JPS6031241B2 - Satellite attitude determination device - Google Patents

Satellite attitude determination device

Info

Publication number
JPS6031241B2
JPS6031241B2 JP8332876A JP8332876A JPS6031241B2 JP S6031241 B2 JPS6031241 B2 JP S6031241B2 JP 8332876 A JP8332876 A JP 8332876A JP 8332876 A JP8332876 A JP 8332876A JP S6031241 B2 JPS6031241 B2 JP S6031241B2
Authority
JP
Japan
Prior art keywords
satellite
point
axis
image
earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8332876A
Other languages
Japanese (ja)
Other versions
JPS539146A (en
Inventor
有二 塙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8332876A priority Critical patent/JPS6031241B2/en
Publication of JPS539146A publication Critical patent/JPS539146A/en
Publication of JPS6031241B2 publication Critical patent/JPS6031241B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は宇宙空間を飛糊するスピン安定型または三軸
安定型の人工衛星(以下衛星と略す)の姿勢決定に関し
、さらに詳しくは衛星に搭載した光学映像面電子走査型
撮像装置(以下TVカメラと略す)と、他の方式(例え
ばRan袋 &RangeRate方式または光学的側
距方式)で決定された衛星の軌道情報とにより、衛星の
姿勢を決定する方式を提供しようとするものである。 従来衛星の姿勢は衛星に搭載された地平線を検知する,
地球検知器、太陽方向を検知する太陽検知器、夫球上で
座標の明らかな恒星の方向を検知する恒星検知器の測定
値を地上の計算機で処理し決定していた。これらの方式
は地心貴性座標系での衛星の位置、太陽の位置、恒星の
位置情報を前提とするものであり、それらの位置精度は
充分良いものとは言えず、また地球水平線の検知は地表
面上の炭酸ガス(C02)層の発するスペクトルを検知
するものであり、C02層は時間、場所により変動する
、更に太陽は有限な中を持ち、恒星検知は宇宙空間の電
磁的ゆらぎの影響を受ける。従って従来の方式では高精
度の姿勢決定には限界があった。ところが近年の衛星か
らの地球をはじめとしたりモートセンシングの発達に伴
い、衛星搭載の撮像装置による画像情報が莫大に取得さ
れるようになり、その解像度も長足の進歩をとげるに到
った。その結果、その画像情報の高精度の処理技術およ
び撮像時の衛星姿勢に対する高精度な制御が要求される
ようになり、画像情報を使った高精度の姿勢決定は、こ
れらの両面の要求に欠くことのできない技術として、待
望される事になった。第1図は軌道1上を飛翻する衛星
2に塔教されたTVカメラ3の撮像概念図である。軌道
1上のある時点においてTVカメラ3は地表4上の領域
5からの入射光6を受け、それを撮像する。撮像される
地上領域5は衛星2の直下点○を中心としTVカメラ3
の視野角afと衛星2の高度hによって決まる。第2図
にTVカメラ3の概略構成図を示す。入射光6はしンズ
7を通りシャツ夕8の瞬間開放時撮像管9の光導電面1
0‘こ像を結び、記憶され、電子ビーム11の走査によ
って続み出されて、アナログビデオ信号12またはA/
D変捜されてPCMディジタル信号13として衛星2の
FM送信機14またはPCM送信機15を通じて地上に
伝送される。第3図に光導電面10の構成図を示す。 光導電面10は辺の長さa,bの矩形であり、辺a、辺
bに平行に光電変換素子16が稲密に配列されている。
入射光6は結像した光導電面10上の場所に応じてそれ
ぞれの光電変換素子16に記憶され、辺b(辺aでもよ
い)に平行な走査線1,2,・・・nの順に各走査線i
(f=1,2,・・・n)に沿って走査される電子ビー
ム11によって各変換素子16ごとに記憶された情報が
続み出される。続み出された画像アナログビデオ信号に
は緑像開始時、各走査線i?i=1,2,・・・,n)
を電子ビーム11が走査開始する時等の同期信号が添付
されており、画像アナログビデオ信号と各光電変換素子
16に結像した情報との一意的対応がとれるようになっ
ている。衛星の地心貴性座標上での位置が与えられると
、衛星の地表面直下点の地理学的緯度、経度度は一般に
よく知られる方法で求めることができる。 第4図に衛星2と衛星直下点○の地理学的総度りo、経
度入。との幾何学的関係を示す。第4図aにおいて地心
Gを原点とした衛星位置ベクトルyの地心慣性座標系(
X,Y,Z)からグリニッヂ座標系(X。,Yc,ZG
)への変換は次式で与えられる。×GニXのS8十YS
in8 (1)YG:XSin
8十YCOS8
The present invention relates to the attitude determination of a spin-stabilized or triaxially stabilized artificial satellite (hereinafter referred to as a satellite) flying in space, and more specifically relates to an optical image plane electronic scanning imager (hereinafter referred to as a TV camera) mounted on a satellite. The present invention aims to provide a method for determining the attitude of a satellite based on the orbit information of the satellite determined by the following methods (for example, the Ran Bag & Range Rate method or the optical side range method). Conventionally, the attitude of a satellite is determined by detecting the horizon on board the satellite.
A computer on the ground processed and determined the measured values of the earth detector, the sun detector that detects the direction of the sun, and the star detector that detects the direction of stars whose coordinates are known on the satellite sphere. These methods assume the position of the satellite, the position of the sun, and the position of stars in the geocentric coordinate system, and their positional accuracy cannot be said to be sufficiently good, and the detection of the earth's horizon is difficult. The system detects the spectrum emitted by the carbon dioxide (C02) layer on the earth's surface, and the CO2 layer changes depending on time and location.Furthermore, the sun has a finite interior, and stellar detection is based on electromagnetic fluctuations in outer space. to be influenced. Therefore, there is a limit to highly accurate attitude determination using conventional methods. However, with the recent development of earth sensing from satellites and moat sensing, a huge amount of image information has been acquired by satellite-mounted imaging devices, and the resolution has also made great strides. As a result, highly accurate processing technology for image information and highly accurate control of satellite attitude during imaging are required, and highly accurate attitude determination using image information is lacking in both of these requirements. It has become a long-awaited technology that is impossible to achieve. FIG. 1 is a conceptual diagram of an image taken by a TV camera 3 guided by a satellite 2 flying in an orbit 1. At a certain point on the orbit 1, the TV camera 3 receives incident light 6 from a region 5 on the earth's surface 4 and images it. The ground area 5 to be imaged is centered on the point ○ directly below the satellite 2, and the TV camera 3
It is determined by the viewing angle af of the satellite 2 and the altitude h of the satellite 2. FIG. 2 shows a schematic configuration diagram of the TV camera 3. The incident light 6 passes through the lens 7 and reaches the photoconductive surface 1 of the image pickup tube 9 when the shirt is momentarily opened.
0' image is formed, stored and subsequently retrieved by scanning of the electron beam 11 to produce an analog video signal 12 or A/
The PCM digital signal 13 is then transmitted to the ground through the FM transmitter 14 or PCM transmitter 15 of the satellite 2. FIG. 3 shows a configuration diagram of the photoconductive surface 10. The photoconductive surface 10 has a rectangular shape with side lengths a and b, and photoelectric conversion elements 16 are closely arranged parallel to sides a and b.
The incident light 6 is stored in each photoelectric conversion element 16 according to the location on the photoconductive surface 10 where the image is formed, and is stored in the order of scanning lines 1, 2, . . . n parallel to side b (or side a). Each scan line i
The information stored in each conversion element 16 is successively read out by the electron beam 11 scanned along (f=1, 2, . . . n). At the start of the green image, each scan line i? i=1,2,...,n)
A synchronizing signal, such as when the electron beam 11 starts scanning, is attached, so that a unique correspondence can be established between the image analog video signal and the information imaged on each photoelectric conversion element 16. When the position of the satellite on the geocentric coordinates is given, the geographic latitude, longitude and degree of the satellite's point directly below the earth's surface can be determined by a generally well-known method. Figure 4 shows the total geographic degree o and longitude of satellite 2 and the point directly below the satellite. shows the geometric relationship between In Figure 4a, the geocentric inertial coordinate system (
X, Y, Z) to Greenwich coordinate system (X., Yc, ZG
) is given by the following equation. ×GniX's S80YS
in8 (1) YG:XSin
80YCOS8

【2}Zo=Z
B}ここで川畑寺刻tにおけるグリニツヂサイドリアル
タィムである。 (XG,YG,ZG)を使えば衛星2の地心慣性座標系
での地心緯度6は6=Si『・(ゾX2G+章も十#G
〉 ■で与えられる。 地球は自転軸Z。の回りに回転対称な回転楕円体である
ので、衛星直下点○の地理学的経度入oは入。 =ねn−・(美) ■で与えられるが、第3図
bに示す如く直下点○の地理学的緯度りoはり。 =ooまたは±90o以外のところでは直下点○の地
心緯度刀′。と異なる。地球偏平率をdとすると、直下
点○の地心縞度刀′。から地理学的縞度りo を求める
計算式は一般に良く知られているように次の第側〜‘9
’式を使えば与えられる。ノ 1−他の ■ rC=re ・一(2d−d2)COS2刀。 ′り。刺n{鰐毒} のh=ノ〆−r2CSi
〆(刀。 −刀′。)一rccos(り。 −り′。) (8)△り′。=Sin−・{き
in(り。−刀′。)} 側ここにreは地球赤道半径
であり、rは地球位置ベクトルrの大きさr=lrlで
ある。第‘6i〜■式によりりoを求めるには最初にり
′。=6とおいて第〔仇‘7}式を計算し、更に第{8
},【9}式を計算する。その結果△り′o は一般に
零にならないのでり′。=6−△刀′。とおいて第{6
}〜【91式の計算を繰り返す。この繰り返し計算を△
り′。がある許容値に入るまで繰り返せば、その時のり
。が求める直下点0の地理学的緯度になる。またその時
のhが直下点○より衛星2までの高度になる。第5図に
衛星2からTVカメラの視野角内の地表4上の任意の点
Pを見る視線ベクトルPの定義図を示す。 今衛星2の質量中心Sを原点とした機械軸x,y,zを
次のように定義する。TVカメラの光軸17の方向で地
表4の向きをz軸とし、光軸17に直交する光導電面1
0の辺aに平行で衛星2の進行方向の向きをx軸とする
と、光軸17と光導電面10とは直交するので、x軸、
z軸は直交する。x−z面に直交し、右手直交系(x,
y,z)を構成する向きをy軸とすればx−y面は光導
電面10とは平行となり、辺a,bが直交するので、y
軸は辺bと平行となる。ここで、第5図に示す如く、辺
aに平行で、x軸と逆向きに軸を、辺bに平行にy軸の
向きにき鞠を定義する。光導電面10上の各点はf−き
座標の点として定義できるので、地表4上の点Pよりの
入射光6が結像する光導電面10上の点Qの座標を(ぎ
,き)とし、光軸17が光導電面10と交わる点をC(
f。,きo)とすると、衛星質量中心Sを原点とし、S
からPに向いた視野ベクトルPが定義され、x,y,z
座標系でのPの方向余弦PX,Py,P2は、PX=ハ
(隻−等 ヅ (10) 十 −ぎ。 十さ−き。Py=ノ −(ぎ−;。 ) (11)十 よ−f。)2十(き−さ。ア
十 − f (12)Pz=ノ
fr( r。 十さ−き。で与えられる。 ここにfはTVカメラの焦点距離である。(第5図では
SC=fと考えている)。一般に軌道上の衛星は衛星質
量中心の回りに運動しており、衛星機械軸系と地球との
相対的関係は変動している。第6図に衛星機械軸系x,
y,zと地表4との相対的関係を示す。第6図aにおい
て衛星質量中心Sを原点とした軌道基準座標系(ロール
軸、ピッチ軸、ョー軸)は次のように定義される。Sよ
り衛星の直下点○の向きをョ−軸18、Sの速度ベクト
ルVの向きをロール軸19とすると、一般にョー軸18
とロール軸19とは直交し、更にロール軸19、ョー軸
18に直交して、ロール軸19、ピッチ軸20、ョー軸
19の順に右手系をなすようにピッチ軸20を定義する
。一般に衛星はTVカメラの撮像中、第6図Mこ示す如
く衛星機械軸、x軸とロール軸19、y軸とピッチ軸2
0、z軸とョー軸18とが一致するように搭載姿勢制御
装置により制御されている。 しかし実際には制御誤差により衛星機械軸系x,y,z
はロール軸19、ピッチ軸20、ョー軸18の回りにそ
れぞれ微小角◇,x,Jだけ回転した状態にある。この
時x,y,z座標系からロール、ピッチ、ョー座標系へ
の座標変換行列■は一般によく知られている如く、め,
x,Jが微小だとするとで与えられる。 視線ベクトルPのロール、ピッチ、ョー座標系での方向
余弦をPR,PP,PYとすると、Px,Py,Pzと
の間にQ関係が成立する。 第7図にP点の地理学的綾度り、経度入と視線ベクトル
Pとの幾何学的関係を示す。 衛星の直下点○を通る子午線21と、衛星軌道運動にと
もなった直下点○の地表4上の軌跡22とのなす角をし
とする。今地表4上の直下点0近傍の曲率中心を〇とし
、曲率半径C′○三r′eとすると、〇は仮想的地球中
心となりSOは地表面4に直交するので、SOG′は直
線となる。直線S〇に直交し、点Pを通る平面23とS
G′との交点を○′とし、子午線21および衛星直下点
軌跡22と平面23との交点それぞれと点0′を結んだ
直線上にあって、○′を原点としそれぞれ北N向きおよ
び衛星質量中心Sの速度ベクトルVの向きを正とする軸
をln,lxとする。平面23上にあって、軸lxln
それぞれに直交し、衛星の進行方向に向って左側および
西W向きを正の向きとする軸をそれぞれly,lwとす
ると、平面23上の2次元の直交系(】x,iy)は直
交系(ln,lw)を○′の回りに角度レ(一180o
くレミ180o)だけ回転させたものである。この時、
ln軸を北Nから東Eに回転させる向きをし>0とする
。従って(1n, IW)系から(lx,ly)系への
座標変換行列は、で与えられる。次に二OGP三Q(O
SQ<oo)とすると点○の地理学的緯度、経度は(汀
。,入。)であるから、グリニッヂ座標系でのベクトル
G′○,〇○(グリニツヂ座標系の原点をG′点に平行
移動したと考える。)の内積からCOSQ±COSり。
COSり・C。Sく入一入。)十SInりがinり(1
6)が成立する。 このQを使えば、高度S○三h,GO′=GP=reよ
りSO′=h+r′e(1−cosQ)であるから、(
lx,ly)系でのベクトル○′Pのlx,ly成分l
xp,lypは、IXpニ {h+でC(1一cosQ
)}tan8× (17)IXpェ {h+r′e(
1一coso)}tanay (18)ここで、ox
,8yはP点よりlm lyに下した垂線の足をA,A
′としたときのく〇SA三8x,二〇SA己8yである
(A,A′がそれぞれlx>○,ly>○のところにあ
る時8x>○,8y>○)。 他方ベクトル○′Pの(ln,lw)系での成分lnp
,IWpを次のように与えられる。P点よりln,lw
に下した垂線の足をB,B′とし、(刀−り。)および
(^一入。)が小さいとすると、く〇〇B=(リー刀。
),く○′G′B=(入一入。)cosり。で与えられ
るからlnp=rec。 sQ・tan(リーり。) (1則IWp=r′e
C○SQ.tan{(^−^。).C○Sり。}
(20)が成立する
。従って(15)式の座標変換行列Gを使えば(lxM
lyp)は(ln”lwp)よりで与えられる。第(
17),(18)式におけるtan8x,ねnayは第
(14)式で与えた視線ベクトルPの成分PR,PP’
Pyを使えばPR (2
2)脚8X=丙−PP
(23)ねnayニ下すで与えられるので、第(17)
,(18)式はIXp={h+r′e(1−COSQ)
}昔 (2心IWコ{h十r′e(1‐COSQ)}
羊 (25)で書きかえられる。 以上より第{1の,(11),(12),(13),(
14),(15),(16),(19),(20),(
21),(24),(25)式を使えばP点の地理学上
の緯度刀、経度入と、光電面上の、P点の像の座標(f
,き)とを結びつけることが出来る。 第
[2}Zo=Z
B} Here is the Greenwich side real time at Kawabataji time. Using (XG, YG, ZG), the geocentric latitude 6 in the geocentric inertial coordinate system of satellite 2 is 6=Si'・(Z2G+Chapter 10#G
〉 Given by ■. The earth's rotation axis is Z. Since it is a spheroid that is rotationally symmetrical around , the geographical longitude of the point directly below the satellite ○ is . = Ne n - (Beautiful) It is given by ■, but as shown in Figure 3b, the geographical latitude of the point ○ is the radius. For places other than =oo or ±90o, it is the geocentric latitude of the direct point ○. different from. If the earth's oblateness is d, then the geocentric stripe of the point ○ directly below. As is generally well known, the calculation formula for calculating the geographical fringe degree o from the following side~'9
' can be given using the expression.ノ 1-other ■ rC=re ・One (2d-d2) COS 2 swords. 'the law of nature. Sting n {crocodile poison} h=ノ〆−r2CSi
〆(sword. -sword'.) 1 rccos (ri. -ri'.) (8) △ri'. =Sin-・{kiin(Ri.-Katana'.)} side Here, re is the earth's equatorial radius, and r is the magnitude of the earth position vector r, r=lrl. To find o using equations 6i to 5, first enter . = 6, calculate the {7th} formula, and further calculate the {8th} formula.
}, calculate the formula [9}. As a result, △ri′o generally does not become zero. =6−△katana′. Totoe {6th
} ~ [Repeat the calculation of formula 91. This repeated calculation is △
the law of nature'. Repeat until it falls within a certain tolerance. becomes the geographical latitude of the point directly below 0. Also, h at that time is the altitude from the direct point ○ to satellite 2. FIG. 5 shows a definition diagram of the line-of-sight vector P when viewing an arbitrary point P on the earth's surface 4 within the viewing angle of the TV camera from the satellite 2. Now, the mechanical axes x, y, and z with the center of mass S of satellite 2 as the origin are defined as follows. The photoconductive surface 1 is perpendicular to the optical axis 17, with the orientation of the ground surface 4 being the z-axis in the direction of the optical axis 17 of the TV camera.
If the x-axis is parallel to side a of 0 and the direction of travel of the satellite 2, the optical axis 17 and the photoconductive surface 10 are orthogonal, so the x-axis,
The z-axes are orthogonal. Right-handed orthogonal system (x,
y, z) is the y axis, the x-y plane is parallel to the photoconductive surface 10, and the sides a and b are orthogonal, so the y
The axis is parallel to side b. Here, as shown in FIG. 5, a ball is defined with an axis parallel to side a and opposite to the x-axis, and a y-axis parallel to side b. Since each point on the photoconductive surface 10 can be defined as a point with f-coordinates, the coordinates of the point Q on the photoconductive surface 10 on which the incident light 6 from the point P on the ground surface 4 forms an image can be expressed as (g, k). ), and the point where the optical axis 17 intersects with the photoconductive surface 10 is C(
f. , Kio), the satellite center of mass S is the origin, and S
A field of view vector P directed toward P is defined, and x, y, z
The direction cosines PX, Py, and P2 of P in the coordinate system are -f.) 20 (Kisa. A ten - f (12) Pz=ノ
It is given by fr (r. 10s), where f is the focal length of the TV camera (in Fig. 5, SC = f). Generally, a satellite in orbit has a rotation angle around the satellite center of mass. The relative relationship between the satellite mechanical axis system and the earth is changing. Figure 6 shows the satellite mechanical axis system x,
The relative relationship between y, z and the ground surface 4 is shown. In FIG. 6a, the orbital reference coordinate system (roll axis, pitch axis, and yaw axis) with the satellite center of mass S as the origin is defined as follows. If the direction of the point ○ directly below the satellite from S is the yaw axis 18, and the direction of the velocity vector V of S is the roll axis 19, then generally the yaw axis 18
The pitch axis 20 is defined to be perpendicular to the roll axis 19 and the roll axis 19, and to be perpendicular to the roll axis 19 and the jaw axis 18, and to form a right-handed system in the order of the roll axis 19, pitch axis 20, and jaw axis 19. Generally speaking, while the satellite is being imaged by a TV camera, the satellite mechanical axis, x axis and roll axis 19, y axis and pitch axis 2, as shown in Figure 6M.
It is controlled by a mounting attitude control device so that the 0 and z axes and the yaw axis 18 coincide with each other. However, in reality, due to control errors, the satellite mechanical axis system x, y, z
are rotated by small angles ◇, x, and J around the roll axis 19, pitch axis 20, and jaw axis 18, respectively. At this time, the coordinate transformation matrix ■ from the x, y, z coordinate system to the roll, pitch, and yaw coordinate system is, as is generally well known,
If x and J are minute, it is given by. If the direction cosines of the line-of-sight vector P in the roll, pitch, and yaw coordinate systems are PR, PP, and PY, a Q relationship is established between them and Px, Py, and Pz. FIG. 7 shows the geometric relationship between the geographical angle and longitude of point P and the line-of-sight vector P. Let the angle formed by the meridian 21 passing through the point ○ directly below the satellite and the locus 22 on the earth's surface 4 of the point ○ directly below the satellite as it moves in the orbit. If the center of curvature near the point 0 directly below the earth's surface 4 is ○, and the radius of curvature is C'○3r'e, then ○ is the virtual center of the earth and SO is orthogonal to the earth's surface 4, so SOG' is a straight line. Become. A plane 23 and S that is orthogonal to the straight line S〇 and passes through the point P
The intersection with G' is ○', and it is on a straight line connecting the meridian 21, the intersection of the satellite nadir trajectory 22, and the plane 23 with point 0', and with ○' as the origin, the north N direction and the satellite mass Let ln and lx be the axes in which the direction of the velocity vector V of the center S is positive. is on the plane 23 and has the axis lxln
If the axes that are orthogonal to each other and have positive directions toward the left and west W toward the direction of travel of the satellite are ly and lw, respectively, then the two-dimensional orthogonal system (]x, iy) on the plane 23 is an orthogonal system. (ln, lw) around ○' at an angle of (-180o)
It is rotated by 180 degrees. At this time,
Rotate the ln axis from north N to east E so that the direction is >0. Therefore, the coordinate transformation matrix from the (1n, IW) system to the (lx, ly) system is given by: Next, two OGP three Q (O
If SQ<oo), the geographical latitude and longitude of point ○ are (T., In.), so the vectors G'○, 〇○ in the Greenwich coordinate system (the origin of the Greenwich coordinate system is set at point G') From the inner product of ), COSQ±COS is calculated.
COS Ri・C. S one entry. ) 10SInrigainri (1
6) holds true. Using this Q, altitude S○3h, GO'=GP=re, so SO'=h+r'e (1-cosQ), (
lx, ly component l of vector ○'P in lx, ly) system
xp, lyp are IXp ni {h+ and C(1-cosQ
)}tan8× (17) IXpe {h+r′e(
11 coso)} tanay (18) Here, ox
, 8y is the foot of the perpendicular line drawn lm ly from point P as A,A
′, 0SA38x, 20SA18y (when A and A' are lx>○, ly>○, respectively, 8x>○, 8y>○). On the other hand, the component lnp in the (ln, lw) system of vector ○'P
, IWp are given as follows. ln, lw from point P
Let the legs of the perpendicular drawn to .
), ku○′G′B=(入一入.) cosri. Since it is given by lnp=rec. sQ・tan (Reli.) (1 rule IWp=r'e
C○SQ. tan {(^-^.). C○Sri. }
(20) holds true. Therefore, if we use the coordinate transformation matrix G in equation (15), (lxM
lyp) is given by (ln”lwp).
17), tan8x, nay in equations (18) are the components PR, PP' of the line-of-sight vector P given in equation (14).
PR with Py (2
2) Leg 8X=Hei-PP
(23) Since it is given by
, (18) is IXp={h+r'e(1-COSQ)
}A long time ago (2-heart IW Ko {hten r'e (1-COSQ)}
It can be rewritten as sheep (25). From the above, the {1st, (11), (12), (13), (
14), (15), (16), (19), (20), (
21), (24), and (25), we can calculate the geographical latitude and longitude of point P, and the coordinates of the image of point P on the photocathode (f
, ki) can be connected. No.

【1■,(11),(12),(13),(14),
(24),(25)式から】Xp={h+r′e(1一
cosQ)}(f−f。 )十(き−Sジセ+fX (26)一(ま−ぎ。
)×−(き−さ。)ぐ十flyp={h十re(1一c
osQ)} −(ぎ−;。 )山十(;− さ。)十f? (27)−(f−
f。)×−(き−さ。)○十fが導かれ、第(15),
(19),(20),(21)式からIXp=reC○
SQ.〔tan(刀一り。 )C○Sレーねn{(入一入。)C○Sり。} .Si
nレ〕 (28)1yp=reC○SQ.〔tan(リ
ーり。)Sinリ十ねn{(入一入。)cosり。}
.cosy〕(29)が導かれる。h十r′e(1−c
osQ)三h′とおいて第(26),(27)式を衛星
の微4・回転角◇,x,Jについて展開すると、IXp
(き−さ。 )・ぐ十{IXp(ぎ一よ。)十h′f}x十h′(;
一;。 )心一1Xpf十日(ま−f。)=0
(3の{lyp(ぎ−;。)十日f
}◇十lypくる−多〇)X−hくf−f。 )し−1yp十日く;−;。)=0
(31)となり、(30)×ly
p−(30)×lxpによって整理し第(28),(2
9)においてMXニねn(り−り。 )cosレ−tan{く^一^。 )C○Sり。} .Smレ(32)MyEはn(リーり
。)sinレ十松n{(入一入。 ).C○Sり。}C○Sリ(33)とおくと、肌x・◇
‐fMy・x−{MX(多−ぎ。 )十My(き−さ。)}心十{MX(き−さ。 )−My(ぎ−ま。)}=。(3少となる。第(32)
,(33)式において、直下点の地理学的縞度りo、経
度入。および直下点の地表上軌跡と子午線のなす角〃【
ま衛星の地心慣性座標での軌道位置、撮像時刻が与えら
れれば第m〜‘9’式により求まり、P点の地理学的緯
度り、経度入は直下点近傍の地図(標準メルカトール地
図等)を参照すれば与えられる。他方第(34)式にお
いて光導電面上の、P点の結像点の座標(f,き)は、
取得された画像と参照地図とを比較し画像上のP点の画
素番号を検出することにより与えられる。また光導電面
上の光鯛と交わる点の座標(f。,きo)は一般には光
導電面上の中心点に設定aされるので、第3図に示した
如くf。 =裏,きo=旨で与えられ、fは撮像装置自体のパラメ
−夕とに与えられる。従って第(34)式は衛星機械麹
×’y’zのロール、ピッチ、ョー軸回りの微4・回転
角で,x,心を未知数とした方程式であり、P点の地理
学的緯度、経度および画像点座標の組み合わせ(り,入
,f,き)が3組それぞれ異なって与えられれば、つま
り1つの画像に対して撮像範囲内の3つの異なった点P
,,P2,P3、について(りi,入i,まi,きi)
(i=1,2,3)を与えれば、衛星の姿勢ぐ,x,J
は一意的に決定できる。この発明の構成図を第8図に示
す。 TVカメラ3によって取得されたPCM画像信号13と
標準地図ファイル24の中から取り出した取得画像に対
応した参照図25とを参照点測定部26に入力し、あら
かじめ決められた少くとも3点の参照V点の地図上での
縞度り、経度入及び画像上の画素位置(ぎ,き)を測定
する。又衛星の初期位置の地心慣性座標系成分(Xo,
Yo,幼)及び撮像時刻Tとから第1の演算部27によ
って撮像時点での衛星位置の地心慣性座標系成分(X,
Y,Z)及びサイドリアルタイム8を計算し、その結果
に基づいて第2の演算部28によって撮像時点における
衛星の地表上直下点の綾度りo、経度^。及び衛星の軌
道面と子午線とのなす角度yとを計算する。このとき上
記取得画像に対応した参照地図25は上記緯度刀o、経
度入oに基づいて取り出される。最後に上記緯度り、経
度入、画像位置(f,き)及び緯度りo、経度入o、角
度yを決定部29に入力し衛星の軌道基準座標系を基準
とした衛星の姿勢角(0,x,心)を決定する。以上の
構成によって撮像時の衛星姿勢を決定することができる
。この発明は以上のようになっているからスピン安定型
または三軸安定型人工衛星の撮像時における姿勢を決定
することができるものである。
[1■, (11), (12), (13), (14),
From equations (24) and (25), Xp = {h + r'e (11 cosQ)} (ff.
)×-(Kisa.)gujuflyp={hten
osQ)} -(gi-;.)yamaju(;- sa.)juf? (27)-(f-
f. )×−(Kisa.)○10f is derived, and the (15th),
From equations (19), (20), and (21), IXp=reC○
SQ. [tan (Katana Ichiri.) C○S Rene n {(Entertainment.) C○S Rene. } . Si
nre] (28) 1yp=reC○SQ. [tan (liri.) Sinri tenne n {(iriiiri.) cosri. }
.. cozy] (29) is derived. h ten r'e (1-c
osQ)3h' and expand equations (26) and (27) for the satellite's minute rotation angle ◇, x, J, IXp
(Kisa.)・guten {IXp (giichiyo.) tenh'f}x tenh'(;
one;. ) Shinichi 1Xpf 10th (Ma-f.) = 0
(3 no {lyp (gi-;.) ten days f
}◇10lypkuru-many〇)X-hくff-f. )shi-1yp ten days;-;. )=0
(31), (30)×ly
Organized by p-(30)×lxp, the (28), (2
In 9), MX nine n(ri-ri.) cos le-tan {ku^ichi^^. ) C○Sri. } . Sm le (32) MyE is n (lily.) sin le tenmatsu n {(entering one entering.). C○Sri. }C○S Ri (33), skin x・◇
‐fMy・x−{MX(Tagi.) 10My(Kisa.)}Shinju{MX(Kisa.)−My(Gima.)}=. (It becomes 3 less. No. (32)
, In equation (33), the geographical fringe degree o and the longitude of the point immediately below are entered. and the angle between the locus on the earth's surface of the point directly below it and the meridian〃[
If the satellite's orbital position in geocentric inertial coordinates and the imaging time are given, it can be found using formulas m to '9'. ) can be given by referring to On the other hand, in equation (34), the coordinates (f, ki) of the imaging point of point P on the photoconductive surface are:
It is given by comparing the acquired image with a reference map and detecting the pixel number of point P on the image. Furthermore, since the coordinates (f., kio) of the point on the photoconductive surface that intersects with the optical sea bream are generally set at the center point a on the photoconductive surface, f as shown in FIG. =back, ki=object, and f is given to the parameters of the imaging device itself. Therefore, equation (34) is the roll, pitch, and minute rotation angle of the satellite machine koji x'y'z around the axis, and is an equation with x and the center as unknowns, and the geographical latitude of point P, If three different combinations of longitude and image point coordinates (ri, iri, f, ki) are given, that is, three different points P within the imaging range are given for one image.
,, Regarding P2, P3 (rii, entering i, mai, kii)
(i = 1, 2, 3), the attitude of the satellite is g, x, J
can be uniquely determined. A configuration diagram of this invention is shown in FIG. The PCM image signal 13 acquired by the TV camera 3 and the reference diagram 25 corresponding to the acquired image extracted from the standard map file 24 are input to the reference point measurement unit 26, and at least three predetermined reference points are inputted. Measure the degree of fringe, longitude, and pixel position on the image of point V on the map. In addition, the geocentric inertial coordinate system component (Xo,
Yo, Yo) and imaging time T, the first calculation unit 27 calculates the geocentric inertial coordinate system component (X,
Y, Z) and side real time 8, and based on the results, the second arithmetic unit 28 calculates the azimuth degree o and longitude ^ of the point just below the earth's surface of the satellite at the time of imaging. and the angle y between the orbital plane of the satellite and the meridian. At this time, the reference map 25 corresponding to the acquired image is extracted based on the latitude and longitude values. Finally, the latitude, longitude, image position (f, x), latitude, longitude, and angle y are input to the determination unit 29, and the attitude angle of the satellite (0 , x, mind). With the above configuration, the satellite attitude at the time of imaging can be determined. Since the present invention is configured as described above, it is possible to determine the attitude of a spin-stabilized or triaxially-stabilized artificial satellite at the time of imaging.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は軌道上衛星に搭載されたTVカメラの撮像概念
図、第2図はTVカメラの概略構成図、第3図は光導電
面と電子ビームによる画像績み出しを示す説明図、第4
図は衛星直下点の地理学的緯度、経度の幾何学的関係図
、第5図は衛星上のTVカメラより地表の任意の点を見
る視線ベクトルの定義図、第6図は衛星の機械轍と地表
との幾何学的関係を示す説明図、第7図は地表上の任意
の点の地理学的緯度、経度と視線ベクトルとの幾何学的
関係図、第8図はこの発明の人工衛星の姿勢決定装置を
示す構成図であり、1は軌道、2は人工衛星、3はTV
カメラ、4は地表、5は撮壊される地上領域、6は入射
光、7はしンズ、8はシャツ夕、9は撮像管、1川ま光
導電面、11は電子ビーム、12は画像ビデオ信号、1
3は画像PCM信号、14はFM送信機、15はPCM
送信機、16は光電変換素子、17は光軸、18はョ−
軸、19はoール軸、20はピッチ軸、21は子午線、
22は直下点軌跡、23はP点を通りSG′に直向する
平面、24は標準地図ファイル、25は参照地図、26
は参照V点測定部、27は第1の演算部、28は第2の
演算部、29は決定部、Xo,Yo,Zoは衛星初期位
置の地心慣性座標系成分、Tは撮像時刻である。 なお図中同一あるいは相当部分には同一符号を付して示
してある。第3図第1図 第2図 第7図 第4図 第5図 第8図 第6図
Figure 1 is a conceptual diagram of the image taken by a TV camera mounted on a satellite in orbit, Figure 2 is a schematic configuration diagram of the TV camera, Figure 3 is an explanatory diagram showing image acquisition using a photoconductive surface and an electron beam, 4
The figure is a geometric relationship diagram of the geographical latitude and longitude of the point directly below the satellite, Figure 5 is a definition of the line-of-sight vector that looks at any point on the earth's surface from the TV camera on the satellite, and Figure 6 is the mechanical track of the satellite. Fig. 7 is an explanatory diagram showing the geometrical relationship between the earth surface and the geographical latitude and longitude of any point on the earth's surface, and the line-of-sight vector; Fig. 8 is an illustration of the artificial satellite of the present invention. 1 is a configuration diagram showing the attitude determination device of
Camera, 4 is the ground surface, 5 is the ground area to be photographed, 6 is the incident light, 7 is the radiation, 8 is the camera, 9 is the image pickup tube, 1 is the photoconductive surface, 11 is the electron beam, 12 is the image video signal, 1
3 is an image PCM signal, 14 is an FM transmitter, and 15 is a PCM
16 is a photoelectric conversion element, 17 is an optical axis, 18 is a transmitter, and 16 is a photoelectric conversion element.
axis, 19 is the oar axis, 20 is the pitch axis, 21 is the meridian,
22 is a direct point locus, 23 is a plane passing through point P and facing SG', 24 is a standard map file, 25 is a reference map, 26
is the reference V point measurement unit, 27 is the first calculation unit, 28 is the second calculation unit, 29 is the determination unit, Xo, Yo, Zo are the geocentric inertial coordinate system components of the satellite initial position, and T is the imaging time. be. Note that the same or corresponding parts in the figures are indicated by the same reference numerals. Figure 3 Figure 1 Figure 2 Figure 7 Figure 4 Figure 5 Figure 8 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 1 シヤツタ付の光学映像面電子走査型撮像装置等を搭
載した人工衛星の姿勢決定装置において、地表面を撮像
する撮像装置と、上記撮像装置によつて撮像された画像
信号と参照地図とを比較して取得画像上の任意の参照点
の地図上での緯度、経度及び画像上の画素位置を測定す
る参照点測定手段と、上記撮像装置の撮像時刻における
衛星の位置の地心慣性座標系成分及びサイドリアルタイ
ムに基づいて撮像時刻における衛星の地表上直下点の緯
度、経度及び衛星軌道運動にともなつた直下点の地表上
の軌跡と子午線とのなす角度とを計算する演算手段と、
上記参照点測定手段と上記演算手段の出力に基づいて衛
星の軌道基準座標系を基準とした衛星に姿勢角を決定す
る手段とを備えたことを特徴とする人工衛星の姿勢決定
装置。
1 Comparing an image signal captured by an imaging device that images the ground surface with a reference map in an attitude determination device for an artificial satellite equipped with an optical image plane electronic scanning type imaging device with a shutter, etc. a reference point measuring means for measuring the latitude and longitude on a map of an arbitrary reference point on an acquired image and the pixel position on the image; and a geocentric inertial coordinate system component of the position of the satellite at the imaging time of the imaging device. and calculation means for calculating the latitude and longitude of a point directly below the surface of the earth of the satellite at the imaging time based on the side real time, and the angle formed between the locus of the point directly below the surface of the earth and the meridian according to the orbital movement of the satellite;
An apparatus for determining the attitude of an artificial satellite, comprising: the reference point measuring means; and means for determining an attitude angle of the satellite based on the orbital reference coordinate system of the satellite based on the output of the calculating means.
JP8332876A 1976-07-13 1976-07-13 Satellite attitude determination device Expired JPS6031241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8332876A JPS6031241B2 (en) 1976-07-13 1976-07-13 Satellite attitude determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8332876A JPS6031241B2 (en) 1976-07-13 1976-07-13 Satellite attitude determination device

Publications (2)

Publication Number Publication Date
JPS539146A JPS539146A (en) 1978-01-27
JPS6031241B2 true JPS6031241B2 (en) 1985-07-20

Family

ID=13799352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8332876A Expired JPS6031241B2 (en) 1976-07-13 1976-07-13 Satellite attitude determination device

Country Status (1)

Country Link
JP (1) JPS6031241B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4688091A (en) * 1986-05-06 1987-08-18 Ford Aerospace & Communications Corporation Spacecraft camera image registration

Also Published As

Publication number Publication date
JPS539146A (en) 1978-01-27

Similar Documents

Publication Publication Date Title
Westin Precision rectification of SPOT imagery
GREJNER‐BRZEZINSKA Direct exterior orientation of airborne imagery with GPS/INS system: Performance analysis
JP4448187B2 (en) Image geometric correction method and apparatus
Muller et al. A program for direct georeferencing of airborne and spaceborne line scanner images
Cozman et al. Outdoor visual position estimation for planetary rovers
EP0026637A2 (en) Method and apparatus for acquiring topographical data of a celestial body
CN104764443B (en) A kind of tight imaging geometry model building method of Optical remote satellite
CN106468552A (en) A kind of two-shipper crossing location method based on airborne photoelectric platform
US8363928B1 (en) General orientation positioning system
JPH04228400A (en) Triaxial attitude control system of spaceship using pole star sensor
CN112710311B (en) Automatic planning method for three-dimensional live-action reconstruction aerial camera points of terrain adaptive unmanned aerial vehicle
JPH07170443A (en) Overall image pickup device mounted on aircraft
CN102279001B (en) Phase shift compensation method of space-borne camera
US9383210B2 (en) Image navigation and registration (INR) transfer from exquisite systems to hosted space payloads
US8942421B1 (en) Geolocation of remotely sensed pixels by introspective landmarking
US20120026324A1 (en) Image capturing terminal, data processing terminal, image capturing method, and data processing method
Grejner-Brzezinska Direct sensor orientation in airborne and land-based mapping applications
JP2009509125A (en) Method and apparatus for determining a position associated with an image
JPS6031241B2 (en) Satellite attitude determination device
Golubaev Main parameters of meteoroid motion during the fall of the Chelyabinsk meteorite shower on February 15, 2013
Ye et al. Accuracy analysis of real-time object positioning without gcp for images from UAV oblique ultra-long focal small view field whiskbroom camera system
Grejner-Brzezinska Direct platform orientation with tightly integrated GPS/INS in airborne applications
JP2012167940A (en) Method, program and device for determining posture of movable boy
Monay et al. Diwata-2 targeting assessment and attitude error determination using a quaternion-based transformation system
JPH08285633A (en) Ground migration length of flight vehicle, ground speed and three-dimensional position measuring device and method