JPS6032182B2 - Photoreceptor manufacturing method - Google Patents

Photoreceptor manufacturing method

Info

Publication number
JPS6032182B2
JPS6032182B2 JP9194479A JP9194479A JPS6032182B2 JP S6032182 B2 JPS6032182 B2 JP S6032182B2 JP 9194479 A JP9194479 A JP 9194479A JP 9194479 A JP9194479 A JP 9194479A JP S6032182 B2 JPS6032182 B2 JP S6032182B2
Authority
JP
Japan
Prior art keywords
layer
photoreceptor
photocarrier generation
temperature
generation layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9194479A
Other languages
Japanese (ja)
Other versions
JPS5616142A (en
Inventor
航平 清田
徹三 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP9194479A priority Critical patent/JPS6032182B2/en
Publication of JPS5616142A publication Critical patent/JPS5616142A/en
Publication of JPS6032182B2 publication Critical patent/JPS6032182B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】 本発明は感光体の製造法に関し、とくに、比較的長波長
城の光に高感度を有するよう改良された感光体の製造法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a photoreceptor, and more particularly to a method for manufacturing a photoreceptor that is improved to have high sensitivity to relatively long wavelength light.

電子写真技術は電子計算機の周辺機器、ファクシミリ装
置、マイクロフィルム装置におけるハードコピー製版機
などにその周途を拡大しつつある。
Electrophotographic technology is expanding into applications such as computer peripherals, facsimile machines, and hard copy plate making machines for microfilm machines.

一般に電子計算機の周辺機器、ファクシミリ装置におい
ては画像情報を表す電気信号により画像の再生を行うた
め、前記電気信号に対応して出力が制御されたガスレー
ザを光学鏡等によって、一様帯電した感光体面を走査し
て静露潜像を形成し、この後トナ−現像、転写によって
記録紙に所望の再生像を得るようにしている。
Generally, in computer peripherals and facsimile machines, images are reproduced using electrical signals representing image information. Therefore, a gas laser whose output is controlled in accordance with the electrical signals is applied to a uniformly charged photoreceptor surface using an optical mirror or the like. is scanned to form a static exposure latent image, after which a desired reproduced image is obtained on recording paper by toner development and transfer.

そして前記感光体面の分光増感を行い良質な再生像を得
るため、該感光体としてSeTe等の合金が用いる試み
がなされているが、分光感度をより大きくするためSe
Te合金におけるTeの組成比を多くすると、SeTe
との蒸気圧差が大きいため所望の量のTeを含むSeT
e合金が得にくくなるほか、Teの濃度が増加すると、
感光体の導電率が大きくなり、また該感光体の局在化エ
ネルギー準位数が増加し、前述の一様帯電、静電港像形
成、現像、転写といった一連の操作の繰返しにより、該
感光体の露光感度の変動や時帯電々位の低下を招来し、
良質な再生像を得ることは困難であった。
In order to spectral sensitize the photoreceptor surface and obtain a high-quality reproduced image, attempts have been made to use alloys such as SeTe as the photoreceptor;
When the composition ratio of Te in Te alloy is increased, SeTe
SeT containing a desired amount of Te due to the large vapor pressure difference between
In addition to making it difficult to obtain e-alloys, as the Te concentration increases,
The conductivity of the photoreceptor increases, and the number of localized energy levels of the photoreceptor increases, and by repeating a series of operations such as uniform charging, electrostatic port image formation, development, and transfer, the photoreceptor increases. This leads to fluctuations in the body's exposure sensitivity and a decrease in the electrical charge level,
It has been difficult to obtain high-quality reconstructed images.

本発明はかかる点に鑑みなされたものであって、すぐれ
た分光感度を有し、かつ、像再生操作の繰返しによって
も露光感度の劣化が少ない感光体の製造法を提供するこ
とを目的とし、電荷輸送層と光照射を受けてキャリアを
発生する光キャリア発生層と、導電体層とを具えた感光
体の製造方法において、前記導電体層上に、電荷輸送層
としてセレン(Se)層を該セレン層が結晶化しない範
囲の温度で葵着によって形成する工程と、前記セレン層
上に光キャリア発生層としてSeTe合金層を蒸着によ
って形成する工程と、しかる後60℃〜80℃の範囲の
温度で熱処理を施す工程とを具備してなることを特徴と
する。
The present invention has been made in view of the above, and an object of the present invention is to provide a method for manufacturing a photoreceptor that has excellent spectral sensitivity and exhibits less deterioration in exposure sensitivity even after repeated image reproduction operations. In a method for manufacturing a photoreceptor comprising a charge transport layer, a photocarrier generation layer that generates carriers upon receiving light irradiation, and a conductor layer, a selenium (Se) layer is provided as a charge transport layer on the conductor layer. a step of forming a SeTe alloy layer by vapor deposition at a temperature in a range in which the selenium layer does not crystallize; a step of forming a SeTe alloy layer as a photocarrier generation layer on the selenium layer by vapor deposition; The method is characterized by comprising a step of performing heat treatment at a high temperature.

以下図面を参照しながら本発明の好ましい実施例につい
て詳細に説明する。
Preferred embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明に係る感光体の製造法によって製造され
るべき感光体の一実施例構成を示す図であって、1は導
電性基体、2はセレン(Se)からなる電荷輸送層、3
はテルル化セレン合金(SeTe)からなる光キャリア
発生層、4はブロッキング層である。
FIG. 1 is a diagram showing an embodiment of the structure of a photoreceptor to be manufactured by the photoreceptor manufacturing method according to the present invention, in which 1 is a conductive substrate, 2 is a charge transport layer made of selenium (Se), 3
4 is a photocarrier generation layer made of a selenium telluride alloy (SeTe), and 4 is a blocking layer.

第1図に示すような感光体の製造法は、まず導電体層1
上にSeが結晶化しない範囲の温度で蒸着法によってセ
レン(Se)層2を形成して電荷輸送層とし、このSe
層上にSeTe合金層を蒸着によって形成して光キャリ
ア発生層とする。
The method for manufacturing a photoreceptor as shown in FIG. 1 begins with a conductor layer 1.
A selenium (Se) layer 2 is formed on top by a vapor deposition method at a temperature within a range where Se does not crystallize to form a charge transport layer, and this Se
A SeTe alloy layer is formed on the layer by vapor deposition to serve as a photocarrier generation layer.

そして、譲るeTe合金層形成後、60qo〜80q0
の範囲の温度で20分間熱処理を施して診るeTe合金
層表面にブロッキング層4を形成せしめる。
After forming the yielding eTe alloy layer, 60qo~80q0
A blocking layer 4 is formed on the surface of the eTe alloy layer to be examined by heat treatment at a temperature in the range of 20 minutes.

このようにして得られた感光体を以下便宜上試料という
。第2図は前述の試料の光感度を表す測定図である。
The photoreceptor thus obtained is hereinafter referred to as a sample for convenience. FIG. 2 is a measurement diagram showing the photosensitivity of the aforementioned sample.

第2図において機軸は感光体に照射する光の波長入を表
し、縦軸は一様帯電した感光体の表面電位を露光により
半減せしめるためのエネルギーEHであってこの半減露
光エネルギーEHが少ない程表面電位が半減するのに要
する光エネルギーは少なくて済み、光照射に対する感度
がすぐれており、より詳明な再生画像が得られることに
なる。
In Fig. 2, the axis represents the wavelength of light irradiated onto the photoreceptor, and the vertical axis represents the energy EH required to halve the surface potential of the uniformly charged photoreceptor through exposure. Less light energy is required to reduce the surface potential by half, the sensitivity to light irradiation is excellent, and a more detailed reproduced image can be obtained.

第2図の測定方法として、電子写真作成工程において、
通常行われるコロナ放電によって光導電体表面に一様帯
電を施した後、第1図に示す光源Lによって前記光導電
体のキャリア移動層表面に特定波長の光を照射した時の
表面電位が半減するのに要する光エネルギーEHを表し
たものである。第2図において、△はキャリア発生層と
してのSeTe層を有せずSe層のみを有する従来の感
光体の特性、口印は前記光キャリア発生層としてSeに
Teを10重量%含有せしめた場合の特性、0印◎印は
それぞれTe含有量が15重量%、20重量%のSeT
e合金を光キャリア発生層とした場合の特性を示す。
As the measurement method shown in Figure 2, in the electrophotographic production process,
After the surface of the photoconductor is uniformly charged by corona discharge, which is normally performed, the surface potential is halved when the surface of the carrier transfer layer of the photoconductor is irradiated with light of a specific wavelength using the light source L shown in Figure 1. This represents the light energy EH required to do so. In FIG. 2, △ indicates the characteristics of a conventional photoreceptor having only a Se layer without a SeTe layer as a carrier generation layer, and the mark indicates a case where 10% by weight of Te is contained in Se as the photocarrier generation layer. The characteristics of 0 and ◎ are SeT with Te content of 15% by weight and 20% by weight, respectively.
The characteristics are shown when e-alloy is used as the photocarrier generation layer.

第2図より明らかな如く、光キャリア発生層中のTeの
含有量が増大するに伴い、半減露光感度が向上し、例え
ば、照射光の波長が50瓜mの場合、光キャリア発生層
のTe含有量を2の重量%にすると、△印で示した従来
の感光体に比して半減露光エネルギーは一桁程度小さく
なり、露光感度が優れていることがわかる。
As is clear from FIG. 2, as the content of Te in the photocarrier generation layer increases, the half-life exposure sensitivity improves. For example, when the wavelength of the irradiation light is 50 m, It can be seen that when the content is 2% by weight, the half-life exposure energy is about one order of magnitude smaller than that of the conventional photoreceptor indicated by the symbol △, indicating that the exposure sensitivity is excellent.

また第2図から明らかなように、光キャリア発生層Te
含有量が増大するに伴い、長波長の照射光に対しても露
光感度が向上する。
Furthermore, as is clear from FIG. 2, the photocarrier generation layer Te
As the content increases, the exposure sensitivity also improves to long-wavelength irradiation light.

このように、従来の感光体に比して本発明に係る感光体
は同一波長の照射光に対して優れた光感度を有するのみ
ならず、より長波長の照射光に対して、例えば半導体レ
ーザに対しても十分な光感度を有し、電子写真装置の小
型化を図ることが可能となる。
In this way, compared to conventional photoreceptors, the photoreceptor according to the present invention not only has superior photosensitivity to irradiation light of the same wavelength, but also has superior photosensitivity to irradiation light of longer wavelengths, such as a semiconductor laser. It has sufficient photosensitivity even for light, making it possible to downsize the electrophotographic apparatus.

このように短波長の領域で優れた光感度を有する理由は
光キャリア発生層3のSeTeの合金がSeよりも量子
効率が大きいためである。
The reason why it has such excellent photosensitivity in the short wavelength region is that the SeTe alloy of the photocarrier generation layer 3 has a higher quantum efficiency than Se.

またより長波長の照射光に対して従来の感光体に比して
優れた感度を有するのは光キャリア発生層3を形成する
SeTe合金力汀e濃度に応じたハンドギャップを有し
、長波長の光に対して高い光キャリア発生館を有するた
めである。
In addition, it has superior sensitivity to irradiation light with longer wavelengths than conventional photoreceptors because it has a hand gap that corresponds to the concentration of the SeTe alloy that forms the photocarrier generation layer 3. This is because it has a high photocarrier generation capacity with respect to light.

第3図は光キャリア発生層としてTeを2の重量%含む
SeTe合金を用い、該SeTe合金による光キャリア
発生層を形成後、70q0の温度で2船ご間熱処理を施
した試料の露光感度の劣化試験結果を示し、縦軸は半減
露光エネルギーEHの逆数を示し、機軸は一様帯電と光
照射の繰返し回数を示す。
Figure 3 shows the exposure sensitivity of a sample in which a SeTe alloy containing 2% by weight of Te was used as the photocarrier generation layer, and after the photocarrier generation layer was formed with the SeTe alloy, it was heat-treated between two vessels at a temperature of 70q0. Deterioration test results are shown, the vertical axis shows the reciprocal of the half-decreased exposure energy EH, and the mechanical axis shows the number of repetitions of uniform charging and light irradiation.

第3図において、添字P,,P2を付した特性曲線は試
料を70ooの温度で20分間後処理した場合の測定値
を示し、添字P3,P4を付じた特性曲線は、試料の後
処理なしの場合の測定値を示す。
In Fig. 3, the characteristic curves with subscripts P, P2 indicate the measured values when the sample was post-treated at a temperature of 70 oo for 20 minutes, and the characteristic curves with subscripts P3, P4 indicate the post-treatment of the sample. Measured values are shown without.

第3図の特性曲線P,から明らかなように700Cの温
度で20分間、後処理した試料の場合、光キャリア発生
層3の表面電位が約520Vの場合、一様帯電と、光照
射の繰返し回数に無関係に一様帯電電位は一定値に保持
され、その時の半減露光エネルギーの逆数は測定曲線P
2から明らかなように殆んど変化しない。
As is clear from the characteristic curve P in Fig. 3, in the case of a sample post-treated at a temperature of 700C for 20 minutes, when the surface potential of the photocarrier generation layer 3 is about 520V, uniform charging and repeated light irradiation are performed. The uniform charging potential is maintained at a constant value regardless of the number of times, and the reciprocal of the half-reduced exposure energy at that time is the measurement curve P.
As is clear from 2, there is almost no change.

他方、試料に対する後処理を施さない場合、つまり光キ
ャリア発生層形成後、直ちに特性を調査すると、添字P
3、を付した特性曲線から明らかなように、前述の一様
帯電と光照射の繰返し回数に比例して急激に一様帯電電
位は低下するととも、帯電電位はピーク値で60Vと非
常に低く、特性曲線P4から判るように露光特性の変化
も大きい。
On the other hand, when the sample is not subjected to post-treatment, that is, when the characteristics are investigated immediately after the formation of the photocarrier generation layer, the subscript P
As is clear from the characteristic curve labeled 3, the uniform charging potential rapidly decreases in proportion to the number of repetitions of uniform charging and light irradiation, and the charging potential is extremely low at 60 V at its peak value. , as can be seen from the characteristic curve P4, there is also a large change in exposure characteristics.

試料に対する後処理を施した場合、特性が安定するのは
、SeTe層の葵着形成時に存在している、譲るeTe
層中の構造欠陥が低温熱処理によって、減少するためで
あると考えられる。第4図は試料の後処理における処理
温度の効果を調査したものであって、横軸は処理温度を
表し、縦軸は、一定の電圧(粥V)が印加されたコロナ
帯電器で試料のキャリア輸送層上に一様帯電せしめた後
の電荷保持状態を表す表面電位を示す。
When post-treatment is applied to the sample, the properties are stabilized because of the yielding eTe present during the formation of the SeTe layer.
This is thought to be because structural defects in the layer are reduced by low-temperature heat treatment. Figure 4 shows the investigation of the effect of processing temperature in the post-treatment of the sample, where the horizontal axis represents the processing temperature and the vertical axis shows the effect of the sample on a corona charger to which a constant voltage (porridge V) was applied. The surface potential representing the charge retention state after uniformly charging the carrier transport layer is shown.

添字M.を付した曲線は前記光キャリア発生層上の帯電
電荷の極性が正、添字地を付した曲線は光キャリア発生
層上の帯電電荷の極性が負の場合の測定結果を示す。
Subscript M. The curves with ``mark'' indicate the measurement results when the polarity of the charges on the photocarrier generation layer is positive, and the curves with subscripts indicate the measurement results when the polarity of the charges on the photocarrier generation layer is negative.

第4図から明らかなように、処理温度が60℃〜80q
oの範囲では、表面電荷の保持能力がすぐれており、処
理温度が60q0以下又は80こ0以上では表面電荷保
持能力が急激に低減している。
As is clear from Figure 4, the treatment temperature is 60℃~80q.
In the range of o, the surface charge retention ability is excellent, and when the treatment temperature is below 60q0 or above 80q0, the surface charge holding ability decreases rapidly.

これは、60oo〜80ooの温度による熱処理によっ
て光キャリア発生層であるSeTe合金層の表面に、該
SeTe合金層の酸化層が形成されるため、この酸化層
が表面帯電電荷に対するブロッキング層として機能し、
酸化層の層厚方向の抵抗が大きくなり、帯電電荷の漏洩
が減少するためである。
This is because an oxidized layer of the SeTe alloy layer, which is a photocarrier generation layer, is formed on the surface of the SeTe alloy layer as a photocarrier generation layer by heat treatment at a temperature of 60 to 80 degrees, and this oxidized layer functions as a blocking layer against surface charges. ,
This is because the resistance in the thickness direction of the oxide layer increases and leakage of charged charges decreases.

さらに、負電荷帯電のとき、65o0近辺以上で急激に
表面電位が減少していることはSeTe層のキャIJア
導電型がよりP型に移行している証左である。以上の説
明から明らかなように、本発明に係る感光体の製造方法
により得られる感光体は、電子写真の印写操作の繰返し
‘こよっても、その露光感度は変化せず、また該感光体
のキャリア移動層表面の帯電電荷の漏洩が少なく、電子
写真の印写工程において、一様帯電工程後の帯電電荷漏
洩が少なく、高電位が保持されるため、本発明の適用に
よって得られた感光体を電子写真装置に用いれば良質な
再生画像を繰返し得ることができる利点がある。
Furthermore, when negatively charged, the surface potential rapidly decreases at around 65o0 or higher, which is evidence that the carrier conductivity type of the SeTe layer has shifted more to the P type. As is clear from the above description, the exposure sensitivity of the photoreceptor obtained by the photoreceptor manufacturing method according to the present invention does not change even after repeated electrophotographic printing operations, and the photoreceptor There is little leakage of charged charges on the surface of the carrier transfer layer, and in the printing process of electrophotography, there is little leakage of charged charges after the uniform charging process, and a high potential is maintained. Using the body in an electrophotographic device has the advantage that high-quality reproduced images can be repeatedly obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る感光体製造法によって得られる感
光体の構造を示す図、第2図は感光体の露光感度の波長
依存性を示す測定図、第3図は感光体の露光感度の劣化
試験測定図、第4図は後処理温度と表面電位保持能力と
の関係を示す測定図である。 1:導軍体層、2:電荷輸送層、3:光キャリア発生層
、4:グロッキング層。 多プ図 努2図 多3図 多4図
Fig. 1 is a diagram showing the structure of a photoconductor obtained by the photoconductor manufacturing method according to the present invention, Fig. 2 is a measurement diagram showing the wavelength dependence of the exposure sensitivity of the photoconductor, and Fig. 3 is a diagram showing the exposure sensitivity of the photoconductor. Fig. 4 is a measurement diagram showing the relationship between post-treatment temperature and surface potential holding ability. 1: Guide layer, 2: Charge transport layer, 3: Photocarrier generation layer, 4: Grocking layer. Many drawings Tsutomu 2 drawings 3 drawings 4 drawings

Claims (1)

【特許請求の範囲】[Claims] 1 電荷輸送層と光照射を受けてキヤリアを発生する光
キヤリア発生層と、導電体層とを少なくとも具えた感光
体の製造方法において、前記導電体層上に、電荷輸送層
としてセレン(Se)層を該セレン層が結晶化しない範
囲の温度で蒸着によつて形成する工程と、前記セレン層
上に光キヤリア発生層としてSeTe合金層を蒸着によ
つて形成する工程と、しかる後60℃〜80℃の範囲の
温度で熱処理を施す工程とを具備してなることを特徴と
する感光体の製造法。
1. A method for producing a photoreceptor comprising at least a charge transport layer, a photocarrier generation layer that generates carriers upon receiving light irradiation, and a conductor layer, wherein selenium (Se) is provided as a charge transport layer on the conductor layer. forming a layer by vapor deposition at a temperature in which the selenium layer does not crystallize; forming a SeTe alloy layer as a photocarrier generation layer on the selenium layer by vapor deposition; 1. A method for producing a photoreceptor, comprising the step of performing heat treatment at a temperature in the range of 80°C.
JP9194479A 1979-07-19 1979-07-19 Photoreceptor manufacturing method Expired JPS6032182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9194479A JPS6032182B2 (en) 1979-07-19 1979-07-19 Photoreceptor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9194479A JPS6032182B2 (en) 1979-07-19 1979-07-19 Photoreceptor manufacturing method

Publications (2)

Publication Number Publication Date
JPS5616142A JPS5616142A (en) 1981-02-16
JPS6032182B2 true JPS6032182B2 (en) 1985-07-26

Family

ID=14040694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9194479A Expired JPS6032182B2 (en) 1979-07-19 1979-07-19 Photoreceptor manufacturing method

Country Status (1)

Country Link
JP (1) JPS6032182B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2594960B2 (en) * 1987-08-03 1997-03-26 株式会社リコー Method for stabilizing characteristics of electrophotographic photoreceptor

Also Published As

Publication number Publication date
JPS5616142A (en) 1981-02-16

Similar Documents

Publication Publication Date Title
US4663258A (en) Overcoated amorphous silicon imaging members
US4720444A (en) Layered amorphous silicon alloy photoconductive electrostatographic imaging members with p, n multijunctions
JPS61100759A (en) Photoconductive material
US4666806A (en) Overcoated amorphous silicon imaging members
JPS6059367A (en) Xerographic device containing adjusted amorphous silicon
US3685989A (en) Ambipolar photoreceptor and method of imaging
JPS6032182B2 (en) Photoreceptor manufacturing method
JP3548327B2 (en) Light receiving member for electrophotography
US4540647A (en) Method for the manufacture of photoconductive insulating elements with a broad dynamic exposure range
JP2002091040A (en) Electrophotographic photoreceptor and electrophotographic device
US6110631A (en) Photoconductor for electrophotography and method of manufacturing and using a photoconductor
US4849315A (en) Processes for restoring hydrogenated and halogenated amorphous silicon imaging members
JPS58152255A (en) Electrophotographic receptor
JP3113453B2 (en) Manufacturing method of electrophotographic photoreceptor
JPS60170860A (en) Post-treatment for hydrogenated amorphous silicon composition
JP2679253B2 (en) Electrophotographic photoreceptor
JPS5957265A (en) Electrophotographic recording device
JP3058522B2 (en) Electrophotographic photoreceptor and manufacturing method thereof
JPS58187942A (en) Photoconductive member
JPS5891466A (en) Dichromatic electrophotographic method
JPS6244751A (en) Electrophotographic sensitive body
PART IMAGING SCIENCE AND ENGINEERING LABORATORY TOKYO INSTITUTE OF TECHNOLOGY YOKOHAMA, JAPAN
JPH0117573B2 (en)
JPS58223153A (en) Electrophotographic receptor
JPS60208757A (en) Electrophotographic sensitive body