JPS6030450A - Fuel injection timing regulating device for internal- combustion engine - Google Patents

Fuel injection timing regulating device for internal- combustion engine

Info

Publication number
JPS6030450A
JPS6030450A JP58139797A JP13979783A JPS6030450A JP S6030450 A JPS6030450 A JP S6030450A JP 58139797 A JP58139797 A JP 58139797A JP 13979783 A JP13979783 A JP 13979783A JP S6030450 A JPS6030450 A JP S6030450A
Authority
JP
Japan
Prior art keywords
injection timing
time difference
detector
time
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58139797A
Other languages
Japanese (ja)
Inventor
Miki Ibaraki
茨木 幹
Fumiaki Murayama
村山 文明
Nizo Enomoto
榎本 二三
Tsutomu Asaha
浅葉 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP58139797A priority Critical patent/JPS6030450A/en
Publication of JPS6030450A publication Critical patent/JPS6030450A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/0007Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for using electrical feedback
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • F02D41/345Controlling injection timing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent the occurrence of variations in product quality and any influence attributable to a secular change or the like, by conducting detection by detectors at both driving and driven sides of an actuator, while detecting the actual injection timing of fuel on the basis of phase difference calculated by a time lag being compensated by a reference value. CONSTITUTION:During engine driving at an engine speed n1 and a rack position R1, if injection timing is theta deg., a sine wave in frequency proportionate to the engine speed N1 is converted into a pulse train and inputted into an A terminal of a microcomputer 34 from a detector 2 at the driving side while another pulse train obtained out of a detector 3 at the driven side is inputted into a B terminal of the said computer. And, a value T1 of a free run timer is read out by the pulse to be inputted into the A terminal and stored in an An address, and when a pulse is inputted from the B terminal as delayed at time t, a value T2 of the free run timer is stored in a B address, then a value T3 to be inputted into the A terminal again is stored in an An+1 address. Next, the N1 is found on the basis of these T1 and T3 values, reading out the data R1 from a circuit 38, and desired injection timing t'1 is calculated whereby the t1 is calculated from a difference between T1 and T2, and t''1 is calculated from a time lag in a cam of theta+0, making it the actual injection data and, after calculating error time t upon comparison between these t'' and t', spark delay or advance timing control takes place.

Description

【発明の詳細な説明】 本発明は、内燃機関の燃料噴射時期をアクチーしエータ
(タイマ)に取り付けた2個の検出器から得られる検出
信号の時間差によって検出する内燃機関の燃料噴IJJ
FR#]調整装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a fuel injection system (IJJ) for an internal combustion engine that activates the fuel injection timing of the internal combustion engine and detects it based on the time difference between detection signals obtained from two detectors attached to an eta (timer).
FR#] This relates to the adjustment device.

従来、特開昭57−140530号公報の如く、燃斜用
例時Ill調整用のアクチ]」−一一夕に取り(!J 
tJた2個の検出器から管られる検出イム号の時間差に
よって燃料噴射時期を検出づる方式のちのは、第1図(
イ)に示づように、例えばアクチコエータの被駆動側検
出器の信号を波形整形して1!7られる(幾関回転に同
期したパルス悟りをaとし、駆動側検出器の18号を波
形整形して得られる機関回転に同期したパルス信号をb
とづると、これらパルス信号aとbの立、1−り時刻の
差、即ち第1図(イ)に示づ時間差tの大きさに基づい
て燃料噴射時期の進角量θ(a 、 bの信号の位相差
)が検出できるものであり、この時間差tと燃料噴射的
期の進角!1θとは、機関回転数を一定にした場合第1
図(ロ)に示づ一関係を有づるものである。
Conventionally, as in Japanese Patent Application Laid-open No. 57-140530, the actuator for adjusting Ill in case of combustion angle was removed overnight (!J
The later method of detecting the fuel injection timing based on the time difference between the detection signals from two detectors is shown in Figure 1 (
As shown in b), for example, the signal of the driven side detector of the acticoator is waveform shaped to 1!7. The pulse signal synchronized with the engine rotation obtained by
In other words, based on the difference between the rising and falling times of these pulse signals a and b, that is, the magnitude of the time difference t shown in FIG. This time difference t and the advance angle of the fuel injection period can be detected. 1θ is the first value when the engine speed is constant.
They have a relationship as shown in Figure (b).

しかし、この秤のものは、駆動側検出器あるいは被駆動
側検出器の取付番ノ位置の誤斧、及び第3図に示づよう
な、油圧駆動式の燃料噴射時期調整装rにおいでは、低
温時の油粘性増加等による遅角不良(戻り不良)等によ
り、例えば、時間差(が本来「0」であるべきところが
11となつIC場合、実際には噴射時期の進角量θ−〇
カムであるのにしかわらず、これをθ。什だ(づずれた
値として検出してしまうことがあり、検出された噴射時
期は実際の噴射時+!IJと箕なるので、燃料噴射時1
91をl「シフ制御りることかできないとrlう欠点が
あつ本発明はこの点に鑑み−てなされたもので、駆動側
検出器あるいは被駆動側検出器のアクチュエータへの取
付は位置が、取イiロ〕作業あるいは検出器の製品バラ
ツキ等によって、本来取り付りられるべき位置と異なっ
た場合、即ち個々の製品間にバラツキが生じ個々の製品
によって検出(L4号が一致しない場合、あるいは検出
器の経時変化等にJ:り検出信号が正確なものでなくな
った場合でも正しく実噴射時期を検出し、燃料噴射時期
の適正化を図ることを目的と覆るものである。
However, with this scale, if the mounting number of the driving side detector or the driven side detector is incorrectly positioned, and the hydraulically driven fuel injection timing adjustment device r as shown in Fig. 3, For example, in the case of an IC in which the time difference (which should originally be 0) becomes 11 due to a retardation failure (return failure) due to increased oil viscosity at low temperatures, etc., the injection timing advance amount θ-〇cam is actually However, this may be detected as a deviated value, and the detected injection timing is slightly different from the actual injection +!
The present invention has been made in view of this point, and the position of the drive-side detector or driven-side detector is fixed at the position of the actuator. [I B] If the position is different from the one that should be installed due to work or product variations in the detector, etc., that is, if there is variation between individual products and detection is performed by each individual product (if L4 does not match, or The purpose of this is to accurately detect the actual injection timing and optimize the fuel injection timing even if the detection signal becomes inaccurate due to changes in the detector over time.

以下、第2図ないし第8図に基づいて本発明の実施例に
ついで説明する。
Embodiments of the present invention will be described below with reference to FIGS. 2 to 8.

第2図は、本発明装置の全体構成図で、1は燃料噴射ポ
ンプ、1′は燃料噴射ポンプ1の噴射時期を調整づるア
クチュエータであり例えば油圧により駆動されるもの、
2はアクチコ丁−夕1′に取り何りられた電磁式の駆動
側検出器、33は同じくアクチュエータ1−に取り付り
られた電磁式の被駆動側検出器、4は機関の負仙を検出
りるための負葡検出器、5は電気的制御回路で、[1標
噴銅時期a9定手段6、実噴射時期検出手段7、及びア
クブ−l−タ1を駆動するためのパルス信号のパルス幅
設定手段8から構成され、前記目標噴射時1’JJ段定
手段6は駆動側検出器2及び負荷検出器4からの信号を
受け、機関の運転状態に応じた目標噴13J 1;’+
 l1lJを油粋し、実噴射時期検出手段7は駆動側検
出器2と被駆動側検出器3とからの信号を受(プ、実噴
射時期を81?詐し、またパルス信号のパルス幅設定手
段8は、前記目標lll1l射時期と実噴射時期どの差
に応じてアクチェュータ1′の圧力制御弁9.10を駆
動づるためのパルス悟りを発生づ゛る。B力制御弁9.
10の駆動にJ−って調整された油圧に応じてアクブー
lエータ1−が駆動され、燃料噴射ポンプ1の噴射時期
を調整するように構成されている。
FIG. 2 is an overall configuration diagram of the apparatus of the present invention, where 1 is a fuel injection pump, 1' is an actuator for adjusting the injection timing of the fuel injection pump 1, and is driven by hydraulic pressure, for example.
2 is an electromagnetic drive side detector attached to actuator 1', 33 is an electromagnetic driven side detector also attached to actuator 1, and 4 is an engine negative sensor. 5 is an electric control circuit, which includes a negative injection timing detector 5, a pulse signal for driving the injection timing a9 determining means 6, the actual injection timing detecting means 7, and the actuator 1. The target injection 1'JJ stage setting means 6 receives signals from the drive side detector 2 and the load detector 4, and sets a target injection 13J according to the operating state of the engine. '+
11lJ, the actual injection timing detection means 7 receives the signals from the driving side detector 2 and the driven side detector 3. The means 8 generates a pulse signal for driving the pressure control valve 9.10 of the actuator 1' depending on the difference between the target injection timing and the actual injection timing.B force control valve 9.
The actuator 1- is driven in accordance with the hydraulic pressure adjusted by J- to the drive of the fuel injection pump 10, and the injection timing of the fuel injection pump 1 is adjusted.

次に第3図は油圧式のアクチェュータ1′の詳細な構成
を示づ中心軸に沿う断面図であり、燃料11jl射ポン
プ1にボルト12によりフランジ13が固定され、該フ
ランジ13には油圧室14が設けられ、該油圧室14へ
流入する流体の圧力作用で油圧ビス[・ン15が軸方向
へ移動可能になされる。
Next, FIG. 3 is a sectional view taken along the central axis showing the detailed configuration of the hydraulic actuator 1'.A flange 13 is fixed to the fuel injection pump 1 with bolts 12, and a hydraulic chamber 14 is provided, and a hydraulic screw 15 is made movable in the axial direction by the pressure action of the fluid flowing into the hydraulic chamber 14.

油圧ピストン15には斜面16が設けられ、該斜面16
と対向して接触し、半径方向に摺動自在なシフタ17が
配設され、シフタ17は偏心カムの偏心軸用ビン18に
連結されているため、該シフタ17の半径方向の運動に
より小偏心カム20が回動され、偏心カム19に嵌合さ
れた駆動側のドライビングビン21に対し偏心カム19
を収納したハブ22(被駆動部拐)の位相を変化さ1!
ることができるにうに構成されている。一方前記ハブ2
2の外周部23とカバー24(駆動部材の一構成要素)
とは回動可能に嵌合され、カバー24は前記ドライビン
グビン21を植設したエンドカバー25に対し、ポル1
−26で固定され、エンドカバー25と、一体に構成さ
れている。
The hydraulic piston 15 is provided with an inclined surface 16, and the inclined surface 16
A shifter 17 that faces and contacts the radially slidable shifter 17 is disposed, and since the shifter 17 is connected to the eccentric shaft pin 18 of the eccentric cam, the radial movement of the shifter 17 causes a small eccentricity. The cam 20 is rotated, and the eccentric cam 19
Change the phase of the hub 22 (driven part) that accommodates 1!
It is configured in such a way that it can be On the other hand, the hub 2
2 outer peripheral part 23 and cover 24 (one component of the drive member)
The cover 24 is rotatably fitted to the end cover 25 in which the driving bin 21 is installed.
-26, and is integrally constructed with the end cover 25.

以上の構成において、機関の駆動軸と一体で回転づる駆
動側回転部材であるカバー24の外周部には駆動側凹凸
部27を等間隔に形成し、更にフランジ13にボルト2
8で固定されたブラケツト29を配し、ブラケット29
には前記rri磁式の駆動側検出器2を螺合して前記駆
動側凹凸部27と対向している。更にブラケット29は
フランジ1S〕に対しカバー24の回転方向に沿つ【移
動可能な長孔をイjしている。
In the above configuration, drive-side uneven portions 27 are formed at equal intervals on the outer circumference of the cover 24, which is a drive-side rotating member that rotates integrally with the drive shaft of the engine, and furthermore, the flange 13 is provided with bolts 2.
The bracket 29 fixed at 8 is arranged, and the bracket 29
The rri magnetic type drive side detector 2 is screwed into the drive side detector 2 and faces the drive side uneven portion 27 . Furthermore, the bracket 29 has an elongated hole that is movable along the rotational direction of the cover 24 with respect to the flange 1S.

また、被駆動側の燃料噴射カム軸30とキー31によっ
て位′I!!決めされる被駆動側回転部材をなづハシ2
2には、カバー24の駆動側凹凸部27と同数の被駆動
側凹凸部32を形成し、フランジ13に螺合した電磁式
の被駆動側検出器3と対向させCいる。
Also, the fuel injection camshaft 30 on the driven side and the key 31 are used to control the position 'I!'. ! Nazuhashi 2 to determine the driven side rotating member
2 has the same number of driven side uneven parts 32 as the driving side uneven parts 27 of the cover 24, and is opposed to the electromagnetic type driven side detector 3 screwed onto the flange 13.

次に、第4図は、第2図で示しIC電気的制御回路5の
詳細を示す図であり、前記駆動側検出器2と被駆動側検
出器3の信号は波形整形回路33に入力されCマイクロ
コンピュータ34にとって扱い亡づい波形(第1図(イ
)a、b)に整形され、マイクロコンピュータ34に入
力される。35はラック位r検出器で、前記り荷検出器
4と対応づるもので、機関の負荷を燃料噴射ポンプ1コ
ント1]−ルラックのラック位置で検出器るものであり
、36は前記ラック位置検出器35を駆動覆るための発
振駆動回路、37Gよラック位置検出器35からの信号
を検出し、ラック位置に対応する直流電圧を発生づるた
めの検出回路、38は、△/D変換回路で、前記検出回
路37からのアナログ信号をデジタル信号に変換し、マ
イクロ−コンビ°l−タ34に入fJiる。またマイク
ロ−1ンピ−1−タ34は内部にROM、RAM、及び
ター(N7機能を含むものとし、該マイクロコンピュー
タ34の出力に接続された駆動回路39はマイクロコン
ピュータ34からの信号を電流増幅して圧ツノ制御弁9
.10を駆動づる。そして、圧力制御弁9.1oは油の
流入側と流出側にそれぞれ1個づつ設置)られ、前記マ
イクロコンピュータ34の出力信号ににりそれぞれの弁
の量弁時間を制m−4ることにJ:っ−C油圧を調整し
、1ljl制時期の制御を行うものである。
Next, FIG. 4 is a diagram showing details of the IC electrical control circuit 5 shown in FIG. The signal is shaped into a waveform that the C microcomputer 34 cannot handle (FIG. 1(a) a, b), and is input to the microcomputer 34. Reference numeral 35 denotes a rack position r detector, which corresponds to the load detector 4 and detects the engine load at the rack position of the fuel injection pump 1 control 1] - the rack position. 37G is an oscillation drive circuit for driving the detector 35, a detection circuit for detecting the signal from the rack position detector 35 and generating a DC voltage corresponding to the rack position, and 38 is a Δ/D conversion circuit. , converts the analog signal from the detection circuit 37 into a digital signal and inputs it into the micro-combiner 34. Further, the micro-1 processor 34 includes a ROM, a RAM, and a processor (N7 function) internally, and a drive circuit 39 connected to the output of the micro-computer 34 amplifies the signal from the micro-computer 34 with current. Pressure horn control valve 9
.. 10 is driven. Then, one pressure control valve 9.1o is installed on the oil inflow side and one on the oil outflow side), and the amount and valve time of each valve is controlled m-4 based on the output signal of the microcomputer 34. J:-C Adjusts the oil pressure and controls the 1ljl timing.

次に、マイクロコンピュータ34の動作を第5i図のフ
ローチャートに基づき説明づると、先ず、ステップ10
0でコンピュータ内部のメモリ及び入出力ボートなどを
初期状態にセラ1−リ゛る。次にステップ101で駆動
側検出器2、被駆動側検出器3の相対的位置を検出し、
この値(時間差)を記g5づる。ステップ102では後
述第6図図示の割込みルーチンのステップ108〜10
9で得られたデータを基に機関の回転数を引算し、ステ
ップ103FA/D変換回路38を通して燃料噴削の増
減を行う図示せぬコントロールラックのラック4D同4
# Qを入力し、次にステップ104で前記スフツブ1
02で1りられた機関回転数と、ステラ7 ’+ 03
(”冑られたラック位nとにより、目標噴01 n、’
r期の演粋を行う。ステップ105は第6図図示の割り
込みルーチンで得られる値とステップ101r+!7ら
れる(t+とを基に実噴射時期を演詐し、ステラ710
6ではステップ104で得られた目標唱用時+i1Jど
、ステップ105で得られた実117′1銅時期との比
較を行い、この差に応じて油圧の流入側、流出側それぞ
れの圧力制御弁9.10への駆4〕信号のパルス幅を計
許し、ステップ107でス゛jツブ106でl!+ $
1されたパルス幅のパルス信号を駆動回路39へ出力す
る、この後再びステップ102へ戻り、ステップ102
〜107の処理を繰り返す。
Next, the operation of the microcomputer 34 will be explained based on the flowchart of FIG. 5i.
0 returns the computer's internal memory, input/output board, etc. to the initial state. Next, in step 101, the relative positions of the driving side detector 2 and the driven side detector 3 are detected,
Write down this value (time difference) in g5. In step 102, steps 108 to 10 of the interrupt routine shown in FIG.
Rack 4D of a control rack (not shown) subtracts the engine speed based on the data obtained in Step 9 and increases or decreases fuel injection through the FA/D conversion circuit 38 in Step 103
# Input Q and then in step 104
Engine speed decremented by 02 and Stella 7' + 03
("Due to the damaged rack position n, the target injection 01 n,'
The performance of the r period will be performed. Step 105 uses the value obtained in the interrupt routine shown in FIG. 6 and step 101r+! 7 (actual injection timing is falsified based on t+, Stella 710
In step 6, the target chant +i1J obtained in step 104 is compared with the actual 117'1 copper time obtained in step 105, and the pressure control valves on the inflow and outflow sides of the hydraulic pressure are adjusted according to this difference. 9. Drive to 10 4] Calculate the pulse width of the signal, and in step 107 turn the switch 106 to l! + $
A pulse signal with a pulse width of 1 is output to the drive circuit 39. After this, the process returns to step 102 again,
Repeat the steps 107 to 107.

以上の処理を実行している際に、第1図(イ)における
aSbに示すパルスがマイクロコンピュータ34に入力
されてコンピュータがこのパルスの立」クリを検出する
と、プログラムは第6図に示1割込みルーチンに移る。
While executing the above processing, when the pulse shown at aSb in FIG. Move to interrupt routine.

該別込みルーチンでは、ステップ108において、コン
ピュータに内蔵のフリーランタイマの値を読み(フリー
ランタイマとは一定周期でその内容が[1Jづつインク
リメン1〜されるもの。)、次のステップ109でこの
割込みルーチンが、第1図(イ)に示す信号aの立上り
エツジによって起動されたものか、あるいは信@bの立
」−リエツジによって起動されたものかを判断し、前記
ステップ108で得られたフリーランタイマの値を、場
合に応じた占込み可能なメモリ番地に記憶し、以上の処
理を実ty L、た後に前記メインルーチンへ移り、通
常の処理を行うようになされ°(いる。
In the separate routine, in step 108, the value of the free-run timer built into the computer is read (a free-run timer is one whose contents are incremented by 1J at regular intervals), and in the next step 109, the value of the free-run timer built in the computer is read. It is determined whether this interrupt routine is activated by the rising edge of the signal a shown in FIG. The value of the free-run timer is stored in a memory address that can be accessed depending on the case, and after the above processing is completed, the program moves to the main routine and performs normal processing.

第7図は第5図に示したステップ101の処即内容を詳
細に示したもので、以下、第7図に沿って説明づる。
FIG. 7 shows in detail the contents of step 101 shown in FIG. 5, and will be explained below along with FIG.

まずステップ201において、機関回転数Nが設定11
TIN o J:り大きいか否かを判断し、小さりれば
、アクチュエータ1′は駆動されないことがらN>No
となるのを待つ。そしてNがNoより人さくなるとステ
ップ202に進み、コンピュータ34は駆動回路39に
対して信号を出力し、アクヂュ■−夕1′が進角mθ−
00カムとなるにう;111紅室171に711目つる
油圧を「0」とりる制御、即l)ノルリタード制御し、
続くステップ203では第1図(イ)に示した被駆動側
検出器3にょる信号aと駆動側検出器2による信号すど
のフルリタード制御時の立−1,り時間差t1を]律し
、次にスフツブ204においτ、この時間差t1の11
c1が予め設定したtminより大ぎく、tmaxより
小さいかどうかを判断し、これがttnin<t + 
<tmaxの場合にはステップ205へ進み、そうでな
い場合はステップ208へ進む。このr1容範囲は検出
器2.3が通常の取り付は条件を満足している場合、あ
るいはフルリタード時にシフタ17がフルリタード位置
にある場合のある一定の範囲内の03間差を有効なもの
として、例えば回路の誤った結線等が行われた場合など
に誤った時間差を基準値として記憶することを防止覆る
ためである。
First, in step 201, the engine speed N is set to 11.
N
Wait until it becomes. When N becomes smaller than No, the process proceeds to step 202, where the computer 34 outputs a signal to the drive circuit 39 so that the actuator
00 cam; control to set the 711th oil pressure to "0" in the 111 red chamber 171, i.e. l) Nor retard control,
In the subsequent step 203, the difference t1 in the rising time during full retard control between the signal a from the driven side detector 3 and the signal from the driving side detector 2 shown in FIG. 1(A) is determined. τ in Sfutub 204, 11 of this time difference t1
Determine whether c1 is larger than the preset tmin and smaller than tmax, and if this is ttnin<t +
If <tmax, the process proceeds to step 205; otherwise, the process proceeds to step 208. This r1 capacity range is valid when the detector 2.3 satisfies the conditions for normal installation, or when the shifter 17 is at the full retard position at full retard. This is to prevent an incorrect time difference from being stored as a reference value, for example, when a circuit is incorrectly connected.

続くステップ205及びステップ20Gで、ある設定時
間TVのタイムラグを設()る。これは、例えば最初の
時間差t1がtmin< t + −tmaxの範囲内
にあったとしても低温時にお(プる油粘性の増加等にに
り進角量θ=0°カムより僅かにずれたところC戻り不
良等を起こしτいる場合、ある桿廉のランニング時間を
設置)ることで、油の粘↑(1が低下し、より/7−Q
’カムに近づいた値C取りfJ(〕位置の相対な差を表
ね一4初期位相差、即ノ5初期時間X−を検知づること
により、誤Xを小さく覆ること←二ある。
In the following steps 205 and 20G, a time lag of a certain set time TV is set. This means that, for example, even if the initial time difference t1 is within the range tmin < t + -tmax, the advance angle θ = 0° may deviate slightly from the cam advance due to an increase in oil viscosity at low temperatures. However, if τ occurs due to poor return of C, by setting a certain running time), the viscosity of the oil ↑ (1 decreases and becomes more /7-Q).
By detecting the value C approaching the cam, fJ (), which represents the relative difference in position, 14 initial phase difference, and 5 initial time X-, the error X can be minimized.

そして、ステップ207にJ3いては、ステップ203
と同様に設定時間Ty軽通過後1147間差t2をtl
粋し、ステップ218では、tlの値を書き込み可能な
メモリの特定エリアに記憶し、この記憶した110をl
’posとした後、メインルーチンへ移る。。
Then, if J3 is in step 207, step 203
Similarly, the difference t2 between 1147 after passing the set time Ty is tl
Then, in step 218, the value of tl is stored in a specific area of the writable memory, and this stored value of 110 is stored as l.
After 'pos', move to the main routine. .

一方、ステップ204におい゛U、時間時間差厚1mt
n< t 1< tmaxの範囲外にあるときはステッ
プ208へ移行し、ステップ208において、第8図で
示す、任意の点△での時間差し^ を計算する。
On the other hand, in step 204, the time difference thickness is 1 m.
When it is outside the range of n<t1<tmax, the process moves to step 208, and in step 208, the time difference ^ at an arbitrary point Δ shown in FIG. 8 is calculated.

続くス1°ツブ209及びステップ210である設定時
間1xのタイムラグを設け、設定時間T×経過後ステッ
プ211においてB点での時間差tBをif I′y 
”する。ステップ212で、t8 の値が前述l m 
in J:り大きく、tmaxより小さいかを判断し、
tanin< t B < jmaXの場合は、ステッ
プ213へ進み、イうてない場合はステップ208へ戻
り、tmin<[B ・、tmaxとなるのを待つ。こ
れは、ステップ204で説明した理由による。
A time lag of set time 1x is provided in the following steps 209 and 210, and after the set time Tx has elapsed, in step 211, the time difference tB at point B is calculated as if I'y
”. At step 212, the value of t8 is set to the above l m
in J: Determine whether it is larger than tmax and smaller than tmax,
If tanin<tB<jmaX, the process proceeds to step 213; if not, the process returns to step 208 and waits for tmin<[B·, tmax. This is for the reason explained in step 204.

続くステップ213では、ステップ208で11綽1)
た時間5イ!^ からス−7ツプ211でtl鋒した1
11間X[B の値を減じてΔtを計n(〕、次スyッ
グ214に移h 4る。ステップ214においては、1
、記各値より l’z −l tmaxl X TX /Δtを計nし
、ステップ215及びスフツブ216において、上記i
1mされた時間TZのタイムラグを設ける。これは、ス
テップ205及びステップ206で説明した如くランニ
ング時間を設けることにより、t l >tmaxであ
つでも、次第に時間差tが減少づる。従って減少の変化
中(傾さ)より、時間差しがtmaxとなった時点から
どれだけの時間、叩ちTZが経過ずれば、J:すθ−0
’/Jムに近づいた時間差tを検出できるかが予測でき
る。
In the following step 213, in step 208 11)
Time 5! ^ From 7th step 211 tl was 1
11, subtract the value of
, l'z -l tmaxl
A time lag of 1 m is provided. This is because by providing a running time as explained in steps 205 and 206, the time difference t gradually decreases even if t l >tmax. Therefore, according to the decreasing change (inclination), how much time has passed since the time difference reached tmax? J:su θ-0
It can be predicted whether a time difference t approaching '/J can be detected.

続くステップ217においては、ステップ207と同様
に時間差t2を4粋し、ステップ218へ進み、以下同
様の処理を実行号る。
In the following step 217, the time difference t2 is calculated as in step 207, and the process proceeds to step 218, where the same processing is executed.

尚、第8図においては、tlがtmaxより人きい場合
を表わしたが、tlがt m i n J:り小さい揚
台Cあっても同様である。
Although FIG. 8 shows the case where tl is smaller than tmax, the same applies even if there is a platform C where tl is smaller than t min J:.

次に、第9図は前記第5図のステップ105の実行内容
を詳細に示したもので、ステップ301において信号a
と信号すのパルスのやら圭り115間の差tを計測し、
次にステップ302でステップ301 Z”iil測し
た11!g間ml Lの値から、スーアツプ101で1
′1られlこ(Irp03の値を弓1くことにJ、つ【
il:’、 Lい■)間ブf−’I−pをiil帥Jる
。次に、ステップ303 r、この値Tpと機関回転数
Nとから実噴射時期opを4訃Jる。
Next, FIG. 9 shows in detail the execution content of step 105 in FIG.
Measure the difference t between the pulse of the signal and the pulse of the signal 115,
Next, in step 302, from the value of 11!g ml L measured in step 301,
'1 is the value of Irp03.
il:', L■) Interval f-'I-p. Next, in step 303r, the actual injection timing op is calculated from this value Tp and the engine speed N.

次に、以1で述べた燃料噴射時期調整装置の作動を説明
覆る。
Next, the operation of the fuel injection timing adjustment device described in 1 will be explained.

今、J−ンリン回転数N1 (rpm)、ラックυlr
がR+rニー運転運転中心ものとし、その時の噴射時期
がθ°であったとづる。駆動側検出器2からは回転@N
1に比例し/j周波数の正弦波が波形整形回路33に入
力され、回転数N1に比例した周波数のパルス列(第1
図(イ)b)に変換されてマイクロコンピュータ34の
Δ端子に入力8れる。
Now, J-ring rotation speed N1 (rpm), rack υlr
It is assumed that R+r knee operation is the center of operation, and that the injection timing at that time is θ°. Rotation @N from drive side detector 2
A sine wave with a frequency of /j proportional to N1 is input to the waveform shaping circuit 33, and a pulse train (first
The signal is converted to (b) in FIG. 8 and inputted to the Δ terminal of the microcomputer 34.

方被駆動側検出器3の出力を波形整形回路33に通して
17られたパルス列(第1図(イ)a)は、イの周波数
が回転数検出器と等しく、噴射時期θ0に応じた時間差
tのパルス列どなり、これがマイクロコンピュータ34
のB端子に入力される。
The output of the driven side detector 3 is passed through the waveform shaping circuit 33 to form a pulse train (Fig. 1 (A) a), which has a frequency equal to that of the rotational speed detector and a time difference according to the injection timing θ0. t pulse train, this is the microcomputer 34
is input to the B terminal of

そして、マイクロ」ンビ]−夕34は△端子に入力され
るパルスによって第6図の割込みルーチーンを実行し、
フリーランタイマの値11を読み取り、A端子の入力で
あるため、この[i −1’ +をメモ1)のAnil
地(回転数データメモリ番地)へ記憶した後にメインル
ーチンへ移る。また時ll5ltだり遅才t′C[3端
子からパルスが入力されると、割込みル−チンが起動し
、フリーランタイマの11’TT2を読み込み、今麿は
B端子からの入力であるので、イの値Tzをメモリの3
n番地(噴用時期データメ[り番地)へ記憶した後に、
メインルーチンへ戻り、次に再びΔ端子へパルスが入力
づるとイの時の7リーランタイマの値T3はAy+a番
地へ記憶される。
Then, the microcomputer 34 executes the interrupt routine shown in FIG. 6 by the pulse input to the △ terminal.
Read the value 11 of the free run timer, and since it is an input to the A terminal, write this [i -1' + as Anil of 1)
After storing the data to the address (rotation speed data memory address), the process moves to the main routine. Also, when a pulse is input from the time ll5lt or late t'C[3 terminal, the interrupt routine is activated and reads 11'TT2 of the free run timer, and since the input is from the B terminal, The value Tz of A is stored in memory at 3
After storing to address n (address of injection timing data),
Returning to the main routine, when a pulse is input to the Δ terminal again, the value T3 of the 7 rerun timer at the time of A is stored at address Ay+a.

割込みルーチンのステップが終り、次の割込みが入るま
での間はメインルーチンの処理を繰り返している。ステ
ップ102ぐ、回転数i゛−タメモ9番地n、△M+よ
りデータT1、王3を読み出し、N+=に+/(1−a
−■+) K+:定数を演棹し、回転数データをめる。
The processing of the main routine is repeated until the step of the interrupt routine ends and the next interrupt occurs. Step 102: Read data T1 and 3 from rotation speed i data memo 9 address n, △M+, and set N+=+/(1-a
-■+) K+: Deduce the constant and enter the rotation speed data.

次にステップ103で△/D変換回路38よりラック位
置データR1を読み取り、ステップ104 F j’−
タN1、R1より、マツプ検索及び4点補間を行い、[
l標唱躬1kY!’Ilt + −を算出し、次にステ
ップ105で、噴射時期データメモリ番地Bnと回転数
データ番地へ〇とからデータT>、T1を読J)出し、 t + =・−1’+−T2 を演粋し、次にコノr+l MY −r 1!7られ/
:l+f(t + ト、前記スフツブ101で1rtら
れた、噴射時期の進角量0.00カムにお(プる時間差
Tll03J:す、11 “−1+−■pO8 を演粋し、実噴射時期データと覆る。
Next, in step 103, rack position data R1 is read from the Δ/D conversion circuit 38, and in step 104 F j'-
Map search and 4-point interpolation are performed from data N1 and R1, and [
Singing the l mark 1kY! 'Ilt + - is calculated, and then in step 105, read data T>, T1 from ○ to injection timing data memory address Bn and rotation speed data address J), and t + = -1' + - T2 and then Kono r+l MY -r 1!7are/
:l+f(t + t, the time difference Tll03J:su, 11 "-1+-■pO8" is applied to the injection timing advance amount 0.00 cam 1rted by the above-mentioned Softub 101, and the actual injection timing is determined. Cover with data.

スフツブ106.107ではtl“とtl ′とを比較
1〕、△1−=1.“−11′を誤を時間としく)旧I
る。Δ1−>0であれば、遅角する方向へ、j、た△l
 ” < Oであればより進角Jる方向へアクデー11
ニータ1゛が作!IIIJリ−るように駆動回路39へ
出力jNi I”Jを出り。
In Sfutub 106.107, compare tl" and tl' 1], △1-=1. "-11' is the wrong time) Old I
Ru. If Δ1−>0, j, Δl in the direction of retardation
” If < O, move in the direction of more advanced angle J11
Made by Nita 1゛! Output jNiI''J to the drive circuit 39 so as to lead IIIJ.

以1−の繰返しにより、常に、最311噴錦時期になる
J:うに調整を繰り返づので、例えば、経時変化によっ
て駆動側検出器2、あるいは被駆動側検出器3の取付は
位置が移動したような場合であっても、ステップ101
で予め取付+1位置を記憶し℃おいてからステップ10
5で、この値ヲ使用して処理を行うことによって、常に
、正しい噴射時期を検出することが可能となり、長時間
にわl〔つ−C正しい噴射時期を調整装ることができる
1、まlζ、油圧アクチュエータ1の組f」り時に、検
出器の取付は位置がバラツキを生じた場合や、低温時等
で油粘性増加により戻り不良を起こした場合てし、常に
、正しく噴射時期を調整することがでさる、。
By repeating the above 1-, the adjustment is repeated until the maximum 311 injection timing is reached. For example, the mounting position of the driving side detector 2 or driven side detector 3 may change due to changes over time. Even in such a case, step 101
Memorize the installation +1 position in advance at ℃, then step 10
By performing processing using this value, it is possible to always detect the correct injection timing, and it is possible to adjust the correct injection timing over a long period of time. When assembling the hydraulic actuator 1, be sure to always adjust the injection timing correctly if the detector is installed in the wrong position or if return failure occurs due to increased oil viscosity at low temperatures. That's a monkey.

以上のJ:うに本発明は、 回転づる駆動部材に対する被駆動部月の相対的位置を決
めるアクチュエータと、上記被駆動部)4の回転に同期
した信号を出力する被駆動側検出器と、上記駆動部材の
回転に同期した信号を出力りる駆動側検出器と、目標噴
射時期を設定Jると」1゜に」二記両検出器から出力さ
れる信号の時間2r−より算出される上記両部材間の回
転の位相差に基づ(1て実噴射時期を検出し、上記両噴
射時期の差に応じて駆動信号を補正し、上記アクチj−
]−一タに出ツノする制御回路とを1釉えた内燃機関の
燃料噴射時期w4整装眠におい(、 上記制御回路内に、制御開始時点で上記被駆動部材を所
定位置に変位せしめ、上記雨検出゛器からの信号の時間
差が、所定範囲内にあれば変位後にめた当該時間差を基
準値として記憶し、また、上記所定範囲内になければ、
上記所定範囲内に収まるj;C待機し、上記所定範囲に
収まるまでの時間差の変化率に基づいて定めた所定時間
経過後にめた当該時間差を基Qji値として記憶し、星
の後」記両検出器にり検出した時間差を上記基へ1艙に
より補iFシ、該補正後の時間差により算出した位相差
に基づい(実噴射時期を検出づる手段を設りlζ ことを特徴とづる内燃機関の燃料唱躬助期調整装旧であ
る。
The above J: Sea urchin The present invention includes: an actuator that determines the relative position of the driven part with respect to the rotating drive member; a driven side detector that outputs a signal synchronized with the rotation of the driven part) 4; When the drive side detector outputs a signal synchronized with the rotation of the drive member and the target injection timing is set, the above is calculated from the time 2r of the signal output from both detectors at 1°. Based on the rotational phase difference between the two members (1), the actual injection timing is detected, the drive signal is corrected according to the difference between the two injection timings, and the actuator is activated.
] - In the fuel injection timing W4 adjustment of an internal combustion engine equipped with a control circuit that suddenly appears (, in the control circuit, the driven member is displaced to a predetermined position at the start of control, and the If the time difference between the signals from the rain detector is within a predetermined range, the time difference obtained after displacement is stored as a reference value, and if it is not within the predetermined range, the time difference is stored as a reference value.
If the time difference falls within the above-mentioned predetermined range; C waits, the time difference determined after the elapse of a predetermined time determined based on the rate of change of the time difference until it falls within the above-mentioned predetermined range is stored as the base Qji value, and is recorded after the star. An internal combustion engine characterized in that the time difference detected by the detector is corrected by the above-mentioned tank, and a means for detecting the actual injection timing is provided based on the phase difference calculated from the corrected time difference. The fuel adjustment system is old.

これによって燃料噴射菰買の実噴射時期を、検出器の取
f4け(ft四のバラツキ、あるいは経時変化等にかか
わらず、常に正確に検出づることができる効果がある。
This has the effect that the actual injection timing of fuel injection can always be accurately detected regardless of variations in the f4 of the detector or changes over time.

また、従来のように検出器の取付番プ「l置を精密に調
整する必要がなく、検出器は予め設定した、補正範囲内
に許容される幅を持った位置に簡+1sに取付けるだけ
でよく、検出器取利は作業の]−数が大幅に削減でさる
効果がある。
In addition, there is no need to precisely adjust the mounting position of the detector as in the past, and the detector can be simply installed in a preset position with a width that is allowable within the correction range. In general, detector collection has the effect of greatly reducing the number of operations required.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示1もので、第1図くイ)は検
出器の信号波形、(ロ)は唱@’I II@ 111の
進角母と時間差との関係を表わづグラフ、第2図は全体
の構成図、第3図はアクチュエータの構成図、第4図は
電気的11i13笥1回路のブOツク図、第5図乃至第
7図及び第9図はマイクロコンビコータの実tラブログ
ラムを示づフローブv−1・、第8抹1はステップ10
1の処即を説明するグラフである。 1・・・アクチュエータ 2・・・駆動側検出器3・・
・被駆動側検出器 4・・・負荷検出器5・・・電気的
制御回路 9.10・・・圧力制御弁 22・・・被駆動部材24
・・・馴初部材の一例にお番プる構成要素と1.iるカ
バー 33・・・波形整形回路 34・・・マイクロコンピュータ 39・・・駆eh回路 代理人 弁理士 定立 勉 化1名 第1図 (イ) 4−2−1 (ロ) 第5図 第6図
The drawings show an embodiment of the present invention, and Fig. 1 (a) shows the signal waveform of the detector, and (b) shows the relationship between the advance angle mother and the time difference of 111. Figure 2 is the overall configuration diagram, Figure 3 is the actuator configuration diagram, Figure 4 is the electrical 11i13 box 1 circuit diagram, Figures 5 to 7, and 9 are the micro combination diagrams. Flobe v-1, which shows Cota's actual love program, 8th digit 1 is step 10
It is a graph explaining the result of No. 1. 1...Actuator 2...Drive side detector 3...
- Driven side detector 4... Load detector 5... Electric control circuit 9.10... Pressure control valve 22... Driven member 24
. . . An example of a first-time member is the following components: 1. I-ru cover 33...Waveform shaping circuit 34...Microcomputer 39...Electric drive circuit Agent Patent attorney Established and trained 1 person Figure 1 (A) 4-2-1 (B) Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 回転Jる駆動部材に対づる被駆動部材の相対的位置を決
めるアクテコュータと、上記被部#部材の回転に同期し
た信号を出力する被駆動側検出器と、上記駆動部材の回
転に同期し1.:信号を出ノjする駆動側検出器と、[
1標噴射時期を設定すると共にE2両検出器から出力さ
れる(g号の時間差より鈴出される上記両部材間の回転
の位相差に基づいて実噴射時期を検出し、上記両噴射時
期の差に応じて駆動信号を補正し、上記アクチユエータ
に出力づる制御回路とを備えた内燃maの燃料噴射時期
調整装賀において、 上記制御回路内に、制御開始時点で上記被駆動部材を所
定4C1首に変位せしめ、上記両検出器からの1.1号
の時間差が、所定範囲内にあれば変位後にめた当該時間
差を基準値として記憶し、また、上記所定範囲内になけ
れば、」−2所定範囲内に収まるまで待機し、上記所定
範囲に収まるまでの時間差の変化率に基づい(定めた所
定時間経過後にめた当該時間差を基準V(とじて記憶し
、ぞの後上記両検出器より検出した時間差を上記!!準
値により補正し、該補正後の時間差により粋出しだ位相
差に基づいて実噴射時期を検出づる手段を設けた ことを特徴とりる内燃l1llaIの燃料噴射時期調整
装置。
[Scope of Claims] An actuator that determines the relative position of the driven member with respect to the rotating driving member, a driven-side detector that outputs a signal synchronized with the rotation of the driven member, and the driving member Synchronized with the rotation of 1. : A drive-side detector that outputs a signal, and
The actual injection timing is detected based on the rotational phase difference between the two members, which is output from the E2 detector (which is determined from the time difference of g), and the difference between the two injection timings is determined. In the fuel injection timing adjustment system for an internal combustion engine equipped with a control circuit that corrects a drive signal in accordance with and outputs it to the actuator, the control circuit includes a control circuit that causes the driven member to be set at a predetermined 4C1 neck at the time of starting the control. If the time difference of No. 1.1 from the two detectors is within a predetermined range, the time difference obtained after the displacement is stored as a reference value, and if it is not within the predetermined range, the ``-2 predetermined Based on the rate of change of the time difference until it falls within the predetermined range, the time difference obtained after the elapse of the predetermined time is stored as a reference V (and then detected by both of the detectors). A fuel injection timing adjustment device for internal combustion l1llaI, characterized by comprising means for correcting the time difference by the quasi-value and detecting the actual injection timing based on the phase difference derived from the corrected time difference.
JP58139797A 1983-07-29 1983-07-29 Fuel injection timing regulating device for internal- combustion engine Pending JPS6030450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58139797A JPS6030450A (en) 1983-07-29 1983-07-29 Fuel injection timing regulating device for internal- combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58139797A JPS6030450A (en) 1983-07-29 1983-07-29 Fuel injection timing regulating device for internal- combustion engine

Publications (1)

Publication Number Publication Date
JPS6030450A true JPS6030450A (en) 1985-02-16

Family

ID=15253644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58139797A Pending JPS6030450A (en) 1983-07-29 1983-07-29 Fuel injection timing regulating device for internal- combustion engine

Country Status (1)

Country Link
JP (1) JPS6030450A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0497237A2 (en) * 1991-01-29 1992-08-05 MAGNETI MARELLI S.p.A. Internal combustion engine stroke identification system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0497237A2 (en) * 1991-01-29 1992-08-05 MAGNETI MARELLI S.p.A. Internal combustion engine stroke identification system

Similar Documents

Publication Publication Date Title
JP2009144649A (en) Fuel injection control device
JPS6030450A (en) Fuel injection timing regulating device for internal- combustion engine
US6915767B2 (en) Method of determining the position of a cam phaser
JP2011157835A (en) Rotation angle detector and method for installing the same
JPH0694854B2 (en) Fuel injection advance measuring device for diesel engine
JPH05314691A (en) Magnetic disk device
JPS59173531A (en) Fuel injection timing adjusting device for internal-combustion engine
JP3083167B2 (en) Engine control device
US5915356A (en) Method for detecting position of fuel injection quantity adjusting member of fuel injection pump and apparatus for carrying out the method
WO2018135202A1 (en) Control device and control method for internal combustion engine
KR930013448A (en) Internal combustion engine control system and method
JP3672713B2 (en) Rotating body drive control method
JP2813665B2 (en) Ignition timing control device
JP2006113023A (en) Rotation angle detecting device
US11305810B2 (en) Method and system to synchronize non-deterministic events
JP5940945B2 (en) Automotive control device
JPH0392565A (en) Crank angle detecting device
JPH03180765A (en) Detection of revolutions of internal engine
JPS6318026B2 (en)
KR20060043451A (en) Angle correcting method for rotational angle detecting device
JPH0610750A (en) Control device for internal combustion engine
JPH05141335A (en) Engine control device
JPH06108957A (en) Electronic control device for internal combustion engine
JPH10313581A (en) Method and apparatus for driving and controlling rotating body
GB2357849A (en) Method of sensing engine position and compensating for perturbations in the sensor signal