JPS6032075B2 - Bucket float steam trap - Google Patents

Bucket float steam trap

Info

Publication number
JPS6032075B2
JPS6032075B2 JP7080979A JP7080979A JPS6032075B2 JP S6032075 B2 JPS6032075 B2 JP S6032075B2 JP 7080979 A JP7080979 A JP 7080979A JP 7080979 A JP7080979 A JP 7080979A JP S6032075 B2 JPS6032075 B2 JP S6032075B2
Authority
JP
Japan
Prior art keywords
float
valve
bucket
valve chamber
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7080979A
Other languages
Japanese (ja)
Other versions
JPS55163395A (en
Inventor
勝司 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TLV Co Ltd
Original Assignee
TLV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TLV Co Ltd filed Critical TLV Co Ltd
Priority to JP7080979A priority Critical patent/JPS6032075B2/en
Publication of JPS55163395A publication Critical patent/JPS55163395A/en
Publication of JPS6032075B2 publication Critical patent/JPS6032075B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Float Valves (AREA)

Description

【発明の詳細な説明】 本発明は蒸気使用機器に発生する復水を排出する場合等
に用いる、下向きバケットフロートを用いたスチームト
ラツプに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a steam trap using a downward bucket float, which is used when discharging condensate generated in steam-using equipment.

この種のトラップは、下部に導入閉口を有する下向きバ
ケットフロートを弁室内に収容し、入口からの流体をフ
ロートの下部の導入関口を通してバケットフロート内に
導入し、フロートは蒸気等の気体が導入されればその導
入気体から浮力を受けて弁室内の復水に浮き、復水が導
入されれば自重で沈下し、別設の排出弁手段を操作し、
あるいは自らの外表面に設けたシール面で弁□を開閉す
る様に作られている。
This type of trap houses a downward bucket float with an inlet at the bottom in a valve chamber, and the fluid from the inlet is introduced into the bucket float through the inlet at the bottom of the float. If so, it will receive buoyancy from the introduced gas and float on the condensate in the valve chamber, and if condensate is introduced, it will sink under its own weight, and a separate discharge valve means will be operated.
Alternatively, the valve □ is made to open and close using a sealing surface provided on its outer surface.

この為に従釆の下向きバケットフロート形スチームトラ
ップは、空気等の非凝縮気体の排出能力がが極めて小さ
く、また閉弁時にバケットフロートが動揺し小刻みの関
弁をしそれがまたフロートを動揺させる悪循環となる等
の不都合があった。即ち、空気がバケットフロート内に
導入されると、蒸気が導入された場合と同様にしてフロ
ートは浮上し弁口を閉じる。その後フロート内の空気は
フロート上部に設けた逸気小孔から弁室上部へ逃げるの
であるが、フロート内外の圧力差は極めて4・さくかつ
逸気小孔も4・さし、からこの逸気に長い時間を要し、
しかもこの様にしてフロートが浮力を失い沈下し弁□を
開くと、入口からの空気が全てフロート内に導入され、
フロートは再び浮上して弁口を閉じてしまう。この様な
動作を繰り返し、あるいは微小関弁の状態に平衡してし
まい、結局非凝縮気体の排出能力が極めて小さい。また
、弁僅体が外気で冷却されることは避けられず、この為
に閉弁時に於いて、弁室内の蒸気は凝縮し、弁室内の圧
力は低下し、よって入口から蒸気が盛んに導入されるこ
とになる。このとき導入蒸気の気泡がバケットフロート
を動揺させ、あるいはさらに、導入蒸気の一部がバケッ
トフロートの下部開□から漏れ出てフロート及び液面を
激しく動揺させる。これは不必要な関弁の原因となる。
この関弁がまた弁室内圧力を急激に下げて、蒸気導入に
よるフロートの動揺を激しくする。この様な悪循環で蒸
気損失が増大し、ついには蒸気の吹き放し状態となる。
本発明はこの様な不都合を解決せんとするもので、入口
の流体をバケットフロートの下部の導入開□内に導入す
る流入通路に対して、入口と弁室上部を運通する蒸気の
補給通路を設けたことを特徴とするものである。
For this reason, the downstream bucket float type steam trap has an extremely small discharge capacity for non-condensable gases such as air, and the bucket float oscillates when the valve is closed, causing a small barrier, which also causes the float to oscillate. There were disadvantages such as a vicious cycle. That is, when air is introduced into the bucket float, the float floats up and closes the valve port in the same way as when steam is introduced. After that, the air inside the float escapes to the upper part of the valve chamber from the small vent hole provided at the top of the float, but the pressure difference between the inside and outside of the float is extremely small, and the small vent hole is also very small, so this vent air escapes. It takes a long time to
Moreover, when the float loses its buoyancy and sinks in this way and opens the valve □, all the air from the inlet is introduced into the float.
The float rises again and closes the valve port. This kind of operation is repeated, or equilibrium is reached in a state of a minute barrier, resulting in an extremely small discharge capacity for non-condensable gas. In addition, it is inevitable that the valve body is cooled by the outside air, so when the valve is closed, the steam inside the valve chamber condenses and the pressure inside the valve chamber decreases, so steam is actively introduced from the inlet. will be done. At this time, the bubbles of the introduced steam agitate the bucket float, or furthermore, a part of the introduced steam leaks out from the lower opening of the bucket float, violently agitating the float and the liquid level. This causes unnecessary disputes.
This barrier valve also rapidly lowers the pressure in the valve chamber, causing the float to oscillate more violently due to the introduction of steam. This vicious cycle increases steam loss and eventually leads to a situation where the steam is blown out.
The present invention aims to solve such inconveniences by providing a steam replenishment passage that carries the inlet and the upper part of the valve chamber in contrast to the inlet passage that introduces the fluid at the inlet into the introduction opening □ at the bottom of the bucket float. It is characterized by the fact that it has been provided.

閉弁時に於いて蒸気が凝縮する分はフロートの内に蒸気
を補給してやらなければならず、それは補給通路を細く
する等して流通抵抗を高め、必要最小限度の蒸気は流入
通路を通ってフロート内に導入できるようにする。流入
通路にはフロートに作用する浮力の反力程度の微小な背
圧が作用しているにすぎないから、補給通路はかなり大
きくてもよく、例えば直径2ミリメートルの孔で良孔な
結果が得られた。第1,2図に示す実施例について説明
する。
Steam must be replenished into the float to compensate for the amount of steam that condenses when the valve is closed. This increases the flow resistance by making the replenishment passage narrower, and the minimum necessary amount of steam is allowed to float through the inlet passage. be able to be introduced internally. Since only a small back pressure equivalent to the reaction force of the buoyant force acting on the float is acting on the inlet passage, the supply passage may be quite large; for example, a hole with a diameter of 2 mm will give good results. It was done. The embodiment shown in FIGS. 1 and 2 will be described.

本体1に気密保持用のガスケツト2を介して菱3を取り
付けて弁室4を形成する。入口5は流入通路6を通して
弁室4の下方まで延び、弁室4の底壁に垂直に螺着した
導入管7の導入孔8を通して弁室4に蓮適する。ほぼ逆
碗状の下向きバケットフロート9は弁室4内に自由状態
で収容されている。フロート9の上部には逸気小孔10
が設けられ下部には重りを成す口金20が取り付けられ
、かつ導入管7が貫通して開口する導入開ロー1が設け
られている。弁座部材13は気密保持用のガスケット1
2を介して蓋3に螺着され、弁室4を出口14へ蓮適す
る弁□15を形成する。弁座部材13には弁□15を開
閉する半球状弁体16を設けたレバー17の支点18が
設けられ、レバー17の池端はフロート9の係合部19
と遊結している。21は弁室4上部と入口5とを絞った
状態でバイパスする紬孔で、蒸気の補給通路をなす。
A valve chamber 4 is formed by attaching a diamond 3 to the main body 1 via a gasket 2 for airtightness. The inlet 5 extends below the valve chamber 4 through an inflow passage 6, and enters the valve chamber 4 through an introduction hole 8 of an introduction pipe 7 screwed vertically into the bottom wall of the valve chamber 4. A downward bucket float 9 having a substantially inverted bowl shape is accommodated in the valve chamber 4 in a free state. There is a small air hole 10 on the top of the float 9.
is provided, a base 20 serving as a weight is attached to the lower part thereof, and an introduction opening row 1 through which an introduction pipe 7 passes is provided. The valve seat member 13 is a gasket 1 for maintaining airtightness.
2 is screwed onto the lid 3 to form a valve □15 that allows the valve chamber 4 to flow into the outlet 14. The valve seat member 13 is provided with a fulcrum 18 of a lever 17 provided with a hemispherical valve body 16 for opening and closing the valve □ 15, and the end of the lever 17 is connected to the engaging portion 19 of the float 9.
I'm playing with you. 21 is a pongee hole that bypasses the upper part of the valve chamber 4 and the inlet 5 in a constricted state, and forms a steam supply passage.

上記実施例の作用を説明する。第1図は蒸気が入口5か
ら導入孔8を通してフロート9内に流入し、フロート9
が浮力を受けて浮上してレバー17、弁体16を介して
弁□15を閉じた状態を示す。この状態に於いて弁室4
の上部に溜った蒸気は瞳体1,3が外気で冷却されるこ
とにより凝縮し、弁室4内の圧力は低下し、導入孔8か
ら流入通路6側にある蒸気を弁室4内に導入せんとする
が、紬孔21から弁室4内の圧力低下に応じて蒸気が供
給され、導入孔8を通しての蒸気導入は最少限に押えら
れる。従って導入孔8から導入される蒸気は少なく、導
入蒸気の気泡がフロート9に動揺させ、あるいは更に、
導入蒸気の一部がフロート9の導入閉口11から漏れ出
てフロート9及び弁室4内の液面を激しく動揺させる心
配がなく、不必要な閥弁を防止して蒸気損失を減少させ
ることができる。空気が入口5から導入孔8を通りフロ
ート9内に流入する場合、フ。
The operation of the above embodiment will be explained. FIG. 1 shows that steam flows from the inlet 5 through the introduction hole 8 into the float 9, and
The figure shows a state in which the valve □15 floats under the influence of buoyancy and closes the valve □15 via the lever 17 and the valve body 16. In this state, the valve chamber 4
The steam accumulated in the upper part of the pupil bodies 1 and 3 is condensed by being cooled by the outside air, and the pressure inside the valve chamber 4 decreases, causing the steam on the inflow passage 6 side to flow into the valve chamber 4 from the introduction hole 8. However, steam is supplied from the pongee hole 21 in accordance with the pressure drop in the valve chamber 4, and the introduction of steam through the introduction hole 8 is suppressed to a minimum. Therefore, the amount of steam introduced from the introduction hole 8 is small, and the bubbles of the introduced steam cause the float 9 to move, or furthermore,
There is no need to worry about a part of the introduced steam leaking out from the inlet port 11 of the float 9 and violently agitating the liquid level in the float 9 and the valve chamber 4, and it is possible to prevent unnecessary bulging and reduce steam loss. can. When air flows from the inlet 5 through the introduction hole 8 into the float 9, F.

ート9は浮力を受けて第1図の閉弁状態になる。ところ
が空気は蒸気と異なり非凝縮であり、外気冷却によって
も圧力差は作られず、弁室4(フロート9内も含む)内
は入口5側と網孔2を通してほぼ均圧した状態になり、
第1図の如く外気冷却による圧力低下によって導入孔8
内に保たれていた復水は第2図の如く通路6側に蕗水し
、フロート9内の空気が導入孔8内に戻り、この分だけ
フロート9内に弁室4側の復水が吸入され、第2図に示
す如くフロート9内の液&が上昇して同時に弁室4側の
液位が低下し、フロート9に働く浮力は減少してフロー
ト9は沈下し、レバー17及び弁体16を介して弁□1
3を開く。従って弁室4内の圧力は急激に低下し、フロ
ート9及び弁室4上部に溜っていた空気は弁□15を通
して出口14へ排出され、空気の逸気に長時間を要する
ことはなく、短時間に確実に排出することができる。次
に第3図に図示の実施例について説明する。
The valve port 9 receives buoyancy and enters the closed state shown in FIG. However, unlike steam, air is non-condensable, and no pressure difference is created even by outside air cooling, and the pressure inside the valve chamber 4 (including inside the float 9) is almost equalized through the inlet 5 side and the mesh hole 2.
As shown in Figure 1, the introduction hole 8
As shown in Fig. 2, the condensate that was kept inside flows into the passage 6 side, the air inside the float 9 returns to the introduction hole 8, and this amount of condensate from the valve chamber 4 side flows into the float 9. As shown in FIG. 2, the liquid in the float 9 rises and at the same time the liquid level on the valve chamber 4 side decreases, the buoyant force acting on the float 9 decreases, the float 9 sinks, and the lever 17 and valve Valve □1 through body 16
Open 3. Therefore, the pressure inside the valve chamber 4 decreases rapidly, and the air accumulated in the float 9 and the upper part of the valve chamber 4 is discharged to the outlet 14 through the valve □15. It can be discharged reliably on time. Next, the embodiment shown in FIG. 3 will be described.

本体31に気密保持用ガスケット32を介して蓋33を
ボルト34で取りつけて弁室35を形成する。入口36
は流入通路37を介して弁室35下方まで延び、弁室5
底壁に垂直に螺着した導入管38の導入孔39及び関口
40を通して弁室35に蓬適する。金属製球殻で作られ
たほぼ球形の下向きバケットフロート41が弁室35内
に自由状態で収容されている。フロート41の上部には
逸気小孔42が設けられて、下部には重りを成す口金4
3が取り付けられて入口36からの流体の導入関口44
が形成され、外部の球面状表面45は下記弁口を閉塞す
るシール面を成す。弁座部材46は気密保持用のガスケ
ット47を介して本体31に螺着され、弁室35を出口
48に蓮適する弁口49を形成する。弁室5の底壁50
は弁口49から離れる方向に下がり勾配となっており、
フロート41は降下位置にて、口金43が底壁50に載
り、天井内壁が導入管38の頂面に載り、弁□49から
離れる方向に傾斜する。
A valve chamber 35 is formed by attaching a lid 33 to the main body 31 with bolts 34 via an airtight gasket 32. Entrance 36
extends below the valve chamber 35 via the inflow passage 37, and
The introduction pipe 38 is screwed perpendicularly to the bottom wall and is inserted into the valve chamber 35 through the introduction hole 39 and the entrance 40. A generally spherical downward bucket float 41 made of a metal spherical shell is freely accommodated within the valve chamber 35. A small vent hole 42 is provided in the upper part of the float 41, and a cap 4 serving as a weight is provided in the lower part.
3 is attached to the entrance 44 for introducing fluid from the inlet 36.
is formed, and the outer spherical surface 45 forms a sealing surface for closing the valve port described below. The valve seat member 46 is screwed onto the main body 31 via an airtight gasket 47 to form a valve opening 49 that connects the valve chamber 35 to the outlet 48 . Bottom wall 50 of valve chamber 5
has a downward slope in the direction away from the valve port 49,
In the lowered position of the float 41, the base 43 rests on the bottom wall 50, the ceiling inner wall rests on the top surface of the introduction pipe 38, and the float 41 is inclined in a direction away from the valve □49.

弁座部材46の升室側端面の升座52は球面状に形成さ
れ、フロート41の表面が円滑に当接する様にされてい
る。51は入口36と弁室35とを絞った状態でバイパ
スする細孔で、蒸気の補給通路をなす。
The square seat 52 on the end face of the valve seat member 46 on the side of the square chamber is formed into a spherical shape, so that the surface of the float 41 can smoothly abut thereon. Reference numeral 51 denotes a small hole that bypasses the inlet 36 and the valve chamber 35 in a constricted state, and forms a steam replenishment passage.

上記実施例の作用を説明する。The operation of the above embodiment will be explained.

蒸気が入口36から導入孔39、閉口40を通りフロー
ト41内に流入すると、フロート41は浮上を受けて図
示の如く浮上して、シール面45で弁口49を閉じる。
この状態に於いて弁室35の上部に溜った蒸気は鰹体3
1,33が外気冷却されることにより凝縮し、弁室4内
の圧力が低下するが、細孔51から入口37側の蒸気が
補給される為、導入孔39からの蒸気導入は最少限に押
えられる。従って導入孔39側から導入される蒸気量は
少なく、導入蒸気の気泡がフロート41を動揺させ、あ
るいは更に、導入蒸気の一部がフロート41の導入閉口
44から漏れ出てフロート41や弁室35内の液面を激
しく動揺させ、これが小刻みな開弁による悪循環を引き
起こし蒸気損失の原因になることを防止できる。また本
実施例の如く導入管38の開□40をフロート41の気
体域に面する様に設けておけば、導入蒸気がフロート4
1の液体城に導入される場合の気泡発生及びこれによる
フロート41の動揺を防止する上で効果がある。空気が
入口36から導入孔39を通りフロート41内に流入す
る場合、フロート41は浮力を受けて図示閉弁状態にな
る。
When steam flows from the inlet 36 through the introduction hole 39 and the closing port 40 into the float 41, the float 41 receives levitation and floats up as shown in the figure, closing the valve port 49 with the sealing surface 45.
In this state, the steam accumulated in the upper part of the valve chamber 35 flows into the bonito body 3.
1 and 33 are condensed by being cooled by outside air, and the pressure inside the valve chamber 4 decreases, but since the steam on the inlet 37 side is replenished from the small hole 51, the amount of steam introduced from the introduction hole 39 is minimized. Being held down. Therefore, the amount of steam introduced from the introduction hole 39 side is small, and bubbles of the introduced steam may agitate the float 41, or furthermore, a part of the introduced steam may leak from the introduction port 44 of the float 41, causing the float 41 and the valve chamber 39 to be damaged. This prevents the liquid level within the tank from being violently agitated, which causes a vicious cycle due to small valve openings and causes steam loss. Furthermore, if the opening □ 40 of the introduction pipe 38 is provided so as to face the gas region of the float 41 as in this embodiment, the introduced steam will flow to the float 41.
This is effective in preventing the generation of bubbles and the resulting movement of the float 41 when the liquid is introduced into the liquid layer 1. When air flows from the inlet 36 through the introduction hole 39 into the float 41, the float 41 receives buoyancy and enters the closed state as shown in the figure.

ところが空気は蒸気と異なり非凝縮であり、外気冷却に
よっても圧力差は作られず、弁室35(フロート41内
も含む)内は入口36側とほぼ均圧した状態になり、外
気冷却による圧力低下によって導入孔39内に保たれれ
てし、た復水は流入通路37側に蕗水し、フロート41
内の空気が導入孔39内に戻り、この分だけフロート4
1内に弁室35側の復水が吸入され、フロート41内の
液位が上昇して同時に弁室35側の液位が低下し、フロ
ート41に働く浮力は減少してフロート41は沈下し弁
□49を開く。従って弁室35内の圧力は急激に低下し
、フロート41及び弁室35上部に溜っていた空気は弁
口49を通して出口48へ排出され、空気の逸気に長時
間を要することはなく、短時間に確実に排出することが
できる。第4図は他の実施例の蒸気の補給通路部分のみ
を示す。
However, unlike steam, air is non-condensable, and no pressure difference is created even by cooling with outside air, and the pressure inside the valve chamber 35 (including inside the float 41) is almost equal to that on the inlet 36 side, and the pressure decreases due to cooling with outside air. The condensed water is kept in the inlet hole 39 by the float 41, and the condensate flows to the inflow passage 37 side
The air inside returns to the introduction hole 39, and the float 4
The condensate on the valve chamber 35 side is sucked into the float 41, the liquid level in the float 41 rises, and at the same time the liquid level on the valve chamber 35 side decreases, the buoyant force acting on the float 41 decreases, and the float 41 sinks. Open valve □49. Therefore, the pressure inside the valve chamber 35 decreases rapidly, and the air accumulated in the float 41 and the upper part of the valve chamber 35 is discharged to the outlet 48 through the valve port 49. It can be discharged reliably on time. FIG. 4 shows only the steam supply passage portion of another embodiment.

但し第3図の実施例と共通する相当箇所には同一符号を
付して説明を省略する。上記補給通路は弁榛61を螺進
退加能に螺着した垂直孔62と、この垂直孔62の異径
部から弁室35の上部に延びた横孔63とから成り、入
口36脚と弁室35とを運通している。弁榛62は下端
に円錐部64を有し、上端に設けた面取り部65にスパ
ナ等の工具を掛けて操作され、補給通路の通過面積を調
節する。66はロックナットである。
However, equivalent parts common to the embodiment of FIG. 3 are given the same reference numerals and explanations will be omitted. The above-mentioned replenishment passage consists of a vertical hole 62 into which a valve shank 61 is screwed so that it can be screwed forward and backward, and a horizontal hole 63 extending from the different diameter part of this vertical hole 62 to the upper part of the valve chamber 35, and includes the inlet 36 legs and the valve chamber 35. It is connected to Room 35. The valve stem 62 has a conical portion 64 at its lower end, and is operated by applying a tool such as a spanner to a chamfered portion 65 provided at its upper end to adjust the passage area of the supply passage. 66 is a lock nut.

従って本実施例によれば補給通路の蒸気通過量を調節で
きるので、適用範囲を拡大することができる。以上の如
く本発明によれば、閉弁時に於いて蒸気が凝縮する分は
入口側と弁室上部とを蓮適する補給通路からの蒸気によ
って補うことができ、導入関口からフロート内への蒸気
導入を最少限に押えることができ、導入開口により気泡
が発生し、フロートの動揺による不安定な作動を防止で
きる。特にこれはフロートによって直接弁口を開閉する
第3図の実施例の如きものに取って有利である。また補
給通路は弁室内(フロート内を含む)と入口側とを均圧
化してフロートに働く浮力を減少させ、関弁を促進して
短時間に確実に空気等の非凝縮気体を排出させることが
できる。
Therefore, according to this embodiment, the amount of steam passing through the replenishment passage can be adjusted, so that the range of application can be expanded. As described above, according to the present invention, the amount of steam condensed when the valve is closed can be compensated for by steam from the supply passage that connects the inlet side and the upper part of the valve chamber. It is possible to minimize the occurrence of air bubbles due to the introduction opening, and prevent unstable operation due to float oscillation. This is particularly advantageous for applications such as the embodiment of FIG. 3 in which the valve port is opened and closed directly by a float. In addition, the replenishment passage equalizes the pressure in the valve chamber (including the inside of the float) and the inlet side to reduce the buoyant force acting on the float, promotes the barrier valve, and reliably discharges non-condensable gases such as air in a short time. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のバケットフロート形スチー
ムトラップの縦断面図、第2図は第1図の実施例の他の
作用状態を示す縦断面図、第3図は他の実施例のバケッ
トフロート形スチームトラップの縦断面図、第4図は他
の実施例の部分断面図である。 1と31は本体、3と33は蓋、4と35は弁室、5と
36は入口、8と39は導入孔、9と41はバケットフ
ロート、10と42は逸気小孔、11と44は導入開口
、14と48は出口、15と49は弁□、21と51と
62と63は補給通路をなす細孔と垂直孔と横孔である
。 第1図 第2図 第3図 第4図
FIG. 1 is a longitudinal sectional view of a bucket float type steam trap according to an embodiment of the present invention, FIG. 2 is a longitudinal sectional view showing another operating state of the embodiment of FIG. 1, and FIG. 3 is another embodiment. FIG. 4 is a partial cross-sectional view of another embodiment. 1 and 31 are the main body, 3 and 33 are lids, 4 and 35 are valve chambers, 5 and 36 are inlets, 8 and 39 are introduction holes, 9 and 41 are bucket floats, 10 and 42 are small vent holes, 11 and 44 is an introduction opening, 14 and 48 are outlets, 15 and 49 are valves □, and 21, 51, 62, and 63 are pores, vertical holes, and horizontal holes forming supply passages. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1 下部に導入開口を有する下向きバケツトフロートを
弁室内に備えたものに於いて、入口からの流体を導入開
口を通してバケツトフロート内に導入する流入通路に対
して、入口を弁室上部に絞つた状態でバイパスする補給
通路を設けたことを特徴とするバケツトフロート形スチ
ームトラツプ。 2 特許請求の範囲第1項記載のものに於いて、補給通
路は入口と弁室上部の間の隔壁に設けた細孔であること
を特徴とするバケツトフロート形スチームトラツプ。 3 特許請求の範囲第1項記載のものに於いて、流入通
路の弁室端は閉弁時のバケツトフロート内の気体域に開
口していることを特徴とするバケツトフロート形スチー
ムトラツプ。 4 特許請求の範囲第1項記載のものに於いて、バケツ
トフロートはその外面に弁口を直接開閉するシール面を
有することを特徴とするバケツトフロート形スチームト
ラツプ。 6 特許請求の範囲第1項記載のものに於いて、補給通
路に調節自在の絞り弁手段が設けられていることを特徴
とするバケツトフロート形スチームトラツプ。
[Claims] 1. In a valve chamber equipped with a downward bucket float having an introduction opening at the lower part, an inlet is provided for an inflow passage that introduces fluid from the inlet into the bucket float through the introduction opening. A bucket-to-float type steam trap characterized by having a bypass replenishment passage in the upper part of the valve chamber. 2. A bucket-and-float type steam trap according to claim 1, wherein the supply passage is a pore provided in a partition wall between the inlet and the upper part of the valve chamber. 3. A bucket-and-float type steam trap according to claim 1, wherein the valve chamber end of the inflow passage opens into a gas region within the bucket-float when the valve is closed. . 4. A bucket-and-float type steam trap according to claim 1, wherein the bucket-to-float has a sealing surface on its outer surface for directly opening and closing a valve port. 6. A bucket and float type steam trap according to claim 1, characterized in that an adjustable throttle valve means is provided in the supply passage.
JP7080979A 1979-06-05 1979-06-05 Bucket float steam trap Expired JPS6032075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7080979A JPS6032075B2 (en) 1979-06-05 1979-06-05 Bucket float steam trap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7080979A JPS6032075B2 (en) 1979-06-05 1979-06-05 Bucket float steam trap

Publications (2)

Publication Number Publication Date
JPS55163395A JPS55163395A (en) 1980-12-19
JPS6032075B2 true JPS6032075B2 (en) 1985-07-25

Family

ID=13442258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7080979A Expired JPS6032075B2 (en) 1979-06-05 1979-06-05 Bucket float steam trap

Country Status (1)

Country Link
JP (1) JPS6032075B2 (en)

Also Published As

Publication number Publication date
JPS55163395A (en) 1980-12-19

Similar Documents

Publication Publication Date Title
JPS6032075B2 (en) Bucket float steam trap
JPS5969596A (en) Structure of float valve
KR20110035386A (en) Cylinder type float water shock prevention perfection type air valve
JP2006316940A (en) Exhaust valve
JP2002340287A (en) Float valve
JP3805660B2 (en) Ball type fire hydrant with built-in air valve
JPS6128877B2 (en)
JP4166513B2 (en) Float type drain trap
JP2000266287A (en) Free float type drain trap
JPH082560Y2 (en) Bucket steam trap
JPH0740800Y2 (en) Free bucket float type steam trap
JP2000028093A (en) Downward bucket type steam trap
JPS6054558B2 (en) Bucket float type steam trap
JPS6212438B2 (en)
JPH039599Y2 (en)
JPS6315676Y2 (en)
JPH02212697A (en) Float valve
JP2005121085A (en) Exhaust valve
JPS6128876B2 (en)
JP2001116191A (en) Steam trap
JPS6032076B2 (en) Downward bucket steam trap
JP2003194247A (en) Exhaust valve
JPS63166411A (en) Separator equipped with strainer and trap
JP2000028094A (en) Downward bucket type steam trap
JPS6054559B2 (en) Downward opening bucket float type steam trap