JPS6032489A - Solid-state image pickup element - Google Patents

Solid-state image pickup element

Info

Publication number
JPS6032489A
JPS6032489A JP58142203A JP14220383A JPS6032489A JP S6032489 A JPS6032489 A JP S6032489A JP 58142203 A JP58142203 A JP 58142203A JP 14220383 A JP14220383 A JP 14220383A JP S6032489 A JPS6032489 A JP S6032489A
Authority
JP
Japan
Prior art keywords
signal
signals
image pickup
picture element
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58142203A
Other languages
Japanese (ja)
Inventor
Seiji Hashimoto
誠二 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58142203A priority Critical patent/JPS6032489A/en
Publication of JPS6032489A publication Critical patent/JPS6032489A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To make sampling pitch of each picture element and blind sector equal simply by setting to make the center of a blind sector and adjoining center of picture element equal distance. CONSTITUTION:In the structure of image pickup section of a solid-state image pickup element, the distance between the centers of image pickup cells PE shown by arrows and the distance between centers of blind sectors US including antiblooming drain ABD are equal T. Signals G (green transmission), R (red transmission), Cy (cyan transmission) and BL (black signal) are transferred respectively to corresponding shift register 30, and read out for each horizontal line in horizontal transfer frequency. Thus, sampling pitch of each picture element and blind sector can be made equal simply. Accordingly, moire caused by phase deviation of sampling is hard to occur when forming luminance signals by signals from picture elements through color separation filters.

Description

【発明の詳細な説明】 (技術分野) 本発明は固体撮像素子、特にtM像部のアンチブルーミ
ングドレイン(以後ABDと呼ぶ)を有する固体撮像素
子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a solid-state image sensor, and particularly to a solid-state image sensor having an anti-blooming drain (hereinafter referred to as ABD) in a tM image area.

(従来技術) 従来電荷転送型の固体撮像素子では過動j入射光に対し
て、その影響を軽減するためにAB D 構造を設ける
場合がある。この様な場合、1水平撮像セルに1本の割
合でABDを設けると、ABDの占有面積が水平撮像セ
ル数に比例して増加するから、ブ0利用率が非常に低下
することになる。そこである即位色層期毎にABDを設
ける事により、上述の欠点を除去する方式も公知である
。しかし、この場合、水平撮像セル間に感度のない、即
ち、不感帯のABDが存在するので、被写体像を撮像セ
ルで空間的にサンプリングした時、そのサンプリング間
隔が不等ピッチ1になり、モアレが発生し易くなるとい
う欠点があった。
(Prior Art) In conventional charge transfer type solid-state image sensors, an AB D structure is sometimes provided in order to reduce the influence of excessively moving incident light. In such a case, if one ABD is provided for one horizontal imaging cell, the area occupied by the ABD increases in proportion to the number of horizontal imaging cells, resulting in a very low utilization rate. Therefore, a method is also known in which the above-mentioned drawbacks are eliminated by providing an ABD for each predetermined color phase. However, in this case, there is an ABD with no sensitivity, that is, a dead zone, between the horizontal imaging cells, so when the subject image is spatially sampled with the imaging cells, the sampling interval becomes an unequal pitch of 1, and moiré occurs. This has the disadvantage that it is more likely to occur.

以下、−上述の欠点をフレーム転送型CCDを例にとり
説明する。第1図はフレーム転送型CODの模式図であ
り、10は撮像部、20はメモリ一部、60は水平シフ
トレジスタ、40は出力アンプである。第2図(A) 
、 (B)は第1図GCDの撮像部10の撮像セルとA
BD近傍のポテンシャル模式図、およびその感度図であ
る。同図(A)におし・て11はアンチプルーミングバ
リア(AB)、12はABDである。そして、斜線部は
各撮像セルに一時的に蓄積される光電変換された電荷で
ある。ところで撮像部の感度は同図(B)の様な感度分
布を有しており、各撮像セルの感度重心は矢印で示すC
I、C2,03の様な位置にある。
Hereinafter, the above-mentioned drawbacks will be explained by taking a frame transfer type CCD as an example. FIG. 1 is a schematic diagram of a frame transfer type COD, in which 10 is an imaging section, 20 is a part of memory, 60 is a horizontal shift register, and 40 is an output amplifier. Figure 2 (A)
, (B) shows the imaging cell of the imaging unit 10 of the GCD in FIG.
They are a schematic potential diagram near BD and its sensitivity diagram. In the same figure (A), 11 is an anti-pluming barrier (AB), and 12 is an ABD. The shaded areas are photoelectrically converted charges that are temporarily accumulated in each imaging cell. By the way, the sensitivity of the imaging unit has a sensitivity distribution as shown in FIG.
It is located at positions such as I, C2, and 03.

そして、各撮像セルのピッチSl、32.83が同じで
あるとすれば、感度重心の距離TI、T2は同じである
が、T3はその間にABDを含む不感帯USがあるので
T3 > TI = T2となる。一方、水平シフトレ
ジスタ60の転送段数は空読出し段数を除くと撮像セル
数と同じであり、かつ、転送パルスには周期的なパルス
を利用するので、結局空間サンプリング位相と信号読出
し水平シフトレジスタ読出し位相が異なってし士いモア
レが発生ずるという欠点が生じる。
If the pitch Sl, 32.83, of each imaging cell is the same, the distance TI, T2 of the sensitivity center of gravity is the same, but since there is a dead zone US including ABD between T3, T3 > TI = T2. becomes. On the other hand, the number of transfer stages of the horizontal shift register 60 is the same as the number of imaging cells except for the number of empty read stages, and periodic pulses are used for the transfer pulses, so in the end, the spatial sampling phase and signal readout horizontal shift register readout The disadvantage is that moiré occurs when the phases are different.

この様な位相の調節のために用いられていた従来の方法
では、クロック発生器あるし・は信号分離回路が非常に
複雑になる。また元の空間ザングリング位相に調整出来
ても、輝度信号に利用する投像セル間の位相が、側波帯
信号を打ち消す様な位相と異なるので、折返し歪の少l
jい高解像度の輝度信号を得る事は困離であった。
Conventional methods used for such phase adjustment require very complex clock generators and/or signal separation circuits. Furthermore, even if the original spatial zangling phase can be adjusted, the phase between the projection cells used for the luminance signal is different from the phase that cancels out the sideband signal, resulting in a small amount of aliasing distortion.
It has been difficult to obtain high-resolution luminance signals.

(目 的) 本発明は上述の様な従来技術の欠点を除去する事を目的
とする。又各撮像セル間の空間ザングリング位相を実質
的に同一とした固体撮像素子を提供する事を目的として
いる。
(Objective) The present invention aims to eliminate the drawbacks of the prior art as described above. Another object of the present invention is to provide a solid-state imaging device in which the spatial zangling phase between each imaging cell is substantially the same.

(実施例) 以下実施例に基づき本発明を詳述する。(Example) The present invention will be described in detail below based on Examples.

第6図(A) 、 (B)は本発明の第1実施例図であ
り、第4図は第6図実施例の信号処理ブロック図、第5
図は信号処理タイミングの説明図である。本実施例では
カラー化のために絵素としての各撮像セルPE上(c色
フィルタとして緑透過(G)、赤透過(R)、ンアン透
過(Cy)の各フィルタを設けてあり(図示省略)、4
・に像セルPEからは前述の色フィルタに対応する電荷
が得られるが、ここでは、それを信号G 、 R、ay
と呼ぶ。またA B D J二には遮光層があって、こ
こからは愚信号(B L )が得られる。
6(A) and 6(B) are diagrams of the first embodiment of the present invention, FIG. 4 is a signal processing block diagram of the embodiment of FIG. 6, and FIG.
The figure is an explanatory diagram of signal processing timing. In this embodiment, for colorization, green transmission (G), red transmission (R), and green transmission (Cy) filters are provided on each imaging cell PE as a picture element (c color filters (not shown). ), 4
- Charges corresponding to the aforementioned color filters are obtained from the image cell PE, but here they are used as signals G, R, ay
It is called. Further, there is a light shielding layer on ABDJ2, from which a light signal (BL) can be obtained.

上記各信号Ct 、 R、Cy 、 BLのザンプリン
グ位相を第6図(勾の様に各90°になる様な撮像部構
造にと すれば、信号Gと01辺、180”の位相差を持つので
、とのGとGyの信号から輝度信号を形成する事が容易
になる。また実際の水平撮像セル数を約580素子にす
れば従来の水平転送周波数はカラー副搬送波周波数(S
C)の6倍である10.7MH2となるが、本実施例の
様にABDも撮像セルであると見なせば、前記水平転送
周波数は14.FSMH2となり、一般のクロック発生
器のマスター周波数と同じになり非常に都合が良い。
The sampling phase of each of the above signals Ct, R, Cy, and BL is shown in Fig. 6 (if the imaging unit structure is such that each angle is 90° like a slope, then there will be a phase difference of 180'' from the signal G on the 01 side). Therefore, it becomes easy to form a luminance signal from the G and Gy signals of the
The horizontal transfer frequency is 10.7MH2, which is 6 times that of C), but if the ABD is also considered to be an imaging cell as in this embodiment, the horizontal transfer frequency is 14.7MH2. FSMH2, which is the same as the master frequency of a general clock generator, which is very convenient.

第6図(Blは本発明の固体撮像素子の撮像部構造を示
す図で、矢印で示す各撮像セルPEの中心及びABDを
含む各不感帯USの中心17jlの距酵はすべてTで等
間隔である。
FIG. 6 (Bl is a diagram showing the structure of the imaging section of the solid-state imaging device of the present invention, in which the centers of each imaging cell PE indicated by arrows and the center 17jl of each dead zone US including ABD are all spaced at equal intervals at T. be.

各撮像セルで得られた信号G、 、 R、ay及びBL
・はそれぞれ対応する水平シフトレジスフ60に転送さ
れ、1水平ライン毎に14.3MHzの転送周波数で読
み出される。
Signals G, , R, ay and BL obtained from each imaging cell
. is transferred to the corresponding horizontal shift register 60, and read out at a transfer frequency of 14.3 MHz for each horizontal line.

第4.第5図を利用して信号処理法を簡単に説明する。4th. The signal processing method will be briefly explained using FIG.

第6図(B)の様な等間隔サンプリングを行う糸像部1
0を有するCCD5は、クロック発生器・7からの複数
のパルスを電圧変換するドライ=<6によって駆動され
る。G信号6θはGCD出力信号1θからサンプルホー
ルド回路(S/H) 52で第5図示のコマンドパルス
2eにより分離される。同様KR倍信号 e 、 Cy
信号5eはS/H51,53で第5図示のコマンドパル
ス7e、5eにより夫り分離される。そしてG信号6θ
とay信号5eはスイッチ回路58で第5図示のGスイ
ッチパルス8eとCyスイッチパルス9eのタイミング
でそれぞれスイッチされ信号10θを出力する。即ち信
号10eけGとQy信号7 、16M”tTzの繰り返
し信号となり、帯域通過フィルタ59でi MTIzか
ら3.5 M[Izの信号だけが通過された高域輝度信
号YHとなる。
Thread image section 1 that performs sampling at equal intervals as shown in Fig. 6 (B)
The CCD 5 with 0 is driven by a voltage converting pulse from the clock generator 7 =<6. The G signal 6θ is separated from the GCD output signal 1θ by a sample and hold circuit (S/H) 52 using a command pulse 2e shown in FIG. Similarly KR multiplied signal e, Cy
Signal 5e is separated by S/Hs 51 and 53 by command pulses 7e and 5e shown in FIG. and G signal 6θ
and ay signal 5e are switched by a switch circuit 58 at the timing of G switch pulse 8e and Cy switch pulse 9e shown in FIG. 5, respectively, and output signal 10θ. That is, the signal 10e, the signal Qy, the signal 7, and the signal 16M"tTz are repeated, and the band pass filter 59 passes only the signal of 3.5M[Iz from iMTIz, resulting in a high-frequency luminance signal YH.

また、G、Cy倍信号1に、4J(zの通過帯域を有す
る低域フィルタ55.56を夫々経て色信号G、ayと
なり、さらKそれぞれを減算器57で減算する事により
5(=cy−G)を得る。R信号7θも低域フィルタ5
4を経て色信号Rと11る。
In addition, the G and Cy multiplied signals 1 pass through low-pass filters 55 and 56 having passbands of 4J(z) to become color signals G and ay, and by subtracting K, respectively, in a subtracter 57, 5(=cy -G) is obtained.R signal 7θ is also low-pass filter 5
4 and then the color signal R and 11.

上述の様にして?Uられた色信号はカンマ、ホワイト・
ブラック処理及びマトリクス処理等を行うプロセス回路
60を経て、色差信号R−YL、B−YLに変換される
輝度信号は高域輝度信号Yl−1とプロセス処理がなさ
れたR、G、Bより形成された低域輝度信号YLを、加
算器61で加算する事により形成される。これら輝度信
号Yと色差信号を不図示のエンコーダへ入力すればNT
SC信号等を形成できる。
As described above? The reflected color signals are comma, white,
The luminance signal, which is converted into color difference signals R-YL and B-YL through a process circuit 60 that performs black processing, matrix processing, etc., is formed from the high-frequency luminance signal Yl-1 and R, G, and B that have been processed. The adder 61 adds the low-band luminance signals YL. If these luminance signal Y and color difference signal are input to an encoder (not shown), NT
SC signals etc. can be formed.

第6図は第1図のCODの水平シフトレジスタを第1シ
フトレジスタ61及び第2シフトレジスタ62の2本に
したものである。水平シフトレジスタを2本にする事に
よって水平転送周波数を低くして、GCD構造を容易に
、かつ信号分離をより簡単にしようとするものである。
In FIG. 6, the COD shown in FIG. 1 has two horizontal shift registers, a first shift register 61 and a second shift register 62. By using two horizontal shift registers, the horizontal transfer frequency is lowered to facilitate the GCD structure and signal separation.

第7図(A) 、 (B)は撮像セルからの信号の振り
分は方の実施例を説明する図であり、同図(A)は1絵
素毎に異なったシフトレジスタに転送する事により、転
送周波数を7倍にする場合である。この方式の転送周波
数は従来方式の1CJ、7kAHzに対し、7.16M
I−IzなのでマスI −り07 り14.3MH2を
2分周するだけで簡単に形成できる特徴を有する。同図
(B)は水平シフトレジスタをそれぞれ異なった周波数
で駆動する場合であり、このときはBL用のレジスタは
設けない。こうする事によってR信号の増幅度をかせぐ
ことができる特徴を有する。
FIGS. 7(A) and 7(B) are diagrams explaining an embodiment in which the signals from the imaging cells are distributed, and FIG. This is the case where the transfer frequency is increased seven times. The transfer frequency of this method is 7.16M, compared to 1CJ and 7kHz of the conventional method.
Since it is I-Iz, it has the feature that it can be easily formed by simply dividing the frequency of 14.3 MH2 into 2. FIG. 2B shows a case where the horizontal shift registers are driven at different frequencies, and in this case, no register for BL is provided. By doing so, it has a feature that the degree of amplification of the R signal can be increased.

第8図は第7図(B)の実施例の場合の信号処理ブロッ
ク図である。回路は第4図実施例より簡単になっており
YH倍信号スイッチ回路を設ける事なく第1シフトレジ
スタの出力SR1がら直接得る事が出来る。
FIG. 8 is a signal processing block diagram in the case of the embodiment of FIG. 7(B). The circuit is simpler than the embodiment shown in FIG. 4, and the YH multiplier signal can be directly obtained from the output SR1 of the first shift register without providing a switch circuit.

第8図示の構成を説明すると、第1シフトレジスタの出
力信号SRIにはGとGyの信号が交互に含まれている
ので、これをI MH2−3,5MH2のBPF59で
帯域ろ波する事により高域i構成分が得られる。
To explain the configuration shown in Figure 8, the output signal SRI of the first shift register contains G and Gy signals alternately, so by bandpass filtering this with BPF59 of I MH2-3 and 5MH2, A high frequency i component is obtained.

又、G信号、Cy倍信号夫々交互にザングルホールドす
るサンプルホールド回f?352,5ろによって分離し
、その後、G信号、Cy倍信号夫々LPF55.56に
通す事によって不要な高域成分を除く 。
In addition, a sample hold circuit f? holds the G signal and the Cy multiplied signal alternately. The G signal and Cy multiplied signal are then passed through an LPF55.56 to remove unnecessary high-frequency components.

又、LPF55 、!156を介した信号を減算器57
で減算する事によりB信号を得る。
Also, LPF55! 156 to the subtractor 57
By subtracting, the B signal is obtained.

又、第2のシフトレジスタ32の出力SR2からはR信
号だけが出力されるのでとのR信号の高域の不要成分を
LPF54で除いた後、G、Bの信号と共にプロセス回
路60に入力し、低域の輝度信号YLと、色差化’F3
R−YL 、 B−YLを得る。又YLとYHとは加算
器61に於て加算され合成n度信号Yとなる。
Also, since only the R signal is output from the output SR2 of the second shift register 32, the unnecessary high-frequency components of the R signal are removed by the LPF 54, and then the signal is input to the process circuit 60 together with the G and B signals. , low-frequency luminance signal YL and color difference 'F3
Obtain R-YL and B-YL. Further, YL and YH are added in an adder 61 to form a composite n-degree signal Y.

(効 果) 上述の如く、本発明はアンチブルーミングドレイン(A
BD)を含む不感帯が絵素に対して所定周期で設けられ
ている固体撮像素子に於て、不感帯の中心と絵素の中心
が隣接するものについて等間隔になるように設定したの
で各絵素及び不感帯のサンプリングピッチを極めて簡単
に等しくできる。
(Effects) As mentioned above, the present invention has anti-blooming drain (A
In a solid-state image sensor in which a dead zone including BD is provided at a predetermined period for each picture element, the center of the dead zone and the center of each picture element are set to be equidistant between adjacent picture elements. and the sampling pitch of the dead zone can be made equal very easily.

従って色分離フィルタを介した各絵素からの信号により
輝度信号を形成する場合に、サンプリングの位相ずれに
よるモアレが発生しにくい。
Therefore, when a luminance signal is formed from signals from each picture element via a color separation filter, moiré due to sampling phase shift is less likely to occur.

第1図は従来のCODの模式図、第2図湛アンチブルー
ミングドレイン構造を有する従来の撮像部の説明図、第
3図(A)は本発明の第1実施例のサンプリング位相図
、第6図CB)は8′!1実施例のCOD模式図、第4
図は第1実施例の信号処理ブロック図、第5図は第4図
の信号波形説明図、第6図は本発明の第2実施例の模式
図、第7図(A) 、 (13tは2水平シフトレジス
クへの信号振分は方法の実施例を示す図、第8図は第7
図(B)の実施例の信号処理ブロック図である。
FIG. 1 is a schematic diagram of a conventional COD, FIG. 2 is an explanatory diagram of a conventional imaging unit having a flooded anti-blooming drain structure, FIG. 3A is a sampling phase diagram of the first embodiment of the present invention, and FIG. Figure CB) is 8′! COD schematic diagram of 1st example, 4th
The figure is a signal processing block diagram of the first embodiment, FIG. 5 is a signal waveform explanatory diagram of FIG. 4, FIG. 6 is a schematic diagram of the second embodiment of the present invention, and FIGS. 2. Signal distribution to horizontal shift registers is a diagram showing an embodiment of the method, and FIG.
It is a signal processing block diagram of the example of figure (B).

5はCCD、10は撮像部、50 +61,32は水平
ンフトトジスタ、51,52,53けザンブル月−−ル
ド回路、58はスイッチ回路、U Sは不感帯、P E
け絵素としての撮像セル。
5 is a CCD, 10 is an imaging unit, 50 + 61, 32 is a horizontal shifter, 51, 52, 53 is an assembled circuit, 58 is a switch circuit, US is a dead zone, PE
Imaging cell as a picture element.

Claims (1)

【特許請求の範囲】[Claims] (1)オーバーフロードレインを含む不感帯を感光絵素
の所定数毎に周期的に設け、前記各不感帯の中心と各絵
素の中心の間隔が隣接するものにつき等間隔になるよう
設定した固体撮像素子0
(1) A solid-state imaging device in which a dead zone including an overflow drain is periodically provided for each predetermined number of photosensitive picture elements, and the distance between the center of each dead zone and the center of each picture element is set to be equal intervals for adjacent picture elements. 0
JP58142203A 1983-08-03 1983-08-03 Solid-state image pickup element Pending JPS6032489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58142203A JPS6032489A (en) 1983-08-03 1983-08-03 Solid-state image pickup element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58142203A JPS6032489A (en) 1983-08-03 1983-08-03 Solid-state image pickup element

Publications (1)

Publication Number Publication Date
JPS6032489A true JPS6032489A (en) 1985-02-19

Family

ID=15309783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58142203A Pending JPS6032489A (en) 1983-08-03 1983-08-03 Solid-state image pickup element

Country Status (1)

Country Link
JP (1) JPS6032489A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7746397B2 (en) 2004-11-13 2010-06-29 Samsung Electronics Co., Ltd. Image device having color filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7746397B2 (en) 2004-11-13 2010-06-29 Samsung Electronics Co., Ltd. Image device having color filter

Similar Documents

Publication Publication Date Title
JP3735867B2 (en) Luminance signal generator
JP3703175B2 (en) Imaging device
JP2751254B2 (en) Signal processing circuit of solid-state imaging device
JPS631170A (en) Solid state image pickup device
JPS5831688A (en) Solid-state image pickup device
JPS598491A (en) Color solid-state image pickup device
JP2710317B2 (en) Color imaging device
JPS6032489A (en) Solid-state image pickup element
JPH10189930A (en) Solid-state image sensor
JPH048992B2 (en)
JPS59204804A (en) Color filter
JPS6019718B2 (en) Color solid-state imaging device
JPH0984028A (en) Luminance signal generating circuit
JPS58151789A (en) Solid-state image pickup device
JP2003304550A (en) Apparatus for revising reproduction band of video signal
JP3450361B2 (en) Imaging device
JPS6090484A (en) Color solid-state image pickup device
JPS5847388A (en) Image pickup device
JP2707567B2 (en) Image signal processing circuit
JP3369713B2 (en) Video camera
JPH0474916B2 (en)
JPH054878B2 (en)
JPS59201595A (en) Photographing machine
JPH0420311B2 (en)
JPS60125090A (en) Color solid-state image pickup device