしても全体に
与える影響はコンバイン1〜サイクル以外のプラントよ
りは小さいが、たとえl軸でもトリップさせれば系統に
少ながらぬ動揺を与える問題点があった。
Therefore, in the conventional reactive power control device for the combined cycle, control was performed to trip the failed shaft due to the AV or R failure. However, according to this conventional method, since a combined cycle has multiple axes forming one plant, even if one axis is 1-ripped, the effect on the whole is smaller than in a plant other than the combine 1-cycle. However, there was a problem in that even if the L axis was tripped, it would cause considerable disturbance to the grid.

[発明の目的] 本発明はAVRの故障した軸をトリップさせることなく
、また、オペレータに負担をがけることもなく、MEC
による運転継続の可能な複合発電プラントの無効電力制
御装置を提供することを目的とする。
[Object of the Invention] The present invention enables MEC
The object of the present invention is to provide a reactive power control device for a combined power generation plant that allows continuous operation.

[発明の概要コ このため、本発明はAVHの故障した軸は予め設定した
値でMIEC運転を行なうと共に、その無効電力分を無
5効電力指令値より差し引き、その差し引い九指令値を
各AVHに分配することにより、無効電力の変動分を正
常なAVRで調整するようにしたことを特徴としている
[Summary of the Invention] Therefore, the present invention performs MIEC operation on the failed axis of the AVH at a preset value, subtracts the reactive power from the reactive power command value, and applies the subtracted 9 command value to each AVH. This feature is characterized in that the variation in reactive power is adjusted by the normal AVR by distributing it to the AVR.

[発明の実施例コ 以下、本発明の実施例を図面を参照して説明する。[Embodiments of the invention] Embodiments of the present invention will be described below with reference to the drawings.

第4図は本発明の一実施例を示す無効電力制御装置の制
御ブロック図を示したもので、図中、第2図と同一符号
は同−又は相沼部分を示す。図の構成で第2図と異なる
点は、無効電力の増減指令7を積分器33にて積分した
後、引算器34に入力し、AVR自動運転でない軸の無
効電力35を加算器36にて合計した値と引算を行ない
、その出力を変化率制限器8に入力している点である。
FIG. 4 shows a control block diagram of a reactive power control device showing an embodiment of the present invention, and in the figure, the same reference numerals as in FIG. 2 indicate the same or Ainuma parts. The difference in the configuration of the diagram from that in FIG. The difference is that the total value is subtracted and the output thereof is input to the change rate limiter 8.

すなわち、 AVR自動運転でない軸の無効電力はあら
かじめ差し引いた上で無効電力の指令値とする考えであ
る。
In other words, the idea is that the reactive power of the axes that are not in AVR automatic operation is subtracted in advance and then used as the reactive power command value.

次に上下限制限器10の出力は比較器11でAVI+自
動運転中の軸の無効電力37を加算器13にてたし合わ
せた値と比較する。これはAVR自動運転でない軸の無
効電力はすでに差し引いであるため、 AVR自動運転
の軸のみで無効電力のフィードバックを考えるためであ
る。次に、分配器14ではAVR自動運転中の各軸に無
効電力の目標値を分配し各軸制御部15に信号を送る。
Next, the output of the upper and lower limit limiter 10 is compared in a comparator 11 with a value obtained by adding AVI+reactive power 37 of the shaft during automatic operation in an adder 13. This is because the reactive power of the non-AVR automatic operation axis has already been subtracted, so reactive power feedback is considered only for the AVR automatic operation axis. Next, the distributor 14 distributes the target value of reactive power to each axis during AVR automatic operation and sends a signal to each axis control section 15.

以下、AVR自動運転中の軸については前述第2図で説
明したのと同様の制御が行なわれる。
Hereinafter, the same control as described above with reference to FIG. 2 is performed for the axes during AVR automatic operation.

一方、AVltが故障し励磁装[20の運転がt・lE
C28による制御に移行した軸は、AVR故障時の無効
電力設定器38と制御している軸の実無効電力19を比
較器39に人力し、AVR故障にてNEC制御に移行し
たとき閉となる接点4oを介してMEC2Bの電圧設定
器32を制御する。
On the other hand, the AVlt failed and the operation of the excitation system [20 was t・lE].
The axis that has transitioned to control by C28 manually inputs the reactive power setter 38 at the time of AVR failure and the actual reactive power 19 of the axis being controlled to the comparator 39, and is closed when it transitions to NEC control due to AVR failure. The voltage setter 32 of the MEC 2B is controlled via the contact 4o.

このとき、上記無効電力設定器38の設定値は任意の値
を選ぶことが可能であるが、無効電力ゼロすなわち力率
” 1 ”にて発電機が安定に負うことのできる負荷が
最大となるため、設定値はゼロとすること力籍5えられ
る。
At this time, the setting value of the reactive power setting device 38 can be selected arbitrarily, but the load that the generator can stably bear is the maximum when the reactive power is zero, that is, the power factor is "1". Therefore, the set value should be set to zero.

このように、AVRが故障して場合はAVR制御がらN
EC制御に移行し、NEC制御に移行した軸については
無効電力をゼロあるいは任意のある値に設定し。
In this way, if the AVR malfunctions, the AVR control
For the axes that have transitioned to EC control and then NEC control, set the reactive power to zero or an arbitrary value.

このAVR自動以外の軸の無効電力を指令値からあらか
じめ引き算を行なってAVR自動の軸のみで無効電力の
制御を行なうことにより、AVRが故障した場合もオペ
レータが常時監視、制御を行なうことなく、運転を継続
することが可能となる。
By subtracting the reactive power of the non-AVR automatic axes from the command value in advance and controlling the reactive power only with the AVR automatic axis, even if the AVR malfunctions, the operator does not have to constantly monitor and control it. It becomes possible to continue driving.

尚、上記実施例では励磁系はザイリスタ直接方式にて説
明したが他の方式のものでも全く同様の作用効果が得ら
れることは勿論である。
In the above embodiment, the excitation system was explained using the Zyristor direct system, but it goes without saying that other systems can provide the same effects.

また、上記実施例におtツる無効電力設定器38と比較
器39のかわりに無効電力リレーを使用することも可能
である。
Further, it is also possible to use a reactive power relay in place of the reactive power setter 38 and comparator 39 in the above embodiment.

[発明の効果] 以上のように本発明によれば、AVRが故障したときで
も、オペレータに負担をかけることなくMECによる自
動運転継続が可能となる。
[Effects of the Invention] As described above, according to the present invention, even when the AVR breaks down, it is possible to continue automatic operation using the MEC without placing a burden on the operator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的なコンバインドサイクルの溝成図、第2
図はそのコンバインドサイクルに適用される従来の無効
電力制御装置の制御ブロック図、第3図はザイリスタ直
接励磁方式による一般的な励磁装置の構成図、第4図は
第1図のコンバインドサイクルに適用される本発明の一
実施例に係る無効電力制御装置の制御ブロック図である
。 7 ・増減指令、8 ・・変化率制限器、9.33 °
・積分器、10・ 上下限制御器、1.1,18.39
比較器、13,3(i ・ 加算器、14 分配器、1
5 ・ 各軸制御部、16・ 変1ヒ率制限器、17・
上下限制限器、19・・ 実無効電力、20・・励磁装
置、21 ・= AVR122,32−電圧設定1B、
28 ・・NEC,34・・・引算器、35.37・・
 無効電力、38 無効電力設定器、/IO・・ 接点
Figure 1 shows the groove diagram of a typical combined cycle, Figure 2
The figure is a control block diagram of a conventional reactive power control device applied to the combined cycle, Figure 3 is a configuration diagram of a general excitation device using the Zyristor direct excitation method, and Figure 4 is applied to the combined cycle of Figure 1. 1 is a control block diagram of a reactive power control device according to an embodiment of the present invention; FIG. 7 ・Increase/decrease command, 8 ・Change rate limiter, 9.33 °
・Integrator, 10・ Upper and lower limit controller, 1.1, 18.39
Comparator, 13, 3 (i Adder, 14 Distributor, 1
5. Each axis control section, 16. Variable 1 hit rate limiter, 17.
Upper and lower limit limiter, 19...Actual reactive power, 20...Exciter, 21...=AVR122, 32-Voltage setting 1B,
28...NEC, 34...Subtractor, 35.37...
Reactive power, 38 Reactive power setting device, /IO... Contact.

Claims (1)

【特許請求の範囲】[Claims] 複数のガスタービン、蒸気タービン、発電機をそれぞれ
一軸上に結合して成る複合発電プラントの各軸の発電機
を自動電圧調整器又は定励磁調整器にて励磁制御するこ
とにより、プラント全体の無効電力を制御する複合発電
プラントの無効電力制御装置において、定励磁調整器に
て励磁制御を行なっている軸の無効電力の合H1値を無
効電力指令値から減算する手段と、この手段により減算
された無効電力指令値を自動電圧調整器にて励磁制御髪
行なっている軸に分配する手段とを備えていることを特
徴とする複合発電プラントの無効電力制御装置。
In a combined power generation plant consisting of multiple gas turbines, steam turbines, and generators connected on a single shaft, the generators on each shaft are controlled by an automatic voltage regulator or constant excitation regulator, thereby eliminating the power of the entire plant. In a reactive power control device for a combined power generation plant that controls electric power, there is provided a means for subtracting a total H1 value of reactive powers of axes whose excitation is controlled by a constant excitation regulator from a reactive power command value; 1. A reactive power control device for a combined power generation plant, comprising means for distributing the reactive power command value to the shafts undergoing excitation control using an automatic voltage regulator.
JP58137841A 1983-07-29 1983-07-29 Reactive power controller of composite generating plant Granted JPS6032526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58137841A JPS6032526A (en) 1983-07-29 1983-07-29 Reactive power controller of composite generating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58137841A JPS6032526A (en) 1983-07-29 1983-07-29 Reactive power controller of composite generating plant

Publications (2)

Publication Number Publication Date
JPS6032526A true JPS6032526A (en) 1985-02-19
JPH0477328B2 JPH0477328B2 (en) 1992-12-08

Family

ID=15208067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58137841A Granted JPS6032526A (en) 1983-07-29 1983-07-29 Reactive power controller of composite generating plant

Country Status (1)

Country Link
JP (1) JPS6032526A (en)

Also Published As

Publication number Publication date
JPH0477328B2 (en) 1992-12-08

Similar Documents

Publication Publication Date Title
Banerjee et al. Application of magnetic energy storage unit as load-frequency stabilizer
EP3371882B1 (en) Balancing reactive current between a dfig stator and a grid-side inverter
CN108695897B (en) Power control method, device, controller, system and medium for photovoltaic power station
Ospina et al. Emergency support of transmission voltages by active distribution networks: A non-intrusive scheme
EP3734799A1 (en) Control of a wind turbine and associated method
JPS62178200A (en) Controller for generated output
CA1101932A (en) Method and apparatus for controlling the real and reactive power behavior of a high voltage d. c. transmission (hdt) system
Tripathy et al. Dynamic performance of wind-diesel power system with capacitive energy storage
US10868427B2 (en) Method for feeding electrical power into an electrical supply network
JPS6032526A (en) Reactive power controller of composite generating plant
Magsaysay et al. Use of a static frequency converter for rapid load response in pumped-storage plants
JPH01110075A (en) Pumping operation stop control method for ac excited synchronous machine
Prabhakaran et al. Performance investigation on damping of active power oscillation in the large hydro-power plant with power system stabilizer
RU2550154C2 (en) Method for control of tap changer under load for forced excitation circuit, respective unit and forced excitation circuit with this unit
JPS6334699B2 (en)
JPS6082033A (en) Reactive power controller of composite generator plant
JPS6070929A (en) Reactive power controller of composite generator plant
JPS6070934A (en) Excitation controller of composite generator plant
DE102013100999A1 (en) Power supply arrangement has control device that is provided with inverter for providing real power and reactive power, and control unit that is provided for monitoring terminal voltage of electrical energy accumulator
Bordignon et al. Auxiliary frequency controllers for the black start of stand‐alone systems with predominance of wind generation
Wald et al. Adaptive Virtual Synchronous Machine Control for Asynchronous Grid Connections
US12119657B2 (en) Selectively adopting a grid forming operation mode
Perry et al. Improved stability with low time constant rotating exciter
JP3388672B2 (en) Pumped storage power generation system
JPH02192501A (en) Water feed control device during fcb of drum boiler