JPS6032208A - Insulating cylinder - Google Patents

Insulating cylinder

Info

Publication number
JPS6032208A
JPS6032208A JP58140979A JP14097983A JPS6032208A JP S6032208 A JPS6032208 A JP S6032208A JP 58140979 A JP58140979 A JP 58140979A JP 14097983 A JP14097983 A JP 14097983A JP S6032208 A JPS6032208 A JP S6032208A
Authority
JP
Japan
Prior art keywords
impregnation
resin
glass
insulating cylinder
mandrel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58140979A
Other languages
Japanese (ja)
Inventor
小柳 瑛二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58140979A priority Critical patent/JPS6032208A/en
Publication of JPS6032208A publication Critical patent/JPS6032208A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は真空または高気圧ガスを閉じ込め高電圧を印加
した状態で使用するσ月二連したガラス繊維強化グラス
チックの絶縁筒に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an insulating cylinder made of glass fiber-reinforced plastic that is connected to two cylinders and used in a state where a vacuum or high-pressure gas is confined and a high voltage is applied.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

ガラス繊維強化プラスチック(以下GFRPと称する。 Glass fiber reinforced plastic (hereinafter referred to as GFRP).

)は自重量あたりの機械的強度の大きい電気絶縁物とし
て高電圧の分野で使用されつつある。機器の軽量化、小
型化の要求は省エネ、省資源に寄与するものとしてます
ます高まりつつある。
) is being used in the high voltage field as an electrical insulator with high mechanical strength per unit weight. Demand for equipment to be lighter and smaller is increasing as it contributes to energy and resource conservation.

このため電気絶縁物であるGFRPの電気的、戦機的両
特性の向上が強く耀まれてI/′する。
For this reason, improvements in both the electrical and military characteristics of GFRP, which is an electrical insulator, are strongly encouraged.

0FFLPの機械的特性は■強化材であるjfクラス維
の種類、太さ、織り方又は糸のより合埼フせの方法と■
結合樹脂の種類、ガラス繊維への含浸の程度により大き
く異なる。現在使用されてbXるGFRPのうち曲げ強
さ、曲げ弾性率の最も大きなものはガラスロービングあ
るいはガラスヤーン(1前もって樹脂を含浸し、回転す
るマンドレル(二4N力をかけながら巻付ける方法、す
なわちフィラメントワインディング法、を用いたもので
ある。
The mechanical properties of 0FFLP depend on the type, thickness, and weaving method of the JF class fibers used as the reinforcing material, or the method of twisting and folding the yarn.
It varies greatly depending on the type of binding resin and the degree of impregnation into the glass fiber. Of the currently used GFRP, the one with the highest bending strength and bending modulus is glass roving or glass yarn (1) a method of impregnating resin in advance and winding it around a rotating mandrel (2) while applying a 4N force; This method uses the winding method.

しかしこの方法で製作した絶縁筒を高電圧機器に適用す
るには設計電界を低めにしなけillよならない欠点が
ある。その理由は大気中でカラスロービング、ヤーンを
マンドレルに巻付けるため、叩気を絶縁層内にとり込ん
でしまbλ加熱硬化後も気泡として残存しつづけること
(二よる。周知のように固体絶縁物内の気泡は放電し易
く、長期間放電が続くと周囲の固体絶縁物は侵食され劣
化する。
However, in order to apply the insulating cylinder manufactured by this method to high-voltage equipment, the design electric field must be lowered, which is a drawback. The reason for this is that during crow roving and winding the yarn around a mandrel in the atmosphere, air is trapped in the insulating layer and continues to remain as bubbles even after heating and curing (2). Bubbles are easily discharged, and if the discharge continues for a long period of time, the surrounding solid insulation will be eroded and deteriorated.

このため気泡が放電をしない程度に低l、z電界でしか
使用することができない。従って絶縁厚カー相対的に厚
くなり、hk器の小型化の要請に逆行するものであった
。このため真空中でガラスロービング、ヤーンな巻きつ
ける方法が考えられるが長尺、大径の絶縁筒な製作する
には大型のマンドレルの回転機構を含めて一式な真突下
に置かなければならず、シール技術、コストの両面から
採用できない。
For this reason, it can only be used in low l,z electric fields to the extent that bubbles do not discharge. Therefore, the insulation thickness becomes relatively thick, which runs counter to the demand for miniaturization of hk devices. For this reason, a method of winding glass roving or yarn in a vacuum is considered, but in order to manufacture a long, large diameter insulating cylinder, a complete set including the rotating mechanism of a large mandrel must be placed directly under the head. , cannot be adopted due to both sealing technology and cost.

一方、気泡を含まない絶縁筒の製造法として知ら式てい
るものに、樹脂を含浸していないガラス布をマンドレル
に巻きつけた後、型内(二人れ、真空引きしながら樹脂
を注入し、ガラス布内に含浸するいわゆる真空含浸法が
ある。この方法(−よれば絶縁層内の気泡は完全に樹脂
で置換されるので高電界設計の機器に適用できる利点が
ある。しかしながら本方法で製作した絶縁筒はガラス含
有率が高々50%に過ぎず、機械的特性はフィラメント
ワインディング法で製作された絶縁筒にくらべ道かに劣
るものである。このため使用できる機械的ストレスは必
然的に小さなものとなり相対的な断面積は大きくなり、
機器の小型化の要請のネックとなっていた。
On the other hand, there is a known method for producing an insulating cylinder that does not contain air bubbles, in which a glass cloth that is not impregnated with resin is wrapped around a mandrel, and then resin is injected into the mold (with two people drawing a vacuum). There is a so-called vacuum impregnation method in which glass cloth is impregnated.According to this method, the air bubbles in the insulating layer are completely replaced with resin, so it has the advantage of being applicable to equipment designed for high electric fields.However, this method The manufactured insulating cylinder has a glass content of only 50% at most, and its mechanical properties are significantly inferior to that of an insulating cylinder manufactured by the filament winding method.For this reason, the mechanical stress that can be used is inevitably low. becomes smaller and the relative cross-sectional area becomes larger,
This has become a bottleneck in the demand for smaller equipment.

〔発明の目的〕[Purpose of the invention]

本発明は以上の問題に鑑み、電気絶縁上有害な気泡を含
まず、かつ機械的強度の高い絶縁筒を得ることを目的と
するものである。
In view of the above problems, the present invention aims to provide an insulating cylinder that does not contain air bubbles that are harmful to electrical insulation and has high mechanical strength.

〔発明の概要〕[Summary of the invention]

樹脂を含浸していないガラスロービング、ヤーンをマン
ドレルに巻きつける際、マンドレル外表面の軸方向にガ
ラスロービングを複数本生くとも所定の絶縁筒長さ分だ
け沿わせて縦方向含浸路を形成しておく。その後、所定
の巻きつけ角度でガラスロービング、ヤーンな巻きつけ
る。巻き終わった後型(−入れ熱硬化性樹脂を真空加圧
含浸し、硬化させて絶縁筒を得る。マンドレル外表面に
沿わせた縦方向含浸路は真空加圧含浸時に軸方向への樹
脂の含浸を容易にし、最も含浸の困難な絶縁筒内層にお
ける気泡を低減する。
When winding glass roving or yarn that is not impregnated with resin around a mandrel, even if multiple glass rovings are laid in the axial direction on the outer surface of the mandrel, they are lined along the length of the insulating cylinder to form a longitudinal impregnation path. I'll keep it. Then, wrap the glass roving and yarn at a predetermined wrapping angle. After the winding is completed, the mold (-) is impregnated with a thermosetting resin under vacuum pressure and cured to obtain an insulating cylinder. It facilitates impregnation and reduces air bubbles in the insulation cylinder inner layer, which is the most difficult to impregnate layer.

〔拍明の実施例〕[Example of pimping]

次に本発明の一実施例を図面を引用しrcから説明する
。第1図においてマンドレル1の外側にガラスロービン
グを軸方向マンドレル長よりやや長めに周方向30°ピ
ツチにて12本等配配置して縦方向含浸路2を形成して
おく。しかる後、ガラスロービングを複数本ひきそろえ
て軸方向に対し70’の角度でマンドレルの片端より張
力をかけながら巻き始める。反対端へ致達した後は再び
巻き角度を110’に設定し面し、巻き続け、所定のル
さになるシ巻きつ1す作業を行なってフィラメントワイ
ンディング層3を形成する。この時、最内層の縦方向含
浸路3及びフィラメントワインディング層3を形成する
ガラスロービングは共に樹脂は含浸されていないものを
用いる。
Next, one embodiment of the present invention will be explained from rc with reference to the drawings. In FIG. 1, longitudinal impregnation paths 2 are formed by arranging 12 glass rovings on the outside of a mandrel 1 at intervals of 30° in the circumferential direction, slightly longer than the axial mandrel length. Thereafter, a plurality of glass rovings are arranged and wound at an angle of 70' to the axial direction while applying tension from one end of the mandrel. After reaching the opposite end, the filament winding layer 3 is formed by setting the winding angle to 110' again, facing each other, and continuing winding until a predetermined looseness is reached. At this time, glass rovings forming the innermost longitudinal impregnated path 3 and the filament winding layer 3 are both not impregnated with resin.

次に第2図に示すようにマンドレル1の1径よりやや小
さい内筒とガラスローピンク層3の外径よりやや大きい
外筒及び底板より構成される含浸t(y4に第1因のも
のを設置する。この時、底板とマンドレルの間にスペー
ク5を周方向に断続して置き、空間を確保する。含浸槽
4の外局下部には樹脂の含浸口6があらかじめ設けてあ
り樹脂の導入シロ7に接続されている、この系全体を図
示しない真空槽内に置き、真空引き後低粘度のエポキシ
樹脂8を導入路7より徐々に注入する。マンドレルi 
、 air<方向含浸路2、及びフィラメントワインデ
ィング層3の全てが含浸樹脂C二股した後真空槽内の真
空を破り、大気圧(−戻した後気体を真莫槽に注入し真
空槽の許しうる圧力まで加圧する。以降の工程は通常知
られている熱硬化性(ζ(脂の硬化工程に従う。加熱硬
化後含浸4f!4より一体硬化した樹脂なとり出し、余
分な樹脂を除去した後、マンドレル1を抜き去り絶縁筒
を得る。樹脂の除去作業を容易にするためにはマンドレ
ル1の内外壁、及びフィラメントワインディング層3の
外表面には離型テープを巻きつけておくとよい。ある実
験においてガラス布を重ね合わせてエポキシ樹脂を納J
下し、樹脂の含浸状況を観察した結果、血に垂直方向の
含浸速度は面に平行な方向の含浸速度の約l/10であ
ることがわかった。即ちガラス布を構成する糸に沿った
含浸は容易であるが、糸間の浸透は困難である。従って
本実施例にj6けるフィラメントワインディング層3は
ガラス糸が密着して巻かれており、しかもその巻きつけ
角度が軸方回に対し70°ときわめて立っているため構
成糸に沿っての軸方向含浸が通常ではほとんど不可能に
近いフィラメント1フィンディング層3(二対して、軸
方向の樹脂含浸路を形成し、最内層の樹脂含浸を谷易な
ものとする。樹脂はフィラメントワインディング層3の
外側1、下側、及び内側から同時に含浸されるため気泡
のない絶縁筒が製作できる。
Next, as shown in Fig. 2, the impregnation t (with the first factor in y4) is composed of an inner cylinder slightly smaller than the diameter of the mandrel 1, an outer cylinder slightly larger than the outer diameter of the glass low pink layer 3, and a bottom plate. At this time, space is secured by placing spacers 5 intermittently in the circumferential direction between the bottom plate and the mandrel.A resin impregnation port 6 is previously provided in the lower part of the outer part of the impregnation tank 4 for introduction of the resin. The entire system connected to the seal 7 is placed in a vacuum chamber (not shown), and after evacuation, a low-viscosity epoxy resin 8 is gradually injected from the introduction path 7. Mandrel i
After the impregnation path 2 and the filament winding layer 3 are all bifurcated with the impregnated resin C, the vacuum in the vacuum chamber is broken, and after returning to atmospheric pressure (-), gas is injected into the vacuum chamber and Pressure is applied to the pressure.The subsequent steps follow the commonly known thermosetting (ζ) curing process. After heating and curing, take out the integrally cured resin from the impregnation 4F!4, remove the excess resin, and then 1 to obtain an insulating cylinder.In order to facilitate the resin removal work, it is recommended to wrap release tape around the inner and outer walls of the mandrel 1 and the outer surface of the filament winding layer 3.In an experiment, Layer glass cloth and apply epoxy resin
As a result of observing the resin impregnation state, it was found that the impregnation rate in the direction perpendicular to the blood was about 1/10 of the impregnation rate in the direction parallel to the surface. That is, impregnation along the threads that make up the glass cloth is easy, but penetration between the threads is difficult. Therefore, in the filament winding layer 3 of j6 in this example, glass threads are closely wound, and the winding angle is 70° with respect to the axial direction, so that the axial direction along the constituent threads is 70°. In contrast to the filament 1, which is almost impossible to impregnate in the filament winding layer 3, an axial resin impregnation path is formed to make the resin impregnation of the innermost layer easy. Since it is impregnated from the outside 1, the bottom, and the inside at the same time, a bubble-free insulating cylinder can be manufactured.

しかもガラス含有率が60〜80%と高いフィラメント
ワインディングによるもののため曲は強さは通常のガラ
ス布を巻きつけて真空含浸し)こものに対し2〜3倍と
大きく、曲げ弾性率も3〜4倍太きいものが得られる。
Moreover, since it is made by filament winding with a high glass content of 60 to 80%, the strength of the bending is 2 to 3 times that of ordinary glass cloth (wrapped with vacuum impregnated), and the bending elastic modulus is 3 to 3. You can get something 4 times thicker.

樹脂含浸路の役割を果たした縦方向含浸路2はフィラメ
ントワインディング層3で用いるものと同じガラス糸を
用いればよく、絶縁物であるから硬化後除去の必要はな
い。
The longitudinal impregnation path 2, which played the role of the resin impregnation path, may be made of the same glass thread as that used in the filament winding layer 3, and since it is an insulator, there is no need to remove it after curing.

縦方向含浸路2はガラスロービング布5:よって形成し
ても含浸に対し同様の効果が得られる。すなわちガラス
ロービング布の縦糸が軸方向の含浸路を形成し含浸を容
易なものとするととも(=、横糸は各部の含浸速度を平
均化し、極端に速い含浸を抑制する効果を有する。極端
に速い含浸筒所が一部にあると未含浸部がとり残され、
完全含浸層内に7隙のあるu+1所を生ずる危険が高い
。この危険性を回避できる利点がある。
Even if the longitudinal impregnation channels 2 are formed with a glass roving cloth 5, a similar effect on impregnation can be obtained. In other words, the warp threads of the glass roving cloth form an impregnation path in the axial direction, making impregnation easier (=, the weft threads average the impregnation speed of each part and have the effect of suppressing extremely fast impregnation. If there is a part of the impregnated cylinder, the unimpregnated part will be left behind.
There is a high risk of creating a u+1 location with 7 gaps in the fully impregnated layer. This has the advantage of avoiding this risk.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の絶縁筒は最内側に縦方向含
浸路を有するフィラメントワインディング層に樹脂を真
空加圧含浸して製作するので電気絶縁上有害な気泡を無
くし、品電界下で使用できる高強度絶縁向を得ることが
できる。
As explained above, the insulating cylinder of the present invention is manufactured by impregnating the filament winding layer, which has a longitudinal impregnation path on the innermost side, with resin under vacuum pressure, thereby eliminating air bubbles that are harmful to electrical insulation, and allowing it to be used under electric fields. High strength insulation can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による絶縁筒の樹脂含浸前の
断面図、第2図は含浸槽に納めた状態での塾断面図であ
る。 1・・・マンドレル 2・・・縦方向含浸槽3・・・フ
ィラメントワインディング層。 代理人 弁理士 則 近 憲 佑 (ほか1名)
FIG. 1 is a sectional view of an insulating cylinder according to an embodiment of the present invention before being impregnated with resin, and FIG. 2 is a sectional view of the insulating cylinder in a state stored in an impregnating tank. 1... Mandrel 2... Vertical impregnation tank 3... Filament winding layer. Agent: Patent attorney Kensuke Chika (and 1 other person)

Claims (1)

【特許請求の範囲】[Claims] マンドレルの外周面縦方向にガラス糸からなる縦方向含
浸路を沿設しその外側にガラス糸をスパイラルに往復巻
きし液状樹脂な含浸硬化したことを特徴とする絶縁筒。
An insulating tube characterized in that a longitudinal impregnation path made of glass thread is provided along the outer peripheral surface of a mandrel in the longitudinal direction, and the glass thread is spirally wound back and forth on the outside of the path and impregnated with liquid resin and hardened.
JP58140979A 1983-08-03 1983-08-03 Insulating cylinder Pending JPS6032208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58140979A JPS6032208A (en) 1983-08-03 1983-08-03 Insulating cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58140979A JPS6032208A (en) 1983-08-03 1983-08-03 Insulating cylinder

Publications (1)

Publication Number Publication Date
JPS6032208A true JPS6032208A (en) 1985-02-19

Family

ID=15281299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58140979A Pending JPS6032208A (en) 1983-08-03 1983-08-03 Insulating cylinder

Country Status (1)

Country Link
JP (1) JPS6032208A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62246206A (en) * 1986-04-17 1987-10-27 株式会社東芝 Manufacture of insulating cylinder
JPS63313433A (en) * 1987-06-15 1988-12-21 Showa Electric Wire & Cable Co Ltd Insulating sleeve and manufacture thereof
JPH04255618A (en) * 1991-02-06 1992-09-10 Ngk Insulators Ltd Stacked insulator with core rod and manufacture thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62246206A (en) * 1986-04-17 1987-10-27 株式会社東芝 Manufacture of insulating cylinder
JPS63313433A (en) * 1987-06-15 1988-12-21 Showa Electric Wire & Cable Co Ltd Insulating sleeve and manufacture thereof
JPH04255618A (en) * 1991-02-06 1992-09-10 Ngk Insulators Ltd Stacked insulator with core rod and manufacture thereof
JPH07114087B2 (en) * 1991-02-06 1995-12-06 日本碍子株式会社 Laminated insulator with core and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US2848133A (en) Pressure vessels and methods of making such vessels
US3953637A (en) Slender rod for fishing rods and method of making the same
KR100766954B1 (en) Fiber reinforced polymer bar having self-impregnated protrusion and method for producing the same
JPS608054A (en) Reinforcing structure
US3391050A (en) Glass filament tape
JPH0329285A (en) Closed jacket based on fibrous winding and composite lightening arrestor applying the same
JPS61211540A (en) Coil spring and manufacture thereof
JPS6032208A (en) Insulating cylinder
EP2339723B1 (en) Method for realising insulation around a conductive bar
EP1017154B1 (en) Reinforced, pressure resistant hose for mechanical fastening of winding heads of rotating electrical machines
US10297371B2 (en) Capacitor bushing and manufacturing method therefor
US2917570A (en) Composite mica paper, mica flake electrical insulating material
KR920010357B1 (en) Method for manufacturing epoxy resin-embedded windings for transformer
WO2016088541A1 (en) Wire-wound resistor and method for manufacturing same
CN203311937U (en) Composite hollow insulator
US4003778A (en) Method of making slender rod for fishing rods
JP2020131658A (en) Pressure vessel
JPS6299138A (en) Insulating tube manufactured in filament-winding method
CN113043629B (en) Glue injection mold and mold filling method for insulating pull rod
JP2012097386A (en) Filament body of fiber-reinforced resin and method for producing the same, and electric wire cable using the same and method for manufacturing the same
JP2604063B2 (en) Manufacturing method of coil for electromagnet
RU2371796C1 (en) Method of producing electric insulator and electric insulator produced thereby
JP3130648B2 (en) Method of manufacturing concrete reinforcement
JP4187293B2 (en) Manufacturing method of oxide superconducting coil
GB1004493A (en) Method of manufacturing insulated electrical conductors and conductors manufactured according to the method