JPS6030905B2 - Radio distance measurement method - Google Patents

Radio distance measurement method

Info

Publication number
JPS6030905B2
JPS6030905B2 JP8800175A JP8800175A JPS6030905B2 JP S6030905 B2 JPS6030905 B2 JP S6030905B2 JP 8800175 A JP8800175 A JP 8800175A JP 8800175 A JP8800175 A JP 8800175A JP S6030905 B2 JPS6030905 B2 JP S6030905B2
Authority
JP
Japan
Prior art keywords
pulse
distance
measurement
signal
distance measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8800175A
Other languages
Japanese (ja)
Other versions
JPS5211892A (en
Inventor
龍造 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimada Rika Kogyo KK
Original Assignee
Shimada Rika Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimada Rika Kogyo KK filed Critical Shimada Rika Kogyo KK
Priority to JP8800175A priority Critical patent/JPS6030905B2/en
Publication of JPS5211892A publication Critical patent/JPS5211892A/en
Publication of JPS6030905B2 publication Critical patent/JPS6030905B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

【発明の詳細な説明】 本発明は、電波の伝播遅延時間を利用して2点間の距離
の測定を行なう電波距離測定方式の改良に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a radio wave distance measurement method that measures the distance between two points using the propagation delay time of radio waves.

従来、パルス変調された電波を用いた距離測定方式(以
下、単にパルス方式という)においては、測定精度は幅
の狭いパルスを作成する技術により制約されていた。
Conventionally, in distance measurement methods using pulse-modulated radio waves (hereinafter simply referred to as pulse methods), measurement accuracy has been limited by the technique of creating narrow pulses.

例えば、lrsの時間幅のパルスを用いたときの距離の
分解能は150肌程度に過ぎない。また、ある限度以上
の幅の狭いパルスを作成するには装置が複雑で高価とな
り不経済である。更に、幅の狭いパルスを伝送するには
電波の占有周波数帯域幅を広くする必要があり、電波の
利用効率上からも好ましくないなどの欠点があった。パ
ルス方式は、システムが比較的簡単という利点があるに
もかかわらず、上記のような欠点があるためにあまり高
精度の距離測定には用いられていなかった。このような
欠点を改善するため、パルスで変調された高周波信号に
よる電波を、距離を測定すべき2点間にn回往復させて
2点間の距離を測定する電波距離測定方式が提案されて
いる。
For example, when a pulse with a time width of lrs is used, the distance resolution is only about 150 degrees. Further, in order to create a narrow pulse exceeding a certain limit, the device becomes complicated and expensive, which is uneconomical. Furthermore, in order to transmit narrow pulses, it is necessary to widen the occupied frequency bandwidth of radio waves, which is disadvantageous in terms of radio wave usage efficiency. Although the pulse method has the advantage of a relatively simple system, it has not been used for highly accurate distance measurement due to the drawbacks mentioned above. In order to improve these shortcomings, a radio distance measurement method has been proposed in which the distance between two points is measured by sending a pulse-modulated radio wave back and forth n times between the two points. There is.

このような電波距離測定方式によれば、距離測定の分解
館AはA/nとなり、誤差がノn倍となる利点がある。
According to such a radio wave distance measurement method, the distance measurement resolution A is A/n, which has the advantage that the error is multiplied by a factor of n.

除って、この方式によれば、電波の往復回数nを増すこ
とによりパルスの時間幅を極減せずとも距離の測定精度
を向上させることができ、また装置の構成が簡単で安価
になる利点がある。しかしながら、この方式の場合には
、装置内部で遅延特性が経済的に変化しており、その遅
延特性の変化に伴って装置内部の信号の遅延時間が経時
変化し、これがn倍されて測定誤差として測定値に加算
されてしまい、測定データに信頼性が得られず、実用化
されていない。
However, according to this method, distance measurement accuracy can be improved by increasing the number of round trips n of radio waves without significantly reducing the pulse time width, and the configuration of the device is simple and inexpensive. There are advantages. However, in the case of this method, the delay characteristics change economically within the device, and as the delay characteristics change, the delay time of the signal inside the device changes over time, and this is multiplied by n, resulting in a measurement error. is added to the measured value, making the measured data unreliable and not in practical use.

装置内部で遅延時間特性が経時的に変化する理由は、送
信周波数及び受信局部発振周波数が変動したり、環境条
件の変化に伴う装置内部の素子の遅延時間が変化する等
のためである。本発明の目的は、電波をn回往復させて
距離を測定する方式での、装置内部の信号遅延特性の変
化を補正できる電波距離測定方式を提供するにある。
The reason why the delay time characteristics inside the device change over time is because the transmission frequency and reception local oscillation frequency fluctuate, and the delay time of elements inside the device changes due to changes in environmental conditions. SUMMARY OF THE INVENTION An object of the present invention is to provide a radio wave distance measurement method that can correct changes in signal delay characteristics inside the device, which measures distance by making radio waves go back and forth n times.

以下、本発明を図面により詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

先ず、本発明の測定原理を第1図を用いて説明する。送
受信機Xで発生されたパルス変調電波を、送受信アンテ
ナYから距離を測定すべき目的地に向け発射する。この
電波は該目的地に配置された反射アンテナZで反射され
、送受信アンテナYに帰着して送受信機Xで受信される
。この受信により検波されたパルス信号で再び変調した
電波をアンテナYより送出する。このようにしてパルス
変調電波をアンテナY,Z間にn回往復させた場合、電
波が2点間を1回往復するに要する時間をちとすると、
n回の往復によるパルス信号の全遅延時間Tは‘1}式
で与えられる。T=nt,
………‘1’さて、パルスで高周波を変調する場合
、変調回路に雑音電圧成分が混入すると変調波形におけ
るパルスの立上り部分が時間的に前または後にずれたよ
うな結果となることがある。
First, the measurement principle of the present invention will be explained using FIG. Pulse modulated radio waves generated by a transceiver X are emitted from a transmitting/receiving antenna Y toward a destination whose distance is to be measured. This radio wave is reflected by a reflecting antenna Z placed at the destination, returns to a transmitting/receiving antenna Y, and is received by a transmitting/receiving device X. A radio wave modulated again with the pulse signal detected by this reception is sent out from the antenna Y. When the pulse modulated radio waves are made to travel back and forth n times between antennas Y and Z in this way, the time required for the radio waves to make one round trip between two points is
The total delay time T of the pulse signal due to n round trips is given by the formula '1}. T=nt,
......'1' Now, when modulating a high frequency with a pulse, if a noise voltage component is mixed into the modulation circuit, the rising part of the pulse in the modulation waveform may be shifted forward or backward in time.

この時間的な変動は通称タイムジッ夕と呼ばれ、パルス
方式による距離測定の誤差の原因となるものである。1
回の送出パルスで生ずるタイムジツタをtjとすると、
2点間のn回往復のためのパルス送出により生ずる全タ
イムジッタTjは‘2’式で与えられる。
This temporal variation is commonly called time jitter, and causes errors in distance measurement using the pulse method. 1
If the time jitter caused by the number of pulses sent is tj, then
The total time jitter Tj caused by sending pulses for n round trips between two points is given by the equation '2'.

Ti=ノnti ………【2}
複数回のタイムジッタの重量がこのように幾何平均とな
るのは、雑音電圧成分の位相がランダムなためである。
式{l},‘2)より明らかなように、測定用電波が2
点間をn回往復することにより伝播遅延時間はn倍にな
るが、測定誤差はノn倍にしかならない。このことは、
測定誤差の増加は比較的低率でありながら伝播遅延時間
測定の精度、換言すれば距離測定の分解能が大きく向上
することを意味している。即ち、電波が1回往復する場
合の測定分解能をAとすると、電波がn回往復する場合
には分解能は舎となり誤差はノn倍となる。そして、電
波の伝播速度をVcとすると2点間の距離Lは‘3}式
で与えられる。L=牛き 肌…【3I このようにして2点間の距離Lの測定を行うと、n回の
電波の往復時に装置内部での経時変化する信号の遅延時
間がn倍されて加わり、誤差が大きくなるので、装置内
部で高周波信号を別にn回還流させてn回還流時の菱魔
内部での信号の遅延時脂爪dを求め、その値を■式のよ
うに‘3’式から引くことにより正しい2点間の距離L
′を求めるものである。
Ti=nonti……[2}
The reason why the weight of multiple time jitters is the geometric mean is that the phase of the noise voltage component is random.
As is clear from the formula {l}, '2), the measurement radio waves are 2
By going back and forth between points n times, the propagation delay time increases by n times, but the measurement error only increases by n times. This means that
Although the increase in measurement error is relatively low, it means that the accuracy of propagation delay time measurement, in other words, the resolution of distance measurement, is greatly improved. That is, if the measurement resolution when the radio wave goes back and forth once is A, then when the radio wave goes back and forth n times, the resolution becomes 0 and the error increases by a factor of n. Then, when the propagation speed of the radio wave is Vc, the distance L between two points is given by the formula '3}. L = Cow skin... [3I When measuring the distance L between two points in this way, the delay time of the signal that changes over time inside the device is multiplied by n when the radio waves go back and forth n times, resulting in an error. becomes large, so the high-frequency signal is circulated separately n times inside the device, and the delay time d of the signal inside the rhombus when the high-frequency signal is circulated n times is determined, and the value is calculated from formula '3' as shown in formula ■. Correct distance L between two points by subtracting
′.

L′=(T.Vc‐Td)/か ……【4’以
上が本発明の測定原理である。
L'=(T.Vc-Td)/...[4' or more is the measurement principle of the present invention.

以下、本発明の具体的実施例を第2図に示すブロック図
により詳細に説明する。
Hereinafter, specific embodiments of the present invention will be explained in detail with reference to the block diagram shown in FIG.

図示のように、時間信号を発生するクロック発振器1の
出力は、シーケンス制御回路2に加えられる。このシー
ケンス制御回路は、所定の時間的プログラムに従って指
令信号を発し、本測定装置における測定操作の総べてを
制御する回路である。シーケンス制御回路2よりの信号
を受けたパルス発生回路3は、この信号にて制御されて
所定幅のシングルパルスを発生し、切換器4を介してパ
ルス変調器5を駆動する。この変調器5の出力はマグネ
トロンよりなる高周波発振器6に加えられ、この発振器
はパルス変調された高周波信号を発生する。この高周波
信号は、方向性結合器7、送受信分離器8を介してアン
テナ9に加えられ、このアンテナより電波となって距離
測定地点にある目標アンテナ10に向けて発射される。
一方、切換器4の出力の一部はシーケンス制御回路2に
戻され、この回路でスタートパルスを発生する。
As shown, the output of a clock oscillator 1, which generates a time signal, is applied to a sequence control circuit 2. This sequence control circuit is a circuit that issues command signals according to a predetermined time program and controls all measurement operations in this measuring device. The pulse generating circuit 3 receiving the signal from the sequence control circuit 2 is controlled by this signal to generate a single pulse of a predetermined width, and drives the pulse modulator 5 via the switch 4. The output of this modulator 5 is applied to a high frequency oscillator 6 consisting of a magnetron, which generates a pulse modulated high frequency signal. This high frequency signal is applied to an antenna 9 via a directional coupler 7 and a transmitting/receiving separator 8, and is emitted from this antenna as a radio wave toward a target antenna 10 located at a distance measurement point.
On the other hand, a part of the output of the switch 4 is returned to the sequence control circuit 2, and this circuit generates a start pulse.

このスタートパルスは開閉器20、切換器21に加わり
、開閉器20が閉じ、切換器21はカウンタ22のUP
入力端に接触する。このUP入力端はカゥンタ22を加
算動作させるための入力端である。開閉器20の一端に
はクロツク発振器1の出力が加えられ、開閉器20、切
換器21を介してカウン夕22がクロツクパルスをカウ
ントし始める。アンテナ10に到達した電波は反射板に
より反射されアンテナ9へ向けて送り返される。
This start pulse is applied to the switch 20 and the switch 21, the switch 20 closes, and the switch 21 turns the counter 22 UP.
Touch the input end. This UP input terminal is an input terminal for causing the counter 22 to perform an addition operation. The output of the clock oscillator 1 is applied to one end of the switch 20, and the counter 22 starts counting clock pulses via the switch 20 and the switch 21. The radio waves reaching the antenna 10 are reflected by the reflector and sent back toward the antenna 9.

この電波を受信してアンテナ9に生じた高周波信号は、
送受信分離器8で分離され、切襖器11を通して周波数
変換増幅器12で周波数変換用局部発振器13からの信
号と共に混合増幅されて中間周波数に変換され、中間周
波増幅器14に送られる。中間周波増幅器14は時間的
感度制御回路15により利得が時間的に異なるように制
御されている。これは近距離からの不要反射信号成分を
除去するために行なわれるもので、予め設定した距離に
対応する遅延パルスで中間周波増幅器14をゲートし、
測定の目標パルス変調信号以外を通過させないようにし
ている。目標パルス信号は中間周波増幅器14で増幅さ
れたのち、検波器16で検波されてビデオパルスに変換
され、近距離測定時の確度低下防止用固定遅延回路17
を通して切換器4に戻される。この時点では、切換器4
はシーケンス制御回路2よりの指令信号に制御されて、
遅延回路17よりの信号を出力側に通すようになるので
、遅延回路17より送られたビデオパルスはパルス変調
器5に加えられる。この結果、高周波発振器6が再びこ
のパルスで変調された高周波信号を発生する。この高周
波信号は前記したようにしてアンテナ9よりアンテナ1
川こ向けて発射される。以上の操作をn回繰返したのち
、シーケンス制御回路2よりの指令により開閉器20が
開いてカゥンタ22がカウントを停止するとともに、切
換器21がカゥンタ22の減算動作用DOWN入力端に
、また切換器4がパルス発生回路3側に、更に切換器1
1が方向性結合器7側にそれぞれ切換えられる。以上の
動作が距離測定操作の第1段階である。次に、シーケン
ス制御回路2よりの指令によりパルス発生回路3から再
びシングルパルスが発生し、開閉器20がスタ−トパル
スにより閉じて、カウンタ22がカウントを開始する。
The high frequency signal generated at the antenna 9 by receiving this radio wave is
The signal is separated by a transmitting/receiving separator 8, passes through a divider 11, is mixed and amplified together with a signal from a frequency converting local oscillator 13 by a frequency converting amplifier 12, is converted to an intermediate frequency, and is sent to an intermediate frequency amplifier 14. The intermediate frequency amplifier 14 is controlled by a temporal sensitivity control circuit 15 so that its gain varies temporally. This is done to remove unnecessary reflected signal components from a short distance, and gates the intermediate frequency amplifier 14 with a delayed pulse corresponding to a preset distance.
It is designed not to pass any signal other than the target pulse modulation signal for measurement. The target pulse signal is amplified by an intermediate frequency amplifier 14, then detected by a detector 16 and converted into a video pulse, and fixed delay circuit 17 for preventing a decrease in accuracy during short distance measurement.
is returned to the switching device 4 through the At this point, switch 4
is controlled by the command signal from the sequence control circuit 2,
Since the signal from the delay circuit 17 is passed to the output side, the video pulse sent from the delay circuit 17 is applied to the pulse modulator 5. As a result, the high frequency oscillator 6 again generates a high frequency signal modulated by this pulse. This high frequency signal is transmitted from the antenna 9 to the antenna 1 as described above.
It is fired towards the river. After repeating the above operation n times, the switch 20 opens according to a command from the sequence control circuit 2, the counter 22 stops counting, and the switch 21 switches to the DOWN input terminal for the subtraction operation of the counter 22. The switch 4 is connected to the pulse generation circuit 3 side, and the switch 1 is connected to the pulse generation circuit 3 side.
1 are respectively switched to the directional coupler 7 side. The above operation is the first stage of the distance measurement operation. Next, a single pulse is generated again from the pulse generating circuit 3 according to a command from the sequence control circuit 2, the switch 20 is closed by the start pulse, and the counter 22 starts counting.

この場合、功換器21はDOWN入力端につながってい
るため、カウンタ22は第1段階のカウント数より減算
する動作をする。また、切換器11は方向性結合器7側
につながっているために、周波数変換増幅器12へは方
向性結合器7よりの高周波信号がローカルに帰還入力さ
れる。これにより固定遅延回路17の出力側に現われる
パルス信号は、本測定装置の内部遅延時間だけ遅れたも
のとなる。以上の操作を第1段階と同様にn回線返した
のちシーケンス制御回路2よりの指令によりカウント動
作を停止する。この結果、カウンタ22は第1段階の測
定遅延時間より内部遅延時間を減じた電波遅延時間相当
値をデジタル表示器23に表示する。この表示値を前記
の式{311こおけるTに適用して式‘3}より2点間
の距離Lを求める。なお、18はブラウン管モニタ、1
9はクロツク発振器1に制御されてこのモニ外こしンジ
マーカを与える分周回路であり、これらモニタ回路は時
間的感度制御回路15の動作条件の初期設定時観測及び
測定装置の動作の監視等に用いられる。
In this case, since the converter 21 is connected to the DOWN input terminal, the counter 22 operates to subtract from the count number in the first stage. Furthermore, since the switch 11 is connected to the directional coupler 7 side, the high frequency signal from the directional coupler 7 is locally fed back into the frequency conversion amplifier 12 . As a result, the pulse signal appearing on the output side of the fixed delay circuit 17 is delayed by the internal delay time of the measuring device. After repeating the above operation for n lines in the same way as in the first stage, the counting operation is stopped by a command from the sequence control circuit 2. As a result, the counter 22 displays on the digital display 23 a value equivalent to the radio wave delay time, which is obtained by subtracting the internal delay time from the measured delay time of the first stage. This display value is applied to the above-mentioned formula {311 times T, and the distance L between the two points is determined from the formula '3}. In addition, 18 is a cathode ray tube monitor, 1
Reference numeral 9 denotes a frequency divider circuit which is controlled by the clock oscillator 1 and provides this monitor external indicator, and these monitor circuits are used for observing the operating conditions of the temporal sensitivity control circuit 15 during initial setting and for monitoring the operation of the measuring device. It will be done.

本実施例では、上記のように所定の時間的プログラムに
従って各段階の測定動作をシーケンス制御するようにし
たので、2点間に電波を複数回往復させて行う距離測定
操作を確実且つ容易に行うことができる。上記のように
本発明は、パルスで変調された高周波信号による電波を
、距離を測定すべき2点間にn回(nは2以上の整数)
往復させて、該電波の全伝播遅延時間を測定装置自体の
信号遅延時間と含めて計測するとともに、測定装置自体
の信号遅延時間のn倍を別に計側し、これらの計測値の
差に基いて2点間の距離を測定するようにしたので、装
置内部での経時変化する信号の遅延特性の変化を補正で
き、距離測定の精度を大きく向上させることができる。
In this embodiment, the measurement operation at each stage is sequence-controlled according to a predetermined time program as described above, so distance measurement operations performed by sending radio waves back and forth multiple times between two points can be performed reliably and easily. be able to. As described above, the present invention transmits radio waves based on pulse-modulated high-frequency signals n times (n is an integer of 2 or more) between two points whose distance is to be measured.
The total propagation delay time of the radio wave is measured including the signal delay time of the measuring device itself, and n times the signal delay time of the measuring device itself is also measured separately, and based on the difference between these measured values, Since the distance between two points is measured using the same method, it is possible to correct changes in the delay characteristics of the signal that change over time within the device, and the accuracy of distance measurement can be greatly improved.

また、この方式は、パルスの時間幅を減じて測定精度の
向上を図る方式に比べて装置の構成が簡単で安価になる
利点がある。
Furthermore, this method has the advantage that the device configuration is simpler and less expensive than a method that aims to improve measurement accuracy by reducing the time width of the pulse.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の測定原理を示す説明図、第2図は本発
明の測定方式の実施例を示すブロック図である。 1・・・・・・クロック発振器、2・・・・・・シーケ
ンス制御回路、3・・…・パルス発生回路、5・・・・
・・パルス変調器、6・・・・・・高周波発振器、7・
・・・・・方向性結合器、8・・・・・・送受信分離器
、9,10…・・・アンテナ、12・・・・・・周波数
変換増幅器、14・・…・・・・中間周波増幅器、15
・・・・・・時間的感度制御回路、16・・・・・・検
波器、17・・・・・・固定遅延回路、22・・…・カ
ゥンタ、23・・・・・・デジタル表示器。 多ノ函 多Z図
FIG. 1 is an explanatory diagram showing the measurement principle of the invention, and FIG. 2 is a block diagram showing an embodiment of the measurement method of the invention. 1...Clock oscillator, 2...Sequence control circuit, 3...Pulse generation circuit, 5...
...Pulse modulator, 6...High frequency oscillator, 7.
... Directional coupler, 8 ... Transmission/reception separator, 9, 10 ... Antenna, 12 ... Frequency conversion amplifier, 14 ... ... Intermediate frequency amplifier, 15
...Temporal sensitivity control circuit, 16...Detector, 17...Fixed delay circuit, 22...Counter, 23...Digital display . Tanokanta Z diagram

Claims (1)

【特許請求の範囲】[Claims] 1 パルスで変調された高周波信号による電波の伝播遅
延時間より2点間の距離を測定する電波距離測定方式に
おいて、前記電波を距離を測定すべき2点間にn回(n
は2以上の整数)往復させて該電波の全伝播遅延時間を
測定装置自体の内部信号遅延時間と含めて計測する第1
段階の計測と、前記高周波信号を直接前記測定装置内に
n回還流させて前記測定装置の内部信号遅延時間を計測
する第2段階の計測とを行い、前記第1段階の計測時の
計測値と前記第2段階の計測時の計測値との差に基き2
点間の距離を測定することを特徴とする電波距離測定方
式。
1 In a radio distance measurement method that measures the distance between two points based on the propagation delay time of radio waves caused by a high-frequency signal modulated by pulses, the radio waves are transmitted n times (n times) between the two points whose distance is to be measured.
is an integer of 2 or more).
step measurement and a second step measurement in which the high-frequency signal is directly circulated within the measurement device n times to measure the internal signal delay time of the measurement device, and the measured value at the first step measurement is performed. Based on the difference between
A radio distance measurement method that measures the distance between points.
JP8800175A 1975-07-18 1975-07-18 Radio distance measurement method Expired JPS6030905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8800175A JPS6030905B2 (en) 1975-07-18 1975-07-18 Radio distance measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8800175A JPS6030905B2 (en) 1975-07-18 1975-07-18 Radio distance measurement method

Publications (2)

Publication Number Publication Date
JPS5211892A JPS5211892A (en) 1977-01-29
JPS6030905B2 true JPS6030905B2 (en) 1985-07-19

Family

ID=13930533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8800175A Expired JPS6030905B2 (en) 1975-07-18 1975-07-18 Radio distance measurement method

Country Status (1)

Country Link
JP (1) JPS6030905B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA811748B (en) * 1980-03-20 1982-06-30 John Scott Strachan Method and apparatus for determining physical quantities
JP7159132B2 (en) * 2019-09-05 2022-10-24 株式会社東芝 rangefinder

Also Published As

Publication number Publication date
JPS5211892A (en) 1977-01-29

Similar Documents

Publication Publication Date Title
US6072427A (en) Precision radar timebase using harmonically related offset oscillators
US4245221A (en) FM-CW Radar ranging system with automatic calibration
US5387918A (en) Method and an arrangement for measuring distances using the reflected beam principle
US11841457B2 (en) Radar device, control circuit of radar device, and storage medium of radar device
KR102090789B1 (en) Simulation signal generator and method for measuring performance of radar receiver
EP0310172B1 (en) Fm-cw radar apparatus
US4065768A (en) Radar apparatus
JPS6030905B2 (en) Radio distance measurement method
EP0154054A2 (en) HF arrangement for coherent pulse radar
US3803607A (en) Radar transponder having built-in calibration
EP0048170B1 (en) Radar ranging system
JP2002156447A (en) Sweep oscillation device and fmcw distance measuring instrument
JPH0318784A (en) Fm-cw distance measuring method
US3374480A (en) Receiver tuning for radar and the like
JPH0215038B2 (en)
JPH0476480A (en) Pulse range finder
JPS596531B2 (en) automatic frequency control device
KR20140012809A (en) Distance measuring apparatus based on fmcw
US2857593A (en) Radar testing apparatus
JP2930740B2 (en) Servo slope type FM-CW radar
SU1741096A1 (en) Device for comparing time standards
JPS62177467A (en) Microwave distance measuring instrument
JPS604435B2 (en) radar device
JP2000171556A (en) Radar apparatus for vehicle
JPH05203732A (en) Range finder