JPS6032244B2 - magnetic head - Google Patents

magnetic head

Info

Publication number
JPS6032244B2
JPS6032244B2 JP6061077A JP6061077A JPS6032244B2 JP S6032244 B2 JPS6032244 B2 JP S6032244B2 JP 6061077 A JP6061077 A JP 6061077A JP 6061077 A JP6061077 A JP 6061077A JP S6032244 B2 JPS6032244 B2 JP S6032244B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetoresistive element
conductive layer
bias
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6061077A
Other languages
Japanese (ja)
Other versions
JPS53145608A (en
Inventor
薫 土岐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP6061077A priority Critical patent/JPS6032244B2/en
Publication of JPS53145608A publication Critical patent/JPS53145608A/en
Publication of JPS6032244B2 publication Critical patent/JPS6032244B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は磁気記録媒体に書き込まれた磁気的情報を、印
加磁界により電気抵抗が変化する、いわゆる磁気抵抗効
果を利用して読み出しを行う磁気抵抗効果素子を備えた
読み出し専用磁気ヘッドおよび読み出し書き込み磁気へ
ッド‘こ関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a readout device equipped with a magnetoresistive element that reads out magnetic information written on a magnetic recording medium using the so-called magnetoresistive effect, in which electrical resistance changes depending on an applied magnetic field. It relates to a dedicated magnetic head and a read/write magnetic head.

近年、磁気記録における記録密度の向上に対し強い要請
があるが、磁気抵抗効果ヘッドは高密度記録再生用ヘッ
ドとして注目されている。
In recent years, there has been a strong demand for improved recording density in magnetic recording, and magnetoresistive heads have been attracting attention as heads for high-density recording and reproduction.

磁気抵抗効果ヘッドを高密度記録再生用ヘッドとして有
効に働かせるためには磁気抵抗効果素子に直流バイアス
磁界を印加する手段と、磁気抵抗効果素子を磁気的にシ
ールドする手段とが共に必要とされている。
In order for a magnetoresistive head to work effectively as a high-density recording/reproducing head, both a means for applying a DC bias magnetic field to the magnetoresistive element and a means for magnetically shielding the magnetoresistive element are required. There is.

直流バイアス磁界は媒体からの信号に対して線型応答に
近づけ感度を高めるために必要なものであり、直流バイ
アス磁界発生方法としては第1図aに示すように、パー
マロィ等の強磁性体より成る磁気抵抗効果素子1に金,
銅,あるいはアルミニウム等の導電体層2をSi○,S
i02やAI203等の絶縁体層で形成される間隔SP
を介して設け、これに流す電流IBによって生じる磁界
によって磁気抵抗効果素子内の磁化Mを所望の方向に設
定する方法(コンダクターバイアス法)、又は第1図b
に示すようにあらかじめ特定方向に磁化させた永久磁石
薄膜4を磁気抵抗効果素子1に隣接させて、この磁化か
ら生じる漏洩磁界を利用する方法(永久磁石バイアス法
)が知られている。次に磁気シールド‘ま隣接ビットか
らの漏洩磁束を遮断して、分解能の高い再生出力を得る
ために必要なものであり、磁気抵抗効果素子を高透磁率
磁性体で要求される分解能に応じて定まる大きさのギャ
ップを介して両側から挟持する方法が知られている。
The DC bias magnetic field is necessary to bring the signal from the medium closer to a linear response and increase the sensitivity.As shown in Figure 1a, the DC bias magnetic field is generated using a ferromagnetic material such as permalloy. Gold for the magnetoresistive element 1,
The conductor layer 2 made of copper or aluminum is made of Si○, S
Spacing SP formed by insulator layers such as i02 and AI203
A method (conductor bias method) in which the magnetization M in the magnetoresistive element is set in a desired direction by a magnetic field generated by a current IB flowing through the magnetoresistive element (conductor bias method);
As shown in FIG. 2, a method (permanent magnet bias method) is known in which a permanent magnet thin film 4 that has been magnetized in a specific direction in advance is placed adjacent to the magnetoresistive element 1 and a leakage magnetic field generated from this magnetization is utilized. Next, a magnetic shield is necessary to block leakage magnetic flux from adjacent bits and obtain a high resolution reproduction output, and a magnetoresistive element is installed in accordance with the resolution required for the high magnetic permeability magnetic material. A method is known in which the material is held from both sides through a gap of a predetermined size.

従って、従来は第2図に示すように前記のような直流バ
イアス磁界印加手段7を備えた磁気抵抗効果素子1をフ
ェライトやパーマロィ等の高透磁率磁性体5,6からな
るシールド用磁性体で両側から絶縁層等で形成されるギ
ャップgを介して侠持する構成がとられてきた。
Therefore, conventionally, as shown in FIG. 2, the magnetoresistive element 1 equipped with the above-mentioned DC bias magnetic field applying means 7 is made of a shielding magnetic material made of high magnetic permeability magnetic materials 5 and 6 such as ferrite or permalloy. A structure has been adopted in which it is supported from both sides via a gap g formed by an insulating layer or the like.

しかしながら、この構成では直流バイアス磁界印加手段
に必要なスペースを,シールド用磁性体に挟まれたギャ
ップの中に確保することが必要となるため、シールドギ
ャップgの大きさはある程度以下には小さくできずヘッ
ドの分解能の向上をさまたげていたo又、コンダクター
バイアス法の場合、コンダクターに流れる電流による発
熱で、磁気抵抗効果素子の温度が変化し、出力レベルの
変動を起したり、磁気抵抗効果素子とコンダクターを分
離する絶縁層の厚さSPが小さい場合にはピンホールや
研磨だれ等により磁気抵抗効果素子とショートする等の
トラブルが起りやすい欠点があった。本発明の目的は、
これらの欠点を解決し、分解能,出力レベルの安定性,
さらには電気的絶縁性共に良好なる磁気抵抗効果素子を
備えた磁気ヘッドを提供するものである。
However, with this configuration, it is necessary to secure the space necessary for the DC bias magnetic field application means in the gap between the shielding magnetic materials, so the size of the shield gap g cannot be reduced to a certain level. In addition, in the conductor bias method, the temperature of the magnetoresistive element changes due to the heat generated by the current flowing through the conductor, which may cause fluctuations in the output level or damage the magnetoresistive element. If the thickness SP of the insulating layer that separates the conductor from the conductor is small, problems such as short-circuiting with the magnetoresistive element due to pinholes, polishing sag, etc. are likely to occur. The purpose of the present invention is to
Solving these shortcomings, the resolution, output level stability,
Furthermore, it is an object of the present invention to provide a magnetic head equipped with a magnetoresistive element having good electrical insulation properties.

本発明によれば、磁気抵抗効果素子にこの磁気抵抗効果
素子と絶縁されてその両面を挟むように高透磁率磁性体
から成る2つのシールドを設け、さらにこのシールドの
一方の外側に導電体層を設けて読み出し専用の磁気ヘッ
ドが構成される。
According to the present invention, two shields made of a high magnetic permeability magnetic material are provided in the magnetoresistive element so as to be insulated from the magnetoresistive element and sandwich both sides thereof, and furthermore, a conductor layer is provided on the outside of one of the shields. A read-only magnetic head is constructed by providing a read-only magnetic head.

そしてこの導電体層に電流を流すことにより前記一方の
高透磁率磁性体層を磁化し、この磁化された磁性体層か
らの漏洩磁界により前記磁気抵抗効果素子に直流バイア
ス磁界を印加する。さらに本発明によれば、上記読み出
し専用の磁気ヘッドの導電体層上にさらに第2の高透磁
率磁性体層を絶縁体層を介して設けられる。
Then, by passing a current through this conductive layer, the one high permeability magnetic layer is magnetized, and a leakage magnetic field from the magnetized magnetic layer applies a DC bias magnetic field to the magnetoresistive element. Furthermore, according to the present invention, a second high magnetic permeability magnetic layer is further provided on the conductive layer of the read-only magnetic head with an insulating layer interposed therebetween.

そしてこの場合にはこの導電体層は上述の如く磁気抵抗
効果素子へのバイアス磁界印加手段であるのみでなく、
導電体層を挟む高透磁率磁性体層とともに書き込みヘッ
ドを構成している。次に本発明を図面に基づいて説明す
ると、第3図に示すように高透磁率磁性体層より成る2
枚の磁気シールド板9及び10が磁気抵抗効果素子1を
挟むように基板上に形成されている。
In this case, this conductive layer not only serves as a means for applying a bias magnetic field to the magnetoresistive element as described above, but also
Together with the high permeability magnetic layer sandwiching the conductive layer, the write head is configured. Next, the present invention will be explained based on the drawings. As shown in FIG.
Two magnetic shield plates 9 and 10 are formed on the substrate so as to sandwich the magnetoresistive element 1 therebetween.

gはこの高透磁率磁性体層9及び10と磁気抵抗効果素
子1とを絶縁するギャップで、絶縁体で形成される。さ
らに一方の例えば磁気シールド板10‘こ絶縁層(厚さ
SP)を介して隣接するように2つの磁気シールド坂に
よって形成されるギャップの外側に導軍体層2が形成さ
れる。このように構成されたヘッドは磁気記録媒体3に
垂直に近接して置かれる。こ)で、この導電体層2に端
子13を介してバイアス電流18を流すことにより近接
する高透磁率磁性体10を磁化し、この磁化により生じ
る漏洩磁界を直流バイアス磁界として磁気抵抗効果素子
を磁化する。
g is a gap that insulates the high permeability magnetic layers 9 and 10 and the magnetoresistive element 1, and is made of an insulator. Further, a conductor layer 2 is formed outside the gap formed by the two magnetic shield slopes so as to be adjacent to each other with an insulating layer (thickness SP) in between, for example, one of the magnetic shield plates 10'. The head configured in this manner is placed vertically close to the magnetic recording medium 3. (b) By passing a bias current 18 through the conductor layer 2 through the terminal 13, the adjacent high permeability magnetic material 10 is magnetized, and the leakage magnetic field generated by this magnetization is used as a DC bias magnetic field to drive the magnetoresistive element. magnetize.

このときの漏洩磁界及びIBによって生じる磁界は媒体
の磁化に影響しない程度の大きさであることは言うまで
もない。そして又、2つの磁性体層9及び10は高透磁
率磁性体であるため、隣接ビットからの漏洩磁束を遮断
し、さらに磁気抵抗効果素子1に入ったy軸方向の信号
磁束の減衰を小さくする働きを併せもつ。こ)で高透磁
率磁性体層9及び10としては、例えばパーマロィ膜(
数千Aないし数rmの厚さ)を、又磁気抵抗効果素子1
としてはパーマロィ等の強磁性体(数百Aの厚さ)、絶
縁体としてはSi0やSiQあるいはAI203等(数
千Aの厚さ)を、導電体としては金や銅あるいはアルミ
ニウム等(数千Aないし数rm)を薄膜技術を用いて形
成したものが適する。なお他方の磁気シールド板は基体
を兼ねたフェライト基板であってもよい。分解能は磁気
シールド板9,10と磁気抵抗効果素子1との距離gで
決定されるが、このgの調節は第2図に示した従来のヘ
ッドのようにはバイアス磁界印加手段をギャップ内に設
ける必要がないためはるかに容易になる。
It goes without saying that the leakage magnetic field and the magnetic field generated by IB at this time are of a magnitude that does not affect the magnetization of the medium. Furthermore, since the two magnetic layers 9 and 10 are made of high permeability magnetic material, they block leakage magnetic flux from adjacent bits, and further reduce the attenuation of the signal magnetic flux in the y-axis direction that has entered the magnetoresistive element 1. It also has the function of In this case, the high permeability magnetic layers 9 and 10 are, for example, permalloy films (
(thickness of several thousand A to several rm), and magnetoresistive element 1
Examples include ferromagnetic materials such as permalloy (thickness of several hundred amps), insulators such as Si0, SiQ, or AI203 (thickness of several thousand amps), and conductors such as gold, copper, or aluminum (thickness of several thousand amps). A material having a thickness of A to several rm) formed using thin film technology is suitable. Note that the other magnetic shield plate may be a ferrite substrate that also serves as a base. The resolution is determined by the distance g between the magnetic shield plates 9 and 10 and the magnetoresistive element 1, but this g can be adjusted by placing the bias magnetic field applying means within the gap, as in the conventional head shown in FIG. It is much easier because there is no need to set it up.

この事は高分解能へツドを得る場合に、バイアス磁界印
加手段から何らの制約を受けることなくギャップgを小
さくできるため特に有効である。又、導電体層2と磁気
抵抗効果素子1とは離れているため、ピンホールや研磨
だれでショートすることが少なくなり良品率は向上し、
さらにバイアス用導体に流す電流IBによる発熱のため
に磁気抵抗効果素子1は温度上昇することになるが、発
熱源と離れているので温度変化によって生じる出力の変
動は小さくできる。この実施例では導電体層2と磁気シ
ールド板10とは絶縁されているが、導電体層2は磁気
シールド板10を磁化しさえすればよいので必ずしも絶
縁は必要ではない。
This is particularly effective when obtaining a high-resolution image because the gap g can be made small without being subject to any restrictions from the bias magnetic field applying means. In addition, since the conductive layer 2 and the magnetoresistive element 1 are separated from each other, short circuits due to pinholes or polishing sag are reduced, and the yield rate is improved.
Further, the temperature of the magnetoresistive element 1 rises due to the heat generated by the current IB flowing through the bias conductor, but since it is separated from the heat source, fluctuations in output caused by temperature changes can be reduced. In this embodiment, the conductive layer 2 and the magnetic shield plate 10 are insulated, but the conductive layer 2 only needs to magnetize the magnetic shield plate 10, so insulation is not necessarily required.

しかしこのように絶縁した場合には渦電流による実効透
磁率の低下などが防げる。以上の発明をさらに拡張し、
第4図に示すように、第3図で示した導電体層2の上に
さらに絶縁体層より形成されるSP(スペース)を介し
て高透磁率磁性体11を設け、書き込み機能を併せもた
せることもできる。
However, when insulated in this way, a decrease in effective magnetic permeability due to eddy currents can be prevented. Further expanding the above invention,
As shown in FIG. 4, a high magnetic permeability magnetic material 11 is further provided on the conductor layer 2 shown in FIG. 3 via an SP (space) formed from an insulating layer to provide a writing function as well. You can also do that.

即ち、再生時には第3図に示した構成と全く同様に、端
子13を介して導電体層2に直流バイアス電流IBを流
し、高透磁率磁性体9,1川こよって形成されるギャッ
プ2gを再生ギャップとして媒体からの磁気情報を読み
出す。一方、書き込み時には高透磁率磁性体10,11
によって形成されるギャップGを書き込みギャップとし
、媒体に十分書き込みが行えるようにこの磁性体10,
11を磁化するに十分な大きさの電流を書き込み電流と
して前記端子13を介して導電体層2に流す。以上説明
した如く、本発明によれば、直流バイアス磁場印加用導
電体層を再生ギャップの外に設けた、読み出し分解能を
高め、良品率を高くする効果をもたらすばかりでなく書
込みヘッドをも構成し得る特徴を有する磁気ヘッドが達
成される。
That is, during reproduction, in exactly the same manner as the configuration shown in FIG. Magnetic information is read from the medium as a playback gap. On the other hand, during writing, the high magnetic permeability magnetic bodies 10 and 11
The gap G formed by the magnetic material 10,
11 is passed through the conductor layer 2 through the terminal 13 as a write current. As explained above, according to the present invention, a conductive layer for applying a DC bias magnetic field is provided outside the read gap, which not only improves read resolution and increases the rate of non-defective products, but also constitutes a write head. A magnetic head having the characteristics obtained is achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は磁気抵抗効果素子に直流バイアス磁界を加える
従釆の方法を示す概略斜視図で、aはコンダクターバイ
アス法、bは永久磁石バイアス法、第2図は、従来の直
流バイアス磁界印加手段と、磁気シールドとを具備した
磁気抵抗効果ヘッドと磁気記録媒体を示す概略斜視図、
第3図は、本発明の第1の発明による磁気ヘッドの一実
施例と磁気記録媒体を示す概略斜視図、第4図は本発明
の第2の発明による磁気ヘッドの一実施例と磁気記録媒
体を示す概略斜視図である。 1・・・・・・磁気抵抗効果素子、2・・・・・・導電
体層、3・・・・・・磁気記録媒体、4・・・・・・永
久磁石薄膜、5,6,9,10,1 1・・・・・・高
透磁率磁性体層、7・・・・・・直流バイアス印加手段
、8・・・・・・基体、12・・・・・・磁気抵抗効果
ヘッド読み出し端子、13・…・・電流供v給端子。 紫′図 繁乙図 第3図 髪仏図
Fig. 1 is a schematic perspective view showing a secondary method of applying a DC bias magnetic field to a magnetoresistive element, in which a is a conductor bias method, b is a permanent magnet bias method, and Fig. 2 is a conventional DC bias magnetic field applying means. A schematic perspective view showing a magnetoresistive head and a magnetic recording medium including a magnetic shield and a magnetic shield;
FIG. 3 is a schematic perspective view showing an embodiment of the magnetic head according to the first invention and a magnetic recording medium, and FIG. 4 is a schematic perspective view showing an embodiment of the magnetic head and magnetic recording medium according to the second invention of the invention. FIG. 2 is a schematic perspective view showing a medium. DESCRIPTION OF SYMBOLS 1... Magnetoresistive element, 2... Conductor layer, 3... Magnetic recording medium, 4... Permanent magnet thin film, 5, 6, 9 , 10, 1 1... High permeability magnetic layer, 7... DC bias applying means, 8... Substrate, 12... Magnetoresistive head Read terminal, 13... Current supply v supply terminal. Murasaki'zu, 3rd figure, Buddha with hair

Claims (1)

【特許請求の範囲】 1 磁気抵抗効果素子と、この磁気抵抗効果素子とは絶
縁されてその両面を挾んでいる高透磁率磁性体からなる
2つのシールドと、このシールドの一方の外側に設けた
導電体層とから成り、この導電体層と前記一方のシール
ドとで前記磁気抵抗効果素子のバイアス磁界印加手段を
構成していることを特徴とする磁気ヘツド。 2 導電体層と一方のシールドの間に絶縁体層を設けた
特許請求の範囲第1項記載の磁気ヘツド。 3 磁気抵抗効果素子と、この磁気抵抗効果素子とは絶
縁されてその両面を挾んでいる高透磁率磁性体からなる
2つのシールドと、このシールドの一方の外側に絶縁体
層を介して設けた導電体層と、この導電体層上に絶縁体
層を介して設けた第2の高透磁率磁性体層とから成り、
この導電体層は前記一方のシールドとで前記磁気抵抗効
果素子のバイアス磁界印加手段を構成するとともに前記
一方のシールドおよび前記第2の高透磁率磁性体層とで
書き込みヘツドを構成していることを特徴とする磁気ヘ
ツド。
[Claims] 1. A magnetoresistive element, two shields made of a high magnetic permeability magnetic material sandwiching both sides of the magnetoresistive element, which are insulated, and a shield provided on the outside of one of the shields. 1. A magnetic head comprising a conductive layer, and the conductive layer and the one shield constitute means for applying a bias magnetic field to the magnetoresistive element. 2. The magnetic head according to claim 1, wherein an insulating layer is provided between the conductive layer and one of the shields. 3. A magnetoresistive element, two shields made of a high magnetic permeability magnetic material sandwiching both sides of the magnetoresistive element, and an insulating layer provided on the outside of one of the shields. Consisting of a conductive layer and a second high permeability magnetic layer provided on the conductive layer via an insulating layer,
The conductive layer constitutes a bias magnetic field applying means for the magnetoresistive element together with the one shield, and constitutes a write head together with the one shield and the second high permeability magnetic layer. A magnetic head featuring:
JP6061077A 1977-05-24 1977-05-24 magnetic head Expired JPS6032244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6061077A JPS6032244B2 (en) 1977-05-24 1977-05-24 magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6061077A JPS6032244B2 (en) 1977-05-24 1977-05-24 magnetic head

Publications (2)

Publication Number Publication Date
JPS53145608A JPS53145608A (en) 1978-12-19
JPS6032244B2 true JPS6032244B2 (en) 1985-07-26

Family

ID=13147191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6061077A Expired JPS6032244B2 (en) 1977-05-24 1977-05-24 magnetic head

Country Status (1)

Country Link
JP (1) JPS6032244B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU84210A1 (en) * 1982-06-17 1984-03-07 Oreal COMPOSITION BASED ON CATIONIC POLYMERS, ANIONIC POLYMERS AND WAXES FOR USE IN COSMETICS

Also Published As

Publication number Publication date
JPS53145608A (en) 1978-12-19

Similar Documents

Publication Publication Date Title
KR920004215B1 (en) Integrated magnetostric tive-piezoelectric metal oxide semiconductor magnetic playback head
US3887945A (en) Head assembly for recording and reading, employing inductive and magnetoresistive elements
US4499515A (en) Integrated magnetostrictive-piezoresistive magnetic recording playback head
JPH03505501A (en) Magnetic read head for magnetoresistive perpendicular recording and method for manufacturing the head
US4700252A (en) Magnetic thin film head
CA1042548A (en) Head assembly for recording and reading, employing inductive and magnetoresistive elements
JPS6032244B2 (en) magnetic head
JPS61194620A (en) Thin film magnetic head
US5719729A (en) Magnetic head and recording and reproducing apparatus having an arrangement for improving coincidence between a magnetic center of a read head and physical center of a write head
JPS6141044B2 (en)
JPS622363B2 (en)
Kaske et al. Vapor-deposited thin-film recording heads
JPH0719341B2 (en) Multi-track magnetoresistive effect magnetic head
JPH05266437A (en) Magnetoresistance effect type head
JP2747034B2 (en) Magnetoresistive head
JPS6154012A (en) Magneto-resistance effect head
JPS6020801B2 (en) How to bias narrow track magnetic heads
JP2002516011A (en) Low inductance thin film head
JPS6112591Y2 (en)
JPS5853695Y2 (en) magnetic head
JPH0490101A (en) Vertical magnetic recorder
JPH01224910A (en) Thin film magnetic head
JP3040892B2 (en) Magnetoresistive thin film magnetic head
JP2863543B2 (en) Magnetic head
JPS60202513A (en) Production of magneto-resistance effect type multi- magnetic head