JPS6031008A - Apparatus for measuring thickness of solidified cast piece - Google Patents

Apparatus for measuring thickness of solidified cast piece

Info

Publication number
JPS6031008A
JPS6031008A JP58138922A JP13892283A JPS6031008A JP S6031008 A JPS6031008 A JP S6031008A JP 58138922 A JP58138922 A JP 58138922A JP 13892283 A JP13892283 A JP 13892283A JP S6031008 A JPS6031008 A JP S6031008A
Authority
JP
Japan
Prior art keywords
slab
total thickness
thickness
measuring
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58138922A
Other languages
Japanese (ja)
Other versions
JPH0236161B2 (en
Inventor
Yutaka Narita
裕 成田
Toru Yoshida
透 吉田
Tetsuo Miyoshi
哲夫 三好
Kunio Takahashi
邦男 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Nippon Steel Corp
Original Assignee
Mitsubishi Electric Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Nippon Steel Corp filed Critical Mitsubishi Electric Corp
Priority to JP58138922A priority Critical patent/JPS6031008A/en
Publication of JPS6031008A publication Critical patent/JPS6031008A/en
Publication of JPH0236161B2 publication Critical patent/JPH0236161B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To provide an accurate apparatus which is operated safely in a severe environment, by attaching an electromagnetic ultrasonic wave generator and an electromagnetic ultrasonic wave receiver to a detector for the total thickness of a cast piece. CONSTITUTION:A pulse signal is conducted through a generating coil 3 by a pulse generator 8, and a pulse magnetic field as shown by an arrow 17 is generated. An electromotive force is induced on the surface of a cast piece 7 and an eddy current 18 is generated. A pulse electromagnetic force is generated by the mutual action with the pulse magnetic fields of the arrow 17. Ultrasonic wave vibration is generated on the surface of a cast piece 7 by said force. The electromagnetic ultrasonic wave generated on the surface of the cast piece 7 advances in the direction of an arrow 19 in the cast piece 7. When the wave reaches the other surface, vibration is generated on the surface of the cast piece 7. An electromotive force is generated on the surface of the cast piece 7 by the mutual action of the vibration and the magnetic field, which is generated by an exciting coil 5 excited by an exciting power source 9. Said electromotive force is amplified by an amplifier 10. A part required on the time axis is taken by a gate circuit 11 and sent to a transmitted-time measuring circuit 12. The thickness of the cast piece 7 is measured based on the time difference between the input signal from the gate circuit and the pulse output timing signal.

Description

【発明の詳細な説明】 本発明はj電磁超音波を用いて連続鋳造における鋳片の
凝り厚みを測定する装置(以下、シェル厚計という)に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus (hereinafter referred to as a shell thickness gauge) for measuring the stiffness thickness of a slab during continuous casting using electromagnetic ultrasonic waves.

従来この種の装置として第1図に示すものがあった。図
において(1)は電磁超音波発生器、(2)は電磁超音
波受信器、(7)は鋳片、(8)はパルス発生回路。
A conventional device of this type is shown in FIG. In the figure, (1) is an electromagnetic ultrasonic generator, (2) is an electromagnetic ultrasonic receiver, (7) is a slab, and (8) is a pulse generation circuit.

(9)は励磁電源、(IIは増幅器、aυはゲート回路
、0邊は透過時間測定回路、 C31は表面温度計、(
I4は鋳片全厚み測定器、(1っけ凝固厚み演算回路9
輪は出力回路である。一方、第2図はこのシェル厚計に
おける電磁超音波発生、および受信の原理を示す図であ
る。この図において、(3)は電磁超音波発生コイル、
(4)は電磁超音波検出コイル、(5)は磁界全発生さ
せるだめの励磁コイル、(6)は磁気回路を形成するた
めの磁心である。ここで検出コイル(4)の出力0υは
増幅器fin)に接続されている。
(9) is the excitation power supply, (II is the amplifier, aυ is the gate circuit, 0 is the transmission time measurement circuit, C31 is the surface thermometer, (
I4 is a slab total thickness measuring device (1 piece solidification thickness calculation circuit 9
The ring is the output circuit. On the other hand, FIG. 2 is a diagram showing the principle of electromagnetic ultrasonic generation and reception in this shell thickness gauge. In this figure, (3) is an electromagnetic ultrasonic generation coil,
(4) is an electromagnetic ultrasonic detection coil, (5) is an excitation coil for generating the entire magnetic field, and (6) is a magnetic core for forming a magnetic circuit. Here, the output 0υ of the detection coil (4) is connected to the amplifier fin).

次に動作について説明する。パルス発生回路(8)によ
ってパルス信号全通電された発生コイル(3)はコイル
のまわシに矢印αηのようにパルス磁界を発生し、この
パルス磁界はレンツの法則によシ厚みDの鋳片(7)の
表面に起電力を誘起し、うず電流0υを発生させる。こ
のうず電流a枠はさらにフレミングの左手の法則によシ
矢印(I7)のパルス磁界との相互作用によるパルス電
磁力を発生させこれが鋳片(7)の表面に超音波振動を
起させる。以上が電磁超音波発生の原理である。次に鋳
片(7)の表面で発生した電磁超音波は鋳片(7)の中
を矢印0の向きに進行し、他面に達すると鋳片(7)の
表面に振動を発生させる。この振動と励磁電源(9)に
よって励磁された励磁コイル(5)が作る磁界との相互
作用によシ鋳片(7)の表面に起電力が発生する。これ
はフレミングの右手の法則によるものでおる。この起電
力は鋳片(7)の表面にうず電流−を発生しこのうず電
流の作る磁界がレンツの法則によル、検出コイル(4)
に起電力を誘起し、この起電力信号が受信信号として増
幅器−によって増幅され、ゲート回路旧)によって時間
軸上の必要な部分が取り出され、透過時間測定回路α邊
に送られる。このゲート回路QBでは通常パルス発生回
路のパルス出力タイミング信号を基準にして時間ゲート
が作成される。次に透過時間測定回路翰ではゲート回路
Iから入力された受信信号とパルス出力タイミング信号
の時間差から超音波が鋳片(7)の−面からその裏面の
他面までに伝搬するに要する時間t=6求め、その結果
が凝固厚み演算回路a均に送られる。
Next, the operation will be explained. The generating coil (3), which is fully energized by the pulse signal by the pulse generating circuit (8), generates a pulsed magnetic field in the direction of the arrow αη around the coil, and this pulsed magnetic field is applied to the slab of thickness D according to Lenz's law. An electromotive force is induced on the surface of (7) to generate an eddy current of 0υ. This eddy current A frame further generates a pulsed electromagnetic force due to interaction with the pulsed magnetic field indicated by the arrow (I7) according to Fleming's left-hand rule, which causes ultrasonic vibrations on the surface of the slab (7). The above is the principle of electromagnetic ultrasound generation. Next, the electromagnetic ultrasonic waves generated on the surface of the slab (7) travel inside the slab (7) in the direction of arrow 0, and when they reach the other surface, they generate vibrations on the surface of the slab (7). An electromotive force is generated on the surface of the slab (7) due to the interaction between this vibration and the magnetic field created by the excitation coil (5) excited by the excitation power source (9). This is due to Fleming's right-hand rule. This electromotive force generates an eddy current on the surface of the slab (7), and the magnetic field created by this eddy current is based on Lenz's law, and the detection coil (4)
This electromotive force signal is amplified by an amplifier as a received signal, and a necessary portion on the time axis is extracted by a gate circuit (old) and sent to the transmission time measurement circuit α. In this gate circuit QB, a time gate is normally created based on the pulse output timing signal of the pulse generating circuit. Next, in the transmission time measurement circuit, the time t required for the ultrasonic wave to propagate from the - side of the slab (7) to the other side of the back side is calculated from the time difference between the reception signal input from the gate circuit I and the pulse output timing signal. =6, and the result is sent to the coagulation thickness calculation circuit a.

さて、今、鋳片内に未凝固部が残っているとし。Now, suppose that there is an unsolidified part left in the slab.

すでに凝固している部分の厚さ’fcd=61+d2と
すれば未凝固部の厚さはD−6のはずであるから凝固部
を超音波が伝搬する速度をV、未凝固部を超音波が伝搬
する速度を■6とすれば鋳片全体を超音波が透過する透
過時間tは d D −d であられされる。一般にVは鋼種によって決まる鋳片の
凝固温度と1表面温度計fi3)によって測定された表
面温度から平均又は加重平均等によってめた凝固部の平
均温度により脇音波伝搬速度の温度依存特性から算出さ
れ、又■えは未凝固部が過冷却状態にあると考えられる
ことからこの状態での超音波伝搬速度を実験によってめ
られた値が使用される。従って、凝固厚み演算回路Hの
入力として、前記透過時間を以外に全厚み測定器θ→か
らの厚み情報りと1表面温度計Uからの表面温度情報と
鋼種によって決まる鋳片の凝固温度値と未凝固部の超音
波伝搬速度■6が伺られれは前記の関係式から凝固厚み
dが算出できるわけである。算出された凝固厚みdは出
力回路061によシ表示又は記録される。
If the thickness of the already solidified part is 'fcd = 61 + d2, the thickness of the unsolidified part should be D-6, so the speed at which the ultrasound propagates through the solidified part is V, and the ultrasonic wave travels through the unsolidified part. If the propagation speed is 6, then the transmission time t for the ultrasonic wave to pass through the entire slab is given by dD-d. In general, V is calculated from the temperature dependence characteristic of side sound wave propagation velocity using the solidification temperature of the slab determined by the steel type and the average temperature of the solidified part determined by an average or weighted average from the surface temperature measured by a surface thermometer fi3). Furthermore, since the unsolidified portion is considered to be in a supercooled state, a value determined experimentally for the ultrasonic propagation velocity in this state is used. Therefore, as inputs to the solidification thickness calculation circuit H, in addition to the transmission time, the thickness information from the total thickness measuring device θ→, the surface temperature information from the surface thermometer U, and the solidification temperature value of the slab determined by the steel type are input. If the ultrasonic propagation velocity (6) of the unsolidified portion is determined, the solidified thickness d can be calculated from the above relational expression. The calculated solidification thickness d is displayed or recorded by the output circuit 061.

さて以上のように構成されている従来のシェル厚計にお
いて鋳片全厚み測定器(+=0は通常第3図に示すよう
なものが使用されていた。図において(22a)(22
b)は鋳片(7)に倣うためのコロ、 (23a)(2
3b)はこのコロの支持棒、 (24a)(24b)は
支持棒の昇降ストローク量を測定する長さ計。
Now, in the conventional shell thickness gauge configured as described above, a slab total thickness measuring device (+=0 as shown in Fig. 3 is usually used. In the figure, (22a) (22
b) is a roller to imitate slab (7), (23a) (2
3b) is a support rod for this roller, and (24a) and (24b) are length gauges for measuring the vertical stroke amount of the support rod.

(25a)(25b)は支持棒(25a)(23b)の
昇降を行うだめのアクチュエータ、 (26a)(26
b)は長さ計等を納める収納箱、 (27a)(27b
)は横行用の台車。
(25a) (25b) are actuators for raising and lowering the support rods (25a) (23b), (26a) (26
b) is a storage box for storing length meters, etc. (27a) (27b
) is a trolley for traversing.

(28a)(28b)は台車横行のためのレールである
(28a) and (28b) are rails for the bogie to traverse.

第3図(a)は全厚みDを測定するために支持棒(23
a)を下降、支持棒(23b)を上昇させた図、第3図
(b)は測定を行わないときに支持棒(23a)’i上
昇、支持棒(23b)を下降させた図をあられしている
Figure 3(a) shows the support rod (23) used to measure the total thickness D.
Figure 3(b) is a diagram showing the support rod (23a)'i raised and the support rod (23b) lowered when no measurement is being performed. are doing.

令弟3図(b) K示すように測定を行わないときのD
 C+ (22a)の下端からコロ(22b)の上端ま
での距離をC4としたとき第3図(b)の状態から第3
図(a)の状態になるまでの支持棒(25a)と支持棒
(23b)のストローク量a及びblを長さ計(24a
)及び(24b)1 を用いて測定することによシ鋳片(7)の厚みDを次式
によって計算することができる。
Figure 3 (b) D when no measurement is performed as shown in K
C+ When the distance from the lower end of (22a) to the upper end of roller (22b) is C4, from the state of Fig. 3(b) to the third
The stroke amounts a and bl of the support rod (25a) and support rod (23b) until the state shown in figure (a) is reached are measured using a length meter (24a).
) and (24b) 1 , the thickness D of the slab (7) can be calculated using the following formula.

Dコc (a 、+b 、) さて、上記のようにして鋳片(7)の厚みを測定するた
めにはC4が既知でなければならないが1通常このC1
は鋳片(7)のかわシにあらかじめ厚みが既知である校
正用ブロックを測定し、このときの支持棒(23a)(
2Sb)のストローク’ta2sb2又校正ブロック厚
をSとすると2次式 %式% にてめることができる。
Dcoc (a, +b,) Now, in order to measure the thickness of the slab (7) as described above, C4 must be known, but normally this C1
Measure a calibration block whose thickness is known in advance on the edge of the slab (7), and then measure the support rod (23a) (
2Sb) Stroke 'ta2sb2 Also, if the calibration block thickness is S, it can be calculated using the quadratic formula % formula %.

以上が鋳片全厚み測定器(14)の動作原理である。The above is the operating principle of the slab total thickness measuring device (14).

ところで以上のように構成されているシェル厚計の鋳片
全厚み測定器04は次に示すような欠点があった。
However, the total slab thickness measuring device 04 of the shell thickness gauge constructed as described above had the following drawbacks.

(1)超音波の透過時間tを測定した位置と鋳片全厚み
Dを測定した位置が異なるため、鋳片全厚みDの位置の
違いによる差がそのまま鋳片凝固厚みdの測定誤差に影
響する。
(1) Since the position where the ultrasonic transmission time t was measured and the position where the total slab thickness D was measured are different, the difference in the position of the total slab thickness D directly affects the measurement error of the slab solidification thickness d. do.

(2)支持棒(23a)(23b)が鋳片からの放射熱
あるいは雰囲気温度によって膨張しその長さが変化する
ため、鋳片全厚みDの測定値に誤差を生じる。
(2) Since the support rods (23a) and (23b) expand and change their lengths due to radiant heat from the slab or ambient temperature, an error occurs in the measured value of the total thickness D of the slab.

(3)鋳片(7)は一般に1000℃前後の高熱状態で
あるため通常冷却機構が必須となる。しかし冷却機構の
異常などの非常事態が生じたときに、コロ(22a)(
22b)等鋳片の高熱にさらされている部分を安全な位
置に退避させる必要があるが、退避に必要な電気、圧搾
空気(以下空気という)あるいは油圧など動力源の供給
が同時に断たれてしまった時この退避機能が働かず、高
熱にさらされた部分の焼損を招く危険性がある。
(3) Since the slab (7) is generally in a high temperature state of around 1000°C, a cooling mechanism is usually required. However, when an emergency situation such as an abnormality in the cooling mechanism occurs, the roller (22a)
22b) It is necessary to evacuate the parts of the slab exposed to high heat to a safe location, but the supply of power sources such as electricity, compressed air (hereinafter referred to as air), or hydraulic pressure necessary for evacuation is cut off at the same time. When it is stored away, this evacuation function does not work and there is a risk of burning out the parts exposed to high heat.

(4)鋳片からの放射熱の影響を少なくするために、鋳
片全厚み測定器α4の本体をなるべく鋳片から離そうと
すると支持棒のストローク長を長くする必要がちシ、こ
れが上記(2)に述べた理由により鋳片全厚みDの測定
誤差を大きくするため、放射熱の影響を小さくすること
とストローク長を短くすることの両立が困難である。
(4) In order to reduce the influence of radiant heat from the slab, if you try to move the body of the slab total thickness measuring device α4 as far away from the slab as possible, it is necessary to lengthen the stroke length of the support rod. For the reason stated in 2), the measurement error of the total thickness D of the slab increases, making it difficult to simultaneously reduce the influence of radiant heat and shorten the stroke length.

(5)測定を行わないとき支持棒(23a)(23b)
はストローク長の分だけ後側に突出するため台車の鋳片
(7)と反対側の部分に空間を要し、特に下部横行台車
(27b)については第3図に示すように床面にピット
を堀る必要が出てくるケースがある。
(5) Support rods (23a) (23b) when not measuring
Because it protrudes rearward by the length of the stroke, a space is required on the opposite side of the bogie from the slab (7), and in particular, for the lower transverse bogie (27b), there are pits on the floor as shown in Figure 3. There are cases where it is necessary to investigate.

この発明はシェル厚計の鋳片全厚み測定器Iの持つこれ
らの欠点を取り除き、鋳片全厚みDの測定誤差を小さく
シ、かつ鋳片全厚み測定器0→の信頼性を上げることに
よって高精度、高寿命で安全性の高いシェル厚計を提供
するためになされたものである。
This invention eliminates these drawbacks of the total slab thickness measuring device I of the shell thickness gauge, reduces the measurement error of the total slab thickness D, and improves the reliability of the total slab thickness measuring device 0→. This was done to provide a shell thickness gauge with high accuracy, long life, and high safety.

第4図はこの発明の一実施例を示す図である。FIG. 4 is a diagram showing an embodiment of the present invention.

図において(29a)(29b)はセンサーヘッド。In the figure, (29a) and (29b) are sensor heads.

(23a)(25b)は支持棒、 (32a)(32b
)は測定用ロッド、 (24a)(24b)は長さ計、
 (25a)(25b)はアクチュエータ、 (26a
)(26b)は収納箱。
(23a) (25b) are support rods, (32a) (32b)
) is a measuring rod, (24a) and (24b) are length meters,
(25a) (25b) are actuators, (26a
) (26b) is a storage box.

(30a)(30b)は収納箱の昇降機構、 (27a
)(27b)は横行台車、 (28a)(28b)はレ
ールである。センサーヘッド(29a )(29b)の
片方には電磁超音波発生器(1)が、もう一方には電磁
超音波受信器(2)が内蔵されている。支持棒(23a
)(23b)の中には電磁超音波発生器(1)及び電磁
超音波受信器(2)に対する信号ケーブル及びセンサー
ヘッド用の冷却水を供給する配管と共に測定用ロッド(
32a)(32b)が納められてお勺、これらを保護し
ている。支持棒(23a)(23b)はアクチュエータ
(25a)(25b)と連結されておシワアクチュエー
タ(25a)(25b)によって昇降するようになって
いる。支持棒内に納められている測定用ロッド(32a
)(32b)は長さ計(24a)(24b)に連結され
てお)、長さ計(24a)(24b)は支持棒(23a
)(23b)のストローク量を測定できるようになって
いる。収納箱(24a)(26b)は上記のアクチュエ
ータ、長さ計やケーブル、配管等を収納する箱である。
(30a) (30b) are storage box lifting and lowering mechanisms; (27a)
) (27b) is a traverse truck, (28a) (28b) are rails. An electromagnetic ultrasonic generator (1) is built into one side of the sensor head (29a) (29b), and an electromagnetic ultrasonic receiver (2) is built into the other side. Support rod (23a
) (23b) contains a measuring rod (
32a) (32b) are housed there and protect them. The support rods (23a) (23b) are connected to actuators (25a) (25b) and are moved up and down by the wrinkle actuators (25a) (25b). The measuring rod (32a) housed within the support rod
) (32b) are connected to the length gauges (24a) (24b)), and the length gauges (24a) (24b) are connected to the support rod (23a).
) (23b) can be measured. The storage boxes (24a) and (26b) are boxes for storing the above-mentioned actuators, length meters, cables, piping, etc.

この収納箱(2/1a)(26b)は昇降機! (30
a)(lb) ’に介して横行台車(27a )(27
b)により支持されてお)、横行台車(27a)(27
b)は鋳片(7)の搬送方向に対し直角に渡されたレー
ル(28a )(28b)の上を横行するようになって
いる。
This storage box (2/1a) (26b) is an elevator! (30
a) (lb) ' Traverse trolley (27a) (27
b)), the transverse truck (27a) (27
b) is designed to run horizontally on rails (28a) and (28b) that are passed at right angles to the direction of conveyance of the slab (7).

第4図(a)は上部横行台車(以下上台車と言う)(2
7a)側の収納箱(26a)が昇降機構(30a)によ
って最も下降された位置(下降限)にあり、かつ支持棒
(23a)がアクチュエータ(25a)によって下降さ
れセンサーヘッド(29a)が鋳片(7)に接し。
Figure 4(a) shows the upper transverse truck (hereinafter referred to as the upper truck) (2
The storage box (26a) on the side 7a) is at the lowest position (lower limit) by the lifting mechanism (30a), and the support rod (23a) is lowered by the actuator (25a) and the sensor head (29a) is placed in the slab. Close to (7).

又、下部横行台車(以下下台車と言う) (27b)側
の収納箱(2/ib)が昇降機構(3ob)によって最
も上昇された位置(上昇限)にあり、かつ支持棒(23
b)がアクチュエータ(25b)によって上昇されセン
サーヘッド(29b)が鋳片(7)に接した状態も示し
た図である。一方第4図(b)は反対に上台車(27a
)側の収納箱(26a)が昇降機構(30a)によって
上昇限に上げられ、かつ支持棒(23a)がアクチュエ
ータ(25a)によって上昇限に上げられておシ、又下
台車(27b)側の収納箱(26b)が昇降機構(3o
b)によって下降限に下げられ、かつ支持棒(23b)
がアクチュエータ(25b)によって下降限に下げられ
ている状態を示した図である。
In addition, the storage box (2/ib) on the lower transverse trolley (hereinafter referred to as the lower trolley) (27b) is at the highest position (ascent limit) by the lifting mechanism (3ob), and the support rod (23
FIG. 7b also shows a state in which the sensor head (29b) is raised by the actuator (25b) and is in contact with the slab (7). On the other hand, Fig. 4(b) shows the upper truck (27a
) side storage box (26a) is raised to the upper limit by the lifting mechanism (30a), and the support rod (23a) is raised to the upper limit by the actuator (25a). The storage box (26b) has a lifting mechanism (3o
b) is lowered to the lower limit by the support rod (23b).
FIG. 3 is a diagram showing a state in which the actuator (25b) has lowered the lower limit to the lower limit.

又1図において上台車(27a)側の収納箱(26a)
には非常時の退避機構01)が納められておシ、第5図
はこの構成を示す図である。図において、(至)は爪、
C34は爪(至)を引っ張っているバネ、*iは空気の
蓄圧タンク、(至)は圧力スイッチ、G7)は圧力計、
(至)は昇降用電磁弁、 C1lは非常退避用電磁弁、
(41はロック解除用アクチュエータである。
Also, in Figure 1, the storage box (26a) on the upper truck (27a) side
An emergency evacuation mechanism 01) is housed in, and FIG. 5 is a diagram showing this configuration. In the figure, (to) is a nail,
C34 is the spring that pulls the claw (to), *i is the air pressure storage tank, (to) is the pressure switch, G7) is the pressure gauge,
(to) is the solenoid valve for lifting, C1l is the solenoid valve for emergency evacuation,
(41 is an actuator for unlocking.

次に、第4図及び第5図に示すこの発明の一実施例につ
いてその動作を説明する。測定を行わないとき第4図(
b)に示すような状態にあった鋳片全厚み測定器は、測
定に先立ち、まず上台車(27a)側の昇降機構(30
a)及び下台車(27b)側の昇降機構(30b)を動
かし、上台車(27a)側の収納箱(25a)を下降、
下台車(27b)側の収納箱(26b)を上昇させる。
Next, the operation of an embodiment of the present invention shown in FIGS. 4 and 5 will be described. Figure 4 (when not measuring)
Prior to measurement, the slab total thickness measuring device, which was in the state shown in b), first turned on the lifting mechanism (30) on the upper truck (27a) side.
a) and move the lifting mechanism (30b) on the lower truck (27b) side, lower the storage box (25a) on the upper truck (27a) side,
The storage box (26b) on the lower truck (27b) side is raised.

昇降機構(30a)(30b)として1本実施例ではス
クリュウジヤツキを使用したがもちろん他の昇降機構を
使用しても良い。次にこの状態にてやけ)測定に先立ち
鋳片(7)の代りに厚みが既知である校正ブロックを使
用し、上台車(27a)側のセンサーヘッド(29a)
の下端と下台車(27b)側のセンサーヘッド(29b
)の上端との間の距離C2を測定する。この動作は従来
の鋳片全厚み測定器と同様にアクチュエータ(25a)
(25b)を用いて支持棒(23a)及び(23b)を
下降又は上昇させて行う。但し従来のものと異なる点は
昇降機構(30a)(30b)によって収納箱(26a
)(26b)を鋳片(7)に近づけた分だけ、支持棒(
23a) (25b)のストローク長が短かくて済み、
それに伴って熱膨張等による誤差が少なくなるという点
である。本実施例では昇降機構(30a)(30b)と
アクチュエータ(25a)(25b)の二段昇降とした
がこれを三段以上の構成としても良い。
In this embodiment, a screw jack is used as the elevating mechanism (30a) (30b), but other elevating mechanisms may of course be used. Next, in this state, prior to measurement, a calibration block of known thickness is used instead of the slab (7), and the sensor head (29a) on the upper carriage (27a) side is
The lower end of the sensor head (29b) and the lower truck (27b) side
) Measure the distance C2 between the top edge of the This operation is performed by the actuator (25a) in the same way as the conventional slab total thickness measuring device.
(25b) is used to lower or raise the support rods (23a) and (23b). However, the difference from the conventional one is that the storage box (26a) is
) (26b) is brought closer to the slab (7), the support rod (
23a) The stroke length of (25b) can be shortened,
Accordingly, errors due to thermal expansion and the like are reduced. In this embodiment, the elevating mechanism (30a) (30b) and the actuator (25a) (25b) are used for elevating in two stages, but this may be configured in three or more stages.

さて、上記の測定によって02が既知となると今度は鋳
片(7)の厚みDの測定が可能となる。第4図(、)は
アクチュエータ(25a)(25b)を用いて支持棒(
23a)(23b) f下降又は上昇させてセンサーヘ
ッド(29a)(29b)を鋳片(7)に接触させ、測
定を行っている状態を示した図である。この状態で従来
と異なる点はセンサーヘッド(29a)(29b)には
電磁超音波発生器(1)及び電磁超音波受信器(2)が
内蔵されているため鋳片(7)の厚みを測定した同じ位
置において超音波の発生及び検出が行え、超音波透過時
間の測定が可能であるという点である。さらにもう一点
従来と異なる点れ支持棒(2Sa)(23b)のストロ
ーク長を測定するだめの長さ計(24a)(24b)が
支持棒(23a)(23b)に直接連結されておらず。
Now, when 02 is known by the above measurement, it becomes possible to measure the thickness D of the slab (7). Figure 4 (,) shows the support rod (25a) and (25b)
23a) (23b) f FIGS. 23A and 23B are diagrams showing a state in which the sensor head (29a) (29b) is brought into contact with the slab (7) by being lowered or raised to perform measurement. What is different from the conventional method in this state is that the sensor head (29a) (29b) has a built-in electromagnetic ultrasonic generator (1) and an electromagnetic ultrasonic receiver (2), so it can measure the thickness of the slab (7). Ultrasonic waves can be generated and detected at the same position, and the ultrasonic transmission time can be measured. Furthermore, there is another point that is different from the conventional one: the length gauges (24a) (24b) for measuring the stroke length of the dotted support rods (2Sa) (23b) are not directly connected to the support rods (23a) (23b).

中空構造となっている支持棒に内蔵された。熱膨張が少
なくなるように工夫された測定用ロッド(32a)(3
2b)に連結されているという点である。
It is built into a support rod that has a hollow structure. Measuring rod (32a) (3) designed to reduce thermal expansion
2b).

本実施例では測定用ロッド(52a)(32b)の材料
として熱膨張係数の非常に小さい金属材料であるスーパ
ーインバーを使用し、さらに、支持棒(23a)(23
b)内に温度管理された空気を循環させ測定用ロッド(
32a)(32b)の温度環境が一定となるようにした
。このような構造とすることによって支持棒(23a)
(23b)が鋳片(7)の放射熱や雰囲気温度によって
熱膨張を起こしたり、アクチュエータ(25a)(25
b)の押付力によってたわみを生じたシしても測定ロッ
ド(52−)(32b)には影響金与えないので精度の
良いストローク長測定が可能となった。本実施例では熱
膨張係数の小さい材料として、スーパーインバータを使
用したが、これ以外の材料2例えばCFRP(炭素繊維
積層材料)等の材料を使用することも可能である。しか
も測定ロッド(32a)(32b)にはアクチュエータ
(25a)(25b)の押付力が直接加わらない上に、
支持棒(23a)(23b)によって保護されているた
め9強度が弱い材料や耐環境性の悪い材料も使用可能で
ある。さて、−図の測定が終了すると支持棒(23a)
(23b) iアクチュエータ(25a)(25b)に
よシ上昇又は下降させ、退避させた状態で鋳片(7)が
搬送されて2次の測定点が来るのを待つか、あるいはレ
ール(28a)(28b)の上を上台車(27a)およ
び下台車(27b) i横行させて別の測定位置に動か
すかに1次の測定を行う。
In this embodiment, Super Invar, which is a metal material with a very small coefficient of thermal expansion, is used as the material for the measuring rods (52a) (32b), and the supporting rods (23a) (23
b) Circulate temperature-controlled air inside the measuring rod (
The temperature environment of 32a) and 32b was kept constant. With this structure, the support rod (23a)
(23b) may cause thermal expansion due to the radiant heat of the slab (7) or the ambient temperature, or the actuator (25a) (25
Even if the measuring rod (52-) (32b) is deflected by the pressing force in b), it does not affect the measuring rod (52-) (32b), making it possible to measure the stroke length with high accuracy. In this embodiment, a super inverter is used as the material with a small coefficient of thermal expansion, but it is also possible to use other materials such as CFRP (carbon fiber laminated material). Moreover, the pressing force of the actuators (25a) (25b) is not directly applied to the measuring rods (32a) (32b), and
Since it is protected by the support rods (23a) and (23b), it is possible to use materials with low strength or poor environmental resistance. Now, - When the measurement shown in the figure is completed, the support rod (23a)
(23b) Either raise or lower the i-actuators (25a) and (25b) and wait for the second measurement point to come after the slab (7) is conveyed in the retracted state, or use the rail (28a) First measurement is performed by moving the upper truck (27a) and lower truck (27b) across (28b) to another measurement position.

さてこのような場合センサーヘッド(29a)(29b
)は長時間高熱の鋳片に接触した状態で使用されること
になシアセンサーヘッド(29a)(29b)の耐熱対
策が不可欠となって来る。このためなんらかの形で冷却
機構が必要となって来るが1本実施例ではセンサーヘッ
ド(29a)(29b)内部に冷却水を満し、その一部
がセンサーヘッド(29a)(29b)の鋳片(7)と
対向する面にも漏れ出るようにしている。
Now, in such a case, the sensor head (29a) (29b
) is used in a state where it is in contact with a hot slab for a long time, so it is essential to take heat-resistant measures for the shear sensor head (29a) (29b). For this reason, some form of cooling mechanism is required, but in this embodiment, the inside of the sensor head (29a) (29b) is filled with cooling water, and a part of the cooling water is used as a cooling mechanism for the sensor head (29a) (29b). It also leaks to the surface facing (7).

ところが、断水や配管上のつまシなどでこの冷却水が供
給されなくなれば冷却効果が失われ、この状態で測定を
続ければ、センサーヘッド(29a)(29b)の焼損
事故を起こす危険性が生じてくる。
However, if this cooling water is not supplied due to a water outage or a blockage on the piping, the cooling effect will be lost, and if measurements are continued in this state, there is a risk of burnout of the sensor heads (29a) (29b). It's coming.

このため例えば、冷却水の供給系路に水流計又は水圧計
を設置し、冷却水の供給があらかじめ定められた計を割
ったときにこれを検知し、アクチュエータ(25a)(
25b)や場合によっては昇降機構(30a)(30b
)を動かして支持棒(23a)(23b)を鋳片(7)
から遠ざけるような制御回路を設けることが考えられる
。ところが冷却水が供給されなくなった原因が停電等の
ためのポンプ停止であったとすれば電気の供給はもちろ
んのこと空気や油圧のだめのポンプも停止して空気や油
圧の供給も停止することが十分に考えられる。すなわち
、冷却水が供給されないような非常時に支持棒を鋳片(
7)から遠ざけるための動力源が確保されているとは限
らない。そこで本実施例ではアクチュエータ(25a)
(25b)としてエアシリンダを使用し、第5図に示す
ような空気系統を組むことにより、電気。
For this purpose, for example, a water flow meter or a water pressure gauge may be installed in the cooling water supply line to detect when the cooling water supply falls below a predetermined meter and actuate the actuator (25a) (
25b) and in some cases, the lifting mechanism (30a) (30b
) to move the support rods (23a) and (23b) to the slab (7).
It is conceivable to provide a control circuit to keep it away from the ground. However, if the cause of the cooling water supply being cut off was a pump stoppage due to a power outage, etc., it would be sufficient to stop not only the electricity supply, but also the air and hydraulic pumps and the air and hydraulic supply. It can be considered. In other words, in an emergency when cooling water is not supplied, the support rod can be replaced with a slab (
7) There is no guarantee that a power source will be available to move the vehicle away from the vehicle. Therefore, in this embodiment, the actuator (25a)
Electricity is generated by using an air cylinder as (25b) and constructing an air system as shown in Fig. 5.

水、空気のいずれの供給がどのような組み合わせで停止
しても支持棒(25a) (23b)が鋳片(7)から
遠ざけられるようにした。
The support rods (25a) (23b) are kept away from the slab (7) even when the supply of water or air is stopped in any combination.

次にこの機構を詳細に説明する。第5図において、矢印
(41)に示す向きに空気が供給されていればアクチュ
エータ(40が働きバネ(財)の引張力に打勝って爪(
至)が下方に引っ張られロックが解除される。
Next, this mechanism will be explained in detail. In Fig. 5, if air is supplied in the direction shown by the arrow (41), the actuator (40) will overcome the tensile force of the working spring and the claw (
) is pulled downward to release the lock.

本実施例ではアクチュエータ(41としてエアシリンダ
を使用した。さらに空気が正常に供給されていれは蓄圧
タンク0最にはアクチュエータ(25a)を−同上昇さ
せるに十分な空気が貯えられ、又、圧力スイッチ(至)
は空気圧が十分であることを示す空気圧正常信号を出力
する。この信号を入力した図示されていない制御回路は
非常退避用電磁弁C1lに通電し、蓄圧タンク(至)の
出口をふさぐため、逆止弁(42)で入口側への逆流を
止められている蓄圧タンク(至)には空気が貯えられ密
封された状態となる。
In this example, an air cylinder was used as the actuator (41).Furthermore, if air is normally supplied, the pressure storage tank will have enough air stored to raise the actuator (25a) to zero, and the pressure switch (to)
outputs a normal air pressure signal indicating that the air pressure is sufficient. A control circuit (not shown) that inputs this signal energizes the emergency evacuation solenoid valve C1l, and in order to block the outlet of the pressure storage tank (to), a check valve (42) prevents backflow to the inlet side. Air is stored in the pressure storage tank (to) and it is in a sealed state.

又、非常退避用電磁弁(至)の排気側回路は逆止弁(4
3)をバイパスする働きをしているので、結局この状態
では、非常退避用電磁弁C31や蓄圧タンク(至)の存
在は昇降用ソレノイド(至)によるアクチュエータ(2
5a)の動作に対し何ら影響を与えず単に昇降用電磁弁
(至)とアクチュエータ(25a)を直接接続した場合
と等価になる。従って昇降用電磁弁(財)に通電すれば
支持棒(2+a)がアクチュエータ(25a)によ勺下
降し、逆に非通電となればアクチュエータ(25a)に
よシ支持棒(23a)が上昇する。これが異常のない場
合の動作である。さて、今冷却水の供給が停止したこと
を冷却水の供給経路に設けられた圧力スイッチ又は水流
検知器等により検知し、その信号が制御回路に入力され
ると制御回路は、昇降用電磁弁(至)を非通電状態にす
ることによシ、支持棒(23a)を上昇させることがで
きる。
In addition, the exhaust side circuit of the emergency evacuation solenoid valve (to) is connected to the check valve (4).
3), so in this state, the presence of the emergency evacuation solenoid valve C31 and the pressure accumulator tank (2) is due to the actuator (2) operated by the lifting solenoid (2).
This is equivalent to simply connecting the lifting solenoid valve (to) and the actuator (25a) directly without any influence on the operation of step 5a). Therefore, if the lifting solenoid valve is energized, the support rod (2+a) will be lowered by the actuator (25a), and conversely, if it is de-energized, the support rod (23a) will be raised by the actuator (25a). . This is the operation when there is no abnormality. Now, when the pressure switch or water flow detector installed in the cooling water supply path detects that the cooling water supply has stopped, and that signal is input to the control circuit, the control circuit controls the lifting solenoid valve. (to) is de-energized, the support rod (23a) can be raised.

もしもこのとき、何かの理由で矢印(41)に示す空気
が供給されなくなったとすれば、もはや昇降用電磁弁(
至)を通してアクチュエータ(25a)を動かすことは
できないが、このときは圧力スイッチ(至)が空気圧の
低下を検知し、この信号を制御回路に出力するため、制
御回路ではこの信号が入力されれば昇降用電磁弁0!O
及び非常退避用電磁弁0Iを非通電とし、蓄圧タンク0
1に貯えられた空気をアクチュエータ(25a)に供給
し、支持棒(23a) f上昇させることができる。一
方、空気の供給が停止すればアクチュエータ(41はロ
ック解除の機能を失うため、バネ0めによって爪(ハ)
はロック側に倒れ、一度上昇した支持棒(23a)は次
に新しく空気が供給されるまでロックされたまま降下す
ることはない。
At this time, if for some reason the air indicated by the arrow (41) is no longer supplied, the lifting solenoid valve (
Although it is not possible to move the actuator (25a) through (to), in this case the pressure switch (to) detects the decrease in air pressure and outputs this signal to the control circuit, so if this signal is input to the control circuit, Solenoid valve for lifting 0! O
And the emergency evacuation solenoid valve 0I is de-energized, and the pressure storage tank 0
The air stored in the actuator (25a) can be supplied to the actuator (25a) to raise the support rod (23a). On the other hand, if the air supply stops, the actuator (41) will lose its lock release function, so the spring 0 will release the lock (c).
falls to the lock side, and the support rod (23a) once raised will remain locked and will not come down until new air is supplied next time.

これとは逆に空気は正常に供給されているが。On the contrary, air is being supplied normally.

電気の供給が伺らかの理由で断たれたときには。When the electricity supply is cut off for some unknown reason.

昇降用電磁弁(2)も非常退避用電磁弁C1lも共に非
通電となるからこれらを通して供給された空気はいずれ
もアクチュエータ(25a)に対し支持棒を上昇させる
ように働くことになる。又空気の供給も電気の供給も断
たれたときには、昇降用電磁弁(至)および非常退避用
電磁弁0Iが圧力スイッチ(至)からの信号を待つまで
もなく非通電となるから蓄圧タンクから供給された空気
は支持棒(23a) f上昇させるようにアクチュエー
タ(25a)に対して働くことになる。以上のように冷
却水、空気、電気のいずれの供給が停止してもすべて支
持棒(23a) f上昇させ、センサーヘッド(29a
)を鋳片(7)から遠ざける仕組になっており、又冷却
水の供給停止の場合の動作と電気の供給停止の場合の動
作と全く同じでおるから以上の説明から冷却水、空気、
電気の供給停止がどんな組み合わせで生じてもすべてセ
ンサーヘッド(29a )を鋳片(7)から遠ざける方
向に動作することが容易に理解できる。本実施例ではア
クチュエータ(25a) 、及びロック解除用アクチュ
エータ(41としてエアシリンダを使用したが、これら
が他の動力源例えば電気、油圧等を使用するアクチュエ
ータであったとしても、この発明の要旨を損うものでは
ないことは言うまでもないことである。又、同じ機能を
達成する構成としては他にも種々あり第6図に示す簡略
化されたものもその一例である。
Since both the elevating solenoid valve (2) and the emergency evacuation solenoid valve C1l are de-energized, the air supplied through them both acts on the actuator (25a) to raise the support rod. In addition, when the air supply and electricity supply are cut off, the lift solenoid valve (to) and the emergency evacuation solenoid valve 0I are de-energized without waiting for the signal from the pressure switch (to), so that no electricity is removed from the pressure storage tank. The supplied air acts on the actuator (25a) to raise the support rod (23a) f. As described above, even if the supply of cooling water, air, or electricity stops, the support rod (23a) is raised and the sensor head (29a
) is kept away from the slab (7), and the operation when the cooling water supply is stopped is exactly the same as the operation when the electricity supply is stopped. From the above explanation, the cooling water, air,
It is easy to understand that no matter what combination of electricity supply interruptions occurs, the sensor head (29a) moves away from the slab (7). In this embodiment, air cylinders are used as the actuator (25a) and the lock release actuator (41), but even if these are actuators that use other power sources such as electricity or hydraulic pressure, the gist of the present invention will still apply. Needless to say, this is not a loss. There are various other configurations that achieve the same function, and the simplified configuration shown in FIG. 6 is one example.

なお本発明では9以上に示す非常時の退避機構を上台車
(27a、)側にのみ設置したがこれは下台車(27b
)側の支持棒(23b)が空気、電気の供給停止のとき
に自重で自然落下するため特別な退避機(23) 構を設ける必要がないからである。鋳片全厚み測定器の
設置する方向等によってはもちろん下台車(27b)側
にも設置する必要があることは言うまでもない。
In addition, in the present invention, the emergency evacuation mechanism shown in 9 and above is installed only on the upper truck (27a,) side, but this is not installed on the lower truck (27b).
This is because the supporting rod (23b) on the ) side naturally falls under its own weight when the supply of air and electricity is stopped, so there is no need to provide a special evacuation mechanism (23). It goes without saying that depending on the direction in which the slab total thickness measuring device is installed, it may also be necessary to install it on the lower truck (27b) side.

この発明は以上のようになっているから前述した従来の
鋳片全厚み測定器がもつ欠点が解消され。
Since the present invention is constructed as described above, the drawbacks of the conventional slab total thickness measuring device described above are solved.

誤差が少く、又過酷な環境でも安全に動作する鋳片全厚
み測定器が得られ、精度の良いシェル厚計を提供するこ
とができる。
It is possible to obtain a total thickness measuring device for slabs with little error and that can operate safely even in harsh environments, and it is possible to provide a highly accurate shell thickness meter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のシェル厚計の構成を示すブロック図、第
2図は電磁超音波発生および受信の原理を示す図、第3
図は従来の鋳片全厚み測定器の構成を示す図、第4図は
本発明による鋳片全厚み測定器の構成を示す図、第5図
および第6図は非常時の退避機構の構成を示す図である
。 図中、(1)は電磁超音波発生器、(2)は電磁超音波
受信器、(7)は鋳片、(8)はパルス発生回路、(9
)は励磁電源、 fllは増幅器、(Iυはゲート回路
、aaは透過時間測定回路、a壕は表面温度計、04は
鋳片全厚み(24) 測定器、aQは凝固厚み演算回路、aQは出方回路。 (23a)(23b)は支持棒、 (24a)(24b
)は長さ計。 (25a)(25b)はアクチュエータ、 (27a)
(27b)は横行用台車、 (28a)(28b)はレ
ー/l/ 、 (29a)(29b)はセンサーヘッド
、 (30a)(30b)は昇降機構、01)は非常時
の退避機構である。 図中、同一あるいは相当部分には同一符号を付して示し
である。 代理人 大岩増雄 第3図(α) 第3図Cb) 第4図((L) 第4図(b) 2% 第5図 3I15+ 6 374/ ) −f 3デ 4Z 3 f +−37 〃a 3 ふ 4ρ 第6図
Figure 1 is a block diagram showing the configuration of a conventional shell thickness meter, Figure 2 is a diagram showing the principle of electromagnetic ultrasound generation and reception, and Figure 3 is a diagram showing the principle of electromagnetic ultrasonic generation and reception.
The figure shows the configuration of a conventional slab total thickness measuring device, Figure 4 shows the configuration of a slab total thickness measuring device according to the present invention, and Figures 5 and 6 show the configuration of an emergency evacuation mechanism. FIG. In the figure, (1) is an electromagnetic ultrasonic generator, (2) is an electromagnetic ultrasonic receiver, (7) is a slab, (8) is a pulse generation circuit, and (9) is an electromagnetic ultrasonic generator.
) is the excitation power supply, fl is the amplifier, (Iυ is the gate circuit, aa is the transmission time measurement circuit, a trench is the surface thermometer, 04 is the total slab thickness (24) measuring device, aQ is the solidification thickness calculation circuit, and aQ is the Output circuit. (23a) (23b) are support rods, (24a) (24b
) is a length meter. (25a) (25b) are actuators, (27a)
(27b) is a trolley for traversing, (28a) and (28b) are rails/l/, (29a and 29b) are sensor heads, (30a) and (30b) are lifting mechanisms, and 01) is an emergency evacuation mechanism. . In the drawings, the same or corresponding parts are designated by the same reference numerals. Agent Masuo Oiwa Figure 3 (α) Figure 3 Cb) Figure 4 ((L) Figure 4 (b) 2% Figure 5 3I15+ 6 374/ ) -f 3de 4Z 3 f +-37 〃a 3 Fu 4ρ Figure 6

Claims (5)

【特許請求の範囲】[Claims] (1) 連続鋳造される鋳片の一面に設置され、かつ高
周波パルス信号を通電されるコイルを備えて上記鋳片表
面に超音波を発生させる電磁超音波発生器と、上記鋳片
の他面に設置されて前記超音波を受信する検出コイルを
備える電磁超音波受信器と、これらの超音波発生器およ
び受信器の超音波発生、検出のタイミングから前記鋳片
を超音波が前記−面から他面まで伝搬するに要する時間
tをめる時間測定回路と、前記鋳片の全厚みDを測定す
る全厚み測定器と、前記時間測定回路によって測定され
た時間t、前記全厚み測定器によって測定された全厚み
p、前記鋳片の厚みdの凝固部を超音波が伝搬する速度
V、および前記鋳片の厚みD−dの未凝固部を超音波が
伝搬する速度Vtとから凝固部厚みdを算出する演算回
路とからなることを特徴とする鋳片凝固厚み測定装置に
おいて。 上記電磁超音波発生器および上記電磁超音波受信器を上
記鋳片全厚み測定器に取付けたことを特徴とする鋳片凝
固厚み測定装置。
(1) An electromagnetic ultrasonic generator installed on one side of the slab to be continuously cast and equipped with a coil energized with a high-frequency pulse signal to generate ultrasonic waves on the surface of the slab, and the other side of the slab. an electromagnetic ultrasonic receiver equipped with a detection coil that is installed on the surface to receive the ultrasonic waves; and an electromagnetic ultrasonic receiver equipped with a detection coil that is installed on the surface of the slab to receive the ultrasonic waves; a time measuring circuit that measures the time t required for propagation to the other surface; a total thickness measuring device that measures the total thickness D of the slab; and a time t measured by the time measuring circuit; From the measured total thickness p, the speed V at which the ultrasonic wave propagates through the solidified part of the slab having a thickness d, and the speed Vt at which the ultrasonic wave propagates through the unsolidified part of the slab having a thickness D-d, the solidified part is determined. A slab solidification thickness measuring device comprising: an arithmetic circuit for calculating thickness d. A slab solidification thickness measuring device, characterized in that the electromagnetic ultrasonic generator and the electromagnetic ultrasonic receiver are attached to the slab total thickness measuring device.
(2)連続躬造される鋳片の一面に設置され、かつ高周
波パルス信号を通電されるコイルを備えて上記鋳片表面
に超音波を発生させる電磁超音波発生器と、上記鋳片の
他面に設置されて前記超音波を受信する検出コイルを備
える電磁超音波受信器と、これらの超音波発生器および
受信器の超音波発生、検出のタイミングから前記鋳片を
超音波が前記−面から他面まで伝搬するに要する時間t
をめる時間測定回路と、前記鋳片の全厚みDを測定する
全厚み測定器と、前記時間測定回路によって測定された
時間t、前記全厚み測定器によって測定された全厚みり
、前記鋳片の厚みdの凝固部を超音波が伝搬する速度V
 、および前記鋳片の厚みD−(lの未凝固部を超音波
が伝搬する速度Vtとから凝固部厚みdを算出する演算
回路とからなることを特徴とする鋳片凝固厚み測定装置
において。 上記全厚み測定器が複数個の接離材機構によって駆動さ
れることによ勺上記鋳片に接触する接触子を有し、前記
接触子が前記鋳片に接触するまでの移動距離を測定する
ことによって鋳片全厚みを測定することを特徴とする鋳
片凝固厚み測定装置。
(2) An electromagnetic ultrasonic generator installed on one side of the slab to be continuously rolled and equipped with a coil energized with a high-frequency pulse signal to generate ultrasonic waves on the surface of the slab; An electromagnetic ultrasonic receiver equipped with a detection coil installed on a surface to receive the ultrasonic waves, and an ultrasonic wave that strikes the slab from the timing of ultrasonic generation and detection of these ultrasonic generators and receivers. The time t required for propagation from to the other surface
a total thickness measuring circuit for measuring the total thickness D of the slab, a time t measured by the time measuring circuit, a total thickness measured by the total thickness measuring device, and a total thickness measuring device for measuring the total thickness D of the slab; The speed V at which the ultrasonic wave propagates through the solidified part of the piece with thickness d
, and an arithmetic circuit that calculates the solidified portion thickness d from the velocity Vt at which the ultrasonic wave propagates through the unsolidified portion of the slab thickness D−(l). The total thickness measuring device has a contact element that comes into contact with the slab by being driven by a plurality of contacting/separating member mechanisms, and measures the distance traveled by the contact until it comes into contact with the slab. A slab solidification thickness measuring device characterized by measuring the total thickness of a slab.
(3)連続鋳造される鋳片の一面に設置され、かつ高周
波パルス信号を通電されるコイルを備えて上記鋳片表面
に超音波を発生させる電磁超音波発生器と、上記鋳片の
他面に設置されて前記超音波を受信する検出コイルを備
える電磁超音波受信器と、これらの超音波発生器および
受信器の超音波発生、検出のタイミングから前記鋳片を
超音波が前記−面から他面まで伝搬するに要する時間t
をめる時間測定回路と、前記鋳片の全厚みDを測定する
全厚み測定器と、前記時間測定回路によって測定された
時間t、前記全厚み測定器によって測定された全厚みり
、前記鋳片の厚みdの凝固部を超音波が伝破する速度■
、および前記鋳片の厚みD−tlの未凝固部を超音波が
伝搬する速匹vtとから凝固部厚みdk算出する演算回
路とからなることを特徴とする鋳片凝固厚み測定装置に
おいて。 鋳片全厚み測定器が上記鋳片に接触する接触子と。 前記接触子を支持する支持棒と、前記支持棒とは別に設
けられた測定用ロッドと、前記測定用ロッドに連結され
た長さ計とを有し、上記接触子が上記鋳片に接触するま
での移動距離を上記長さ計によって測定することによっ
て鋳片全厚みを測定することを特徴とする釣片凝固厚み
測定装置。
(3) An electromagnetic ultrasonic generator installed on one side of the slab to be continuously cast and equipped with a coil energized with a high-frequency pulse signal to generate ultrasonic waves on the surface of the slab, and the other side of the slab. an electromagnetic ultrasonic receiver equipped with a detection coil that is installed on the surface to receive the ultrasonic waves; and an electromagnetic ultrasonic receiver equipped with a detection coil that is installed on the surface of the slab to receive the ultrasonic waves; The time t required to propagate to the other surface
a total thickness measuring circuit for measuring the total thickness D of the slab; a time t measured by the time measuring circuit; a total thickness measuring circuit for measuring the total thickness D of the slab; The speed at which ultrasonic waves propagate through the solidified part of the piece with thickness d■
, and an arithmetic circuit that calculates the thickness dk of the solidified part from the velocity wave vt in which ultrasonic waves propagate through the unsolidified part of the slab having a thickness D-tl. A contact element through which a slab total thickness measuring device comes into contact with the slab. It has a support rod that supports the contact, a measuring rod provided separately from the support rod, and a length meter connected to the measuring rod, and the contact contacts the slab. A solidification thickness measuring device for a fishing slab, characterized in that the total thickness of the slab is measured by measuring the distance traveled by the length meter.
(4)連続鋳造される鋳片の一面に設置され、かつ高周
波パルス信号を通電されるコイルを備えて上記鋳片表面
に超音波を発生させる電磁超音波発生器と、上記鋳片の
他面に設置されて前記超音波を受信する検出コイルを備
える電磁超音波受信器と、これらの超音波発生器および
受信器の超音波発生、検出のタイミングから前記鋳片を
超音波が前記−面から他面まで伝搬するに要する時間t
をめる時間測定回路と、前記鋳片の全厚みDを測定する
全厚み測定器と、前記時間測定回路によって測定された
時間t、前記全厚み測定器によって測定された全厚みり
、前記鋳片の厚みdの凝固部を超音波が伝搬する速fu
v eおよび前記鋳片の厚みD−dの未凝固部を超音波
が伝搬する速度Vtとから凝固部厚みde算出する演算
回路とからなることを特徴とする鋳片凝固厚み測定装置
において鋳片全厚み測定器が上記鋳片に接近している部
分を退避させるに必要な動力源を貯える貯蔵器と。 異常状態が発生したときに前記貯蔵器から動力源を取シ
出し上記鋳片に接近している部分を退避させる退避機構
を有することを特徴とする鋳片凝固厚み測定装置。
(4) An electromagnetic ultrasonic generator installed on one side of the slab to be continuously cast and equipped with a coil energized with a high-frequency pulse signal to generate ultrasonic waves on the surface of the slab, and the other side of the slab. an electromagnetic ultrasonic receiver equipped with a detection coil that is installed on the surface to receive the ultrasonic waves; and an electromagnetic ultrasonic receiver equipped with a detection coil that is installed on the surface of the slab to receive the ultrasonic waves; The time t required to propagate to the other surface
a total thickness measuring circuit for measuring the total thickness D of the slab; a time t measured by the time measuring circuit; a total thickness measuring circuit for measuring the total thickness D of the slab; The speed at which ultrasonic waves propagate through the solidified part of the piece with thickness d is fu
A slab solidification thickness measuring device comprising: v e and a calculation circuit that calculates the solidified portion thickness de from the velocity Vt at which the ultrasonic wave propagates through the unsolidified portion of the slab having a thickness D−d. a storage device for storing a power source necessary for retracting a portion of the total thickness measuring device that is close to the slab; A slab solidification thickness measuring device comprising an evacuation mechanism that extracts a power source from the storage device and evacuates a portion of the slab that is close to the slab when an abnormal condition occurs.
(5)連続鋳造される鋳片の一面に設置され、かつ高周
波パルス信号を通電されるコイルを備えて上記鋳片表面
に超音波を発生させる電磁超音波発生器と、上記鋳片の
他面に設置されて前記超音波を受信する検出コイルを備
える電磁超音波受信器と、これらの超音波発生器および
受信器の超音波発生、検出のタイミングから前記鋳片を
超音波が前記−面から他面まで伝搬するに要する時間t
をめる時間測定回路と、前記鋳片の全厚みDを測定する
全厚み測定器と、前記時間測定回路によって測定された
時間t、前記全厚み測定器によって測定された全厚みり
、前記鋳片の厚みdの凝固部を超音波が伝搬する速度■
 、および前記鋳片の厚みD−(lの未凝固部を超音波
が伝搬する速度Vtとから凝固部厚みdを算出する演算
回路とからなることを特徴とする鋳片凝固厚み測定装置
において。 鋳片全厚み測定器が上記鋳片に接近している部分を退避
させるに必要な動力源を貯える貯蔵器と。 異常状態が発生したときに前記貯蔵器から動力源を取シ
出し上記鋳片に接近している部分を退避させる退避機構
と、前記退避された上記鋳片に接近している部分を固定
する固定機構とを有することを特徴とする鋳片凝固厚み
装置。
(5) an electromagnetic ultrasonic generator installed on one side of the slab to be continuously cast and equipped with a coil energized with a high-frequency pulse signal to generate ultrasonic waves on the surface of the slab, and the other side of the slab; an electromagnetic ultrasonic receiver equipped with a detection coil that is installed on the surface to receive the ultrasonic waves; and an electromagnetic ultrasonic receiver equipped with a detection coil that is installed on the surface of the slab to receive the ultrasonic waves; The time t required to propagate to the other surface
a total thickness measuring circuit for measuring the total thickness D of the slab; a time t measured by the time measuring circuit; a total thickness measuring circuit for measuring the total thickness D of the slab; The speed at which ultrasonic waves propagate through the solidified part of the piece with thickness d■
, and an arithmetic circuit for calculating the solidified portion thickness d from the velocity Vt at which the ultrasonic wave propagates through the unsolidified portion of the slab thickness D−(l). a storage device for storing a power source necessary for the slab total thickness measuring device to evacuate a portion of the slab that is close to the slab; when an abnormal condition occurs, the power source is removed from the storage device and the slab is removed; A slab solidifying and thickening device comprising: a retracting mechanism for retracting a portion that is close to the slab; and a fixing mechanism that fixes a portion that is close to the retracted slab.
JP58138922A 1983-07-29 1983-07-29 Apparatus for measuring thickness of solidified cast piece Granted JPS6031008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58138922A JPS6031008A (en) 1983-07-29 1983-07-29 Apparatus for measuring thickness of solidified cast piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58138922A JPS6031008A (en) 1983-07-29 1983-07-29 Apparatus for measuring thickness of solidified cast piece

Publications (2)

Publication Number Publication Date
JPS6031008A true JPS6031008A (en) 1985-02-16
JPH0236161B2 JPH0236161B2 (en) 1990-08-15

Family

ID=15233265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58138922A Granted JPS6031008A (en) 1983-07-29 1983-07-29 Apparatus for measuring thickness of solidified cast piece

Country Status (1)

Country Link
JP (1) JPS6031008A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148851A (en) * 1985-12-24 1987-07-02 Kawasaki Steel Corp Solidification state detecting device for billet
JPH0251011A (en) * 1988-08-12 1990-02-21 Nippon Steel Corp Cast piece solidification thickness meter
CN105241368A (en) * 2015-10-09 2016-01-13 北京智博联科技股份有限公司 Automatic detection instrument for thickness of floor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5566058U (en) * 1978-10-27 1980-05-07

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5566058U (en) * 1978-10-27 1980-05-07

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148851A (en) * 1985-12-24 1987-07-02 Kawasaki Steel Corp Solidification state detecting device for billet
JPH0251011A (en) * 1988-08-12 1990-02-21 Nippon Steel Corp Cast piece solidification thickness meter
CN105241368A (en) * 2015-10-09 2016-01-13 北京智博联科技股份有限公司 Automatic detection instrument for thickness of floor

Also Published As

Publication number Publication date
JPH0236161B2 (en) 1990-08-15

Similar Documents

Publication Publication Date Title
EP1666173B1 (en) Manufacturing method for continuously cast product of steel
US9212956B2 (en) Ultrasonic temperature measurement device
CN102706317B (en) Online monitoring device for thermal expansion amount of pressure-containing member of power station boiler
US4008455A (en) Method of making self-calibrated displacement measurements
Hirao et al. Advanced ultrasonic method for measuring rail axial stresses with electromagnetic acoustic transducer
GB0304192D0 (en) Measurement of thermally induced stress
JPS6031008A (en) Apparatus for measuring thickness of solidified cast piece
KR20200131803A (en) Measuring thermal expansion and the thermal crown of rolls
EP0554895B1 (en) Method and apparatus for detecting thickness of and penetrant metal in refractories lined in a vessel for molten metal
CN106959339A (en) A kind of contactless vacant analysis device and Method of Void
KR101608424B1 (en) test device for efficient maintenance of railway vehicle
CN113401175B (en) Advanced detection early warning system and method for monorail crane
KR100969954B1 (en) Apparatus for measuring the thickness of strand, system for measuring the thickness of strand and method for measuring the thickness of strand therewith
US3562918A (en) Apparatus for contour measurement of a member
JPH06308091A (en) Corrosion inspection device of buried metal pipe and the like
CN108519439A (en) A kind of automatic centering control system with wear compensation
JPH11183449A (en) Method and apparatus for measurement of center solid-phase rate of cast piece
JP3955009B2 (en) Controlled cooling system for hot steel
JPS606260A (en) Device for measuring bulging of continuous casting billet
Lee et al. A study on the sensor applications for position detection and guideway monitoring in high speed Maglev
JPS62148851A (en) Solidification state detecting device for billet
JPS6139803A (en) Levitating coil displacement detector
CN115958963A (en) High-speed rail braking and rail eddy current detection device and using method thereof
JPS6186121A (en) Tube cutting method
Muraviev et al. Research of Estimate’s Possibility of Thermal Stresses in Rails