JPS6030290A - Signal processing circuit of color video camera - Google Patents

Signal processing circuit of color video camera

Info

Publication number
JPS6030290A
JPS6030290A JP58137544A JP13754483A JPS6030290A JP S6030290 A JPS6030290 A JP S6030290A JP 58137544 A JP58137544 A JP 58137544A JP 13754483 A JP13754483 A JP 13754483A JP S6030290 A JPS6030290 A JP S6030290A
Authority
JP
Japan
Prior art keywords
signal
color
circuit
luminance
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58137544A
Other languages
Japanese (ja)
Inventor
Toshio Murakami
敏夫 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58137544A priority Critical patent/JPS6030290A/en
Priority to DE8484108808T priority patent/DE3467278D1/en
Priority to EP84108808A priority patent/EP0132841B1/en
Priority to US06/634,070 priority patent/US4680624A/en
Publication of JPS6030290A publication Critical patent/JPS6030290A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths

Abstract

PURPOSE:To improve color unevenness and color noise, and exclude a feeling of physical disorder from a photographed picture by detecting a low-luminance component which is lower than a specific level from an image pickup signal, and attenuating the gain of a chrominance signal according to the level of the detection signal. CONSTITUTION:A video signal right before entering an AGC circuit 5 has the chrominance signal removed through a filter 32 and is inputted to a highlight detecting circuit 23 for detecting a highlight signal which is higher than a specific level and a low luminance detecting circuit 33 for detecting a luminance signal which is lower than a specific level. The detected highlight signal and low luminance signal are summed up by an adding circuit 35 and impressed as a control signal to a gain control circuit 28. Consequently, attenuation effect which is largest at a black level part is obtained within the control range of the low luminance detection signal and attenuation effect which is gradually less up to a detection point is obtained, so color unevenness and color noise are suppressed effectively as a part becomes so dark that the color unevenness and color noise are conspicuous.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はカラービデオカメラの信号処理回路に係り、特
に無彩色系の画像、あるいは画像の暗部で目立つ色むら
、色ノイズを少なくシ、画質を向上させる信号処理回路
に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a signal processing circuit for a color video camera, and particularly to a signal processing circuit for a color video camera, which reduces color unevenness and color noise that are noticeable in achromatic images or dark areas of images, and improves image quality. This invention relates to improved signal processing circuits.

〔発明の背景〕[Background of the invention]

第1図は従来、特に家庭用管球式カラービデオカメラと
して多く採用されている即−搬送波周波数分離方式単管
ビデオカメラの信号処理回路の概要を示すブロック図で
ある。本図において1はレンズ装置、2はアイリスam
、aは撮像管である。撮像管3のターゲットより輝度(
Y)信号はベースバンド信号として、色信号は撮像管の
光導面上に、垂直方向に対して互に逆の傾きに配した2
組の色ストライブフィルタ(例えば赤カットフィルタ、
青カットフィルタ)の構成によって決する。赤(川、背
(B)色信号がそれぞれ直角変調された周波数多重搬送
色信号として取り出される。図中に示した波形は白黒の
グレースケールチャートを撮影した時に得られる信号波
形例で、斜線部が搬送色信号であり、はぼ輝度4g号に
比例して搬送波信号も得られる。該取り出された信号は
プリアンプ48経て、オリ得制御回路(AGC)5によ
って定格レベルに制御されて端子8に出方される。回路
6は輝度信号(Y)を入力して得るAGC,アイリス訓
仰電圧発生用検波回路、Sよび切換え回路であり、まず
レンズlへの入射光量が比較的少ない時は、入射光量が
大きくなるとともに最大利得状態から利得減衰する様な
制御電圧をAC+C回路5に与え、所定の利得制御を終
えた後、さらにレンズへの入射光量が大きくなると、そ
れとともに次にアイリスjDA82を開放状態から除々
ζこ閉じるよフに制御するfB制御電圧をアイリス駆動
回路7に与えて撮像素子3に入射される光nを制御する
。このようにして端子8cこ得られる映像信号のレベル
を入射光量の広範囲にわたって所定の定格レベルとなる
よう制御しでいる。端子8に得られた映像信号から低域
フィルタ9(例えばカットオフ周波数fc:3MHz)
 によって輝度信号を、低域フィルタ10(例えばfc
”500KHz)によって輝度信号の低域成分を、帯域
フィルタ11(例えば帯域3.58±0.5 MHz 
)によって搬送色信号を分離している。分離された輝[
信号(Y)はガンマ(ry)抽圧回路12でγ処理され
て(Y′)カラエンコーダ23に入力される。一方、帯
域フィルタ11により分離された搬送色信号は、1lt
iI像の垂直相関の原理にもとずき一水平走査ル」間遅
処腺(I)11)L)13の通過*tJ@の信号をそれ
ぞれ加真回路15、減算回路18により〃IJn、減算
され搬送赤色信号と搬送才色1ご号に分離される。しか
る後、検波回路16 、19によりそれぞれ振幅検波し
て赤色(R) 18号、青色(B)信号を得ている。分
離。
FIG. 1 is a block diagram schematically showing a signal processing circuit of an immediate-carrier frequency separation type single-tube video camera, which has been widely used as a home-use tube color video camera. In this figure, 1 is a lens device, 2 is an iris am
, a is an image pickup tube. Brightness (
Y) The signal is a baseband signal, and the color signal is arranged on the light guide surface of the image pickup tube at opposite inclinations to the vertical direction.
A set of color stripe filters (e.g. red cut filter,
Determined by the configuration of the blue cut filter). The red (river, back (B)) color signals are respectively extracted as frequency-multiplexed carrier color signals that are quadrature-modulated.The waveform shown in the figure is an example of the signal waveform obtained when photographing a black and white gray scale chart, and the shaded area is a carrier color signal, and a carrier wave signal is also obtained in proportion to the luminance 4g.The extracted signal passes through a preamplifier 48, is controlled to a rated level by an output control circuit (AGC) 5, and is sent to a terminal 8. The circuit 6 is an AGC obtained by inputting the luminance signal (Y), a detection circuit for generating an iris training voltage, S, and a switching circuit.First, when the amount of light incident on the lens l is relatively small, A control voltage is applied to the AC+C circuit 5 such that the gain attenuates from the maximum gain state as the amount of incident light increases, and after completing the predetermined gain control, when the amount of light incident on the lens increases further, the iris jDA82 is An fB control voltage that gradually closes the iris from the open state is applied to the iris drive circuit 7 to control the light n incident on the image sensor 3. In this way, the level of the video signal obtained from the terminal 8c is controlled. The amount of incident light is controlled to a predetermined rated level over a wide range.The video signal obtained at the terminal 8 is passed through a low-pass filter 9 (for example, cutoff frequency fc: 3 MHz).
The luminance signal is passed through a low-pass filter 10 (e.g. fc
500KHz), the low-frequency components of the luminance signal are filtered by a bandpass filter 11 (for example, a bandpass of 3.58±0.5MHz).
) to separate the carrier color signals. Separated shine [
The signal (Y) undergoes γ processing in a gamma (ry) abstraction circuit 12 and is input to a color encoder 23 (Y'). On the other hand, the carrier color signal separated by the bandpass filter 11 is 1lt
Based on the principle of vertical correlation of the iI image, the signals of the passing *tJ@ of the delayed gland (I) 11) L) 13 during one horizontal scan are processed by the summation circuit 15 and the subtraction circuit 18, respectively, as 〃IJn, The signal is subtracted and separated into the conveyance red signal and the conveyance red signal No. 1. Thereafter, amplitude detection is performed by detection circuits 16 and 19, respectively, to obtain red (R) No. 18 and blue (B) signals. Separation.

検波されたH、J1号はそれぞれ、ガンマ補正回路17
.20によって補正されて(lセ、B′)、それぞれ色
差マトリクス回路21 、22の一方の入力端子に入力
する。
The detected H and J1 signals are respectively sent to the gamma correction circuit 17.
.. 20 and input to one input terminal of color difference matrix circuits 21 and 22, respectively.

一方、低域フィルタlOにて分離した輝度低域成分かカ
ンマ補正回路(rYL) 14でガンマ補正されて色差
マトリクス回路21 、22の他方の入力端子に入力さ
れて、該回路21.22の出力にそれぞし色差(IK−
Y′LI B’−Y’L ’&得60 色M4R号IC
−Y’L、 B’−’Y’Lはカラエンコーダ40に入
力される。
On the other hand, the luminance low-frequency component separated by the low-pass filter IO is gamma-corrected by the comma correction circuit (rYL) 14 and input to the other input terminal of the color difference matrix circuits 21 and 22, and output from the circuit 21 and 22. Color difference (IK-
Y'LI B'-Y'L'&Toku60 Color M4R No. IC
-Y'L and B'-'Y'L are input to the color encoder 40.

1i’−Yυま変調回路24で、W −Y’Lは変調回
路25でそれぞれ互いに90°位相の異なる副搬送波(
358MHz ) S C1、8C2を平衡変調した後
、加算回路26で加算されて、N’l’SC搬送色イ1
号をイGている。搬送色4M号はベースクリップ回路2
7、カラーキラー回路28ヲ経て信号処理回路30に入
力される。該回路30には前記輝度信gY′も入力され
、さらにブランキング、白クリップ、同期イ^号イツ加
、バースト信号伺加など栴々個も処理されて出力端子3
1にNTSU化+yをpIる。
1i'-Yυ is a modulating circuit 24, and W-Y'L is a modulating circuit 25, where subcarriers (
358MHz) SC1 and 8C2 are balanced modulated, and then added in the adder circuit 26 to produce the N'l'SC carrier color I1.
I'm using the number. Transport color No. 4M has base clip circuit 2
7. The signal is input to the signal processing circuit 30 via the color killer circuit 28. The luminance signal gY' is also input to the circuit 30, and further processed by blanking, white clipping, synchronization signal addition, burst signal addition, etc., and sent to the output terminal 3.
Add NTSU +y to 1.

カラーキラー回路28は、輝度信号の短絡レベルに対し
で、略2〜3倍以上度以上のハイライト18号か発生し
た場合、回路のダイナミックレンジなどの不足により該
ハイライト部分に重畳された多重搬送し信号がつぶれて
し才い端子8に県送色信号を取りだすことができなくな
り、この結果、色差1d号B’−Y’L、 lゼーY′
Lのバランスがくずれてしまいハイライト部分が緑ぼく
なるなと入′沼な色つき現尿の生ずるのを防ぐためであ
る。すなわち、ハイライト伯七検出[gIlli23に
よって定格レベルの略2〜3倍以上のハイライトを検出
し、咳供出6号の兄生じている期間第2図(bJの動作
に示す如く、N’L’8C搬送色信号を抑圧(オリ得制
御)して1カいでいる。
When a highlight No. 18 occurs that is approximately 2 to 3 times higher than the short-circuit level of the luminance signal, the color killer circuit 28 detects multiplexed signals superimposed on the highlight portion due to insufficient dynamic range of the circuit. Since the transmitted signal is destroyed, it is no longer possible to take out the prefectural color sending signal to the terminal 8, and as a result, the color difference 1d B'-Y'L, lze Y'
This is to prevent the balance of L from being disturbed and the highlighted area to become greenish, resulting in the production of unnaturally colored urine. In other words, highlight Hakushichi detection [gIlli23 detects a highlight that is about 2 to 3 times higher than the rated level, and during the period in which the older brother of cough supply No. 6 occurs (as shown in the operation of bJ, N'L '8C carrier color signal is suppressed (original control) and only one signal is used.

次にベースクリップ回路27の(9)きを説明する。Next, (9) of the base clip circuit 27 will be explained.

ベースクリップ回路27は無彩色系の画像で目立つ色む
らN1色ノイズCNなどを少なくするものである。すな
イつち記2図(a)の入出力特性に示すように該−蹟2
7に入力される信号のスレシホルドレベルvTH以下の
比較的小さなレベルを非直線的に抑圧するものである。
The base clip circuit 27 is used to reduce color unevenness N1 color noise CN, etc. that are noticeable in achromatic images. In other words, as shown in the input/output characteristics of Figure 2 (a),
7 non-linearly suppresses a relatively small level below the threshold level vTH.

なお、無彩色系、例えば第11.Wの図中の阪形図に示
したような、黒→白に階段的に変化するクレースケール
チャートなど無彩色の被写体そ撮影した時、色差信号B
’ −Y’L 、 ■4!−Y’Lが零7よりはホワイ
トバランスが完全で色むらは発生しフぼいが、色信号(
B/ 、lc/)と輝度信号(Y’りの暗m 7Jlら
8E1部にいたるトラッキング誤差、撮像管の偏向に伴
なう感度差などから生ずるY’ Lの暗部で生ずるシェ
ーディングあるいはB′、leに生ずるシェープインク
などによって色差信号に誤差成分が発生して色むらを生
ずる。なあ撮像管の性質上、上記トラッキング饋差は暗
部でより多く発生する。
Note that achromatic colors, for example, No. 11. When photographing an achromatic subject, such as a clay scale chart that changes stepwise from black to white, as shown in the slant diagram in the figure W, the color difference signal B
'-Y'L, ■4! - Y'L is more perfect than zero 7, the white balance is perfect, color unevenness occurs and it is blurry, but the color signal (
B/, lc/) and the luminance signal (Y'ri's dark m 7Jl et al. 8E1) Tracking error, shading that occurs in the dark part of Y'L caused by the sensitivity difference due to the deflection of the image pickup tube, or B', An error component is generated in the color difference signal due to the shape ink generated in le, resulting in color unevenness.Due to the nature of the image pickup tube, the above-mentioned tracking error occurs more often in dark areas.

一方、色ノイズは視覚上暗部で目立ちやすいとともに、
撮影画像が暗くなるに伴なうAGC回路5の利得上昇に
つれてS/Nが低下し色ノイズもふえる。上記したよう
に色むら、色ノイズは暗部、あるいは暗い撮影画像はど
目立ちやすく、力・つその量も大きい。したかって、第
1図に示す伯七処址方法において、特にベースクリップ
Igl路27による方法では、明かるいところで色む°
ら、色ノイズか目立たないように第2図(a)のスレシ
ポルドVTu ’E足めると、暗部あるいは暗い被与体
撮彫時の改善効果が充分に得られにくくなり、また、ど
んな状況下でも色むら、色ノイズか問題とならない柱板
にVTH’a−大きくすると、逆に有彩色1111i4
12の色信号情報も大きく抑圧してし菫い、明7J)る
いところの6飽オロ度も失なつ−Cしまい、画像全体に
違オij/L不自然感を感じるという不都合かある。
On the other hand, color noise is visually noticeable in dark areas, and
As the captured image becomes darker and the gain of the AGC circuit 5 increases, the S/N ratio decreases and color noise increases. As mentioned above, color unevenness and color noise are more noticeable in dark areas or in dark photographed images, and the amount of force and strain is large. Therefore, in the method shown in FIG.
If the threshold value VTu 'E in Figure 2 (a) is added to make the color noise less noticeable, it will be difficult to obtain a sufficient improvement effect when engraving dark areas or dark objects, and under any circumstances However, if you increase the VTH'a on the pillar plate where color unevenness or color noise is not a problem, conversely, the chromatic color 1111i4
The color signal information of 12 is also greatly suppressed, and the 6 saturation of bright areas is also lost, causing the inconvenience that the entire image feels unnatural.

(発明の目的) 本@1のl:目的は上記した従来技術の欠点を改善し、
無彩色系画像の明i11においても、暗部においても一
体な已むら、色ノイズの改善効果を得で、かつ塊影画塚
に連木1愚を与えない信号処理回路を提供することであ
る。
(Objective of the invention) Book @ 1: The object is to improve the drawbacks of the above-mentioned prior art,
To provide a signal processing circuit that can uniformly improve unevenness and color noise in both bright and dark areas of an achromatic image, and does not give a continuous effect to block shadows.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため、本発明はまず無彩色系画像の
比収的明かるい部分に着目して、色むら、色ノイズに関
し必費最少限の低彩度抑圧を得ない、つぎにAGC@路
以前の輝度信号の定格レベル(アイリス動作時のレベル
)に対する所定のレベル、例えば黒レベルから%〜ハ程
度の輝度信号を検出し、該検出した輝度信号によって、
黒レベル程、搬送色信号の利得を減衰させるようにして
色むら、色ノイズを改善し、かつ利得制御回路は前記/
%イライトカラーキラー回路288共有して、簡易に実
現する。
In order to achieve the above object, the present invention first focuses on relatively bright parts of an achromatic image, suppresses color unevenness and color noise to the minimum necessary level, and then uses AGC@ Detects a luminance signal at a predetermined level relative to the rated level (level during iris operation) of the luminance signal before the iris operation, for example, a luminance signal that is about % to 5 from the black level, and uses the detected luminance signal to
As the black level increases, the gain of the carrier color signal is attenuated to improve color unevenness and color noise, and the gain control circuit is configured as described above.
Share % illite color killer circuit 288 and easily realize it.

〔発明の実施例〕[Embodiments of the invention]

以下、不発明の実施例71!−第3図、第4図を用いて
説明する。N3図におい°C第1図と同符号のものは同
一回路、同一機能を示す。
Below, Example 71 of non-invention! - This will be explained using FIGS. 3 and 4. In Figure N3, the same symbols as in Figure 1 indicate the same circuits and functions.

本発明の詳細な説明するため、無彩色系撮影信号として
、本図中波形図に示Tように、黒→白に変化するクレー
スケール信号GSの横に定格レベル(YT )より大き
くのびたハイライト信号HLの存在した場合を仮定する
。AGC回路5の直前(あるいは以前)の映像信号は、
フィルタ32によって搬送色信号を除去した後、所定の
レベル(YWH)以上(例えば定格レベルの2〜3倍以
上)のハイライト信号を検出するハイライト検出回路2
3と、本発明の要部である所定のレベル以下、例えば定
格レベルの月程度丈での、黒からの輝度信号(低輝度信
号)を検出する低輝度検出回路33に入力され、それぞ
れハイライト信号と低輝度信号を検出する。しかる後、
加算回路35で加算し、加算した信号を制御信号として
、搬送色信号の利得制御回路(カラーキラー回路)28
に印加し、利得制御する。第4図に該回路に印加する制
御信号USと、制御特性の関係を示す。
In order to explain the present invention in detail, as an achromatic photographic signal, as shown in the waveform chart T in this figure, a highlight extending beyond the rated level (YT) next to the clay scale signal GS that changes from black to white will be used. Assume that the signal HL exists. The video signal immediately before (or before) the AGC circuit 5 is
A highlight detection circuit 2 that detects a highlight signal of a predetermined level (YWH) or higher (for example, 2 to 3 times the rated level or higher) after the carrier color signal is removed by the filter 32.
3 and a low-luminance detection circuit 33 that detects a luminance signal from black (low-luminance signal) below a predetermined level, which is the main part of the present invention, for example, a luminance signal from black (low-luminance signal) at a height of about a month of the rated level. Detect signal and low brightness signal. After that,
The adder circuit 35 adds the signal and uses the added signal as a control signal to control the carrier color signal gain control circuit (color killer circuit) 28.
and gain control. FIG. 4 shows the relationship between the control signal US applied to the circuit and the control characteristics.

本図に示される様に、低輝度検出信号の最も暗部に相当
する黒レベル部(VB )のレベルで、必要な減衰度(
γB)を得る様に動作点を設定する。本設定により、低
輝度検出信号による制御範囲(YBL)では、黒レベル
部(VB)で最も大きい減衰効果を得て、検出点荻で除
々に少ない減衰効果を得る。破線で示す輝度部分はクリ
ップしているのでYBL以上の明かるい輝贋に対しては
、利得制御されず、色むら、色ノイズの大きい、かつ目
立つ暗部になる程有効に色むら、色ノイズが抑圧される
As shown in this figure, the required attenuation (
The operating point is set to obtain γB). With this setting, in the control range (YBL) based on the low luminance detection signal, the greatest attenuation effect is obtained at the black level portion (VB), and a gradually smaller attenuation effect is obtained at the detection point. Since the brightness portion shown by the broken line is clipped, the gain is not controlled for bright brightness of YBL or higher, and the more color unevenness and color noise are noticeable in dark areas, the more effective the color unevenness and color noise will be. oppressed.

一方、四部においては前述の様に、ベースクリップN路
(低彩度抑圧回路〕27で暗部ζこ比べ量的に少ない色
むら成分に看目して必要最少限のレベルで色むら、色ノ
イズを抑圧し−(よいので有彩色画像において彩度を大
きく低下させるという不都合はない。なお、ハイライト
検出信号(YWK、)によっては、第1図の従来例で説
明したと同様、異常に大きいハイライト部では大きく利
得減衰させて、ハイライトで緑色に着色するのを防いで
いる。もちろん、ここでは利得制御回路を有効に共有し
ているが、別途設けてもよい。
On the other hand, in the fourth part, as mentioned above, the base clip N path (low saturation suppression circuit) 27 takes into account the color unevenness component, which is quantitatively smaller than the dark part ζ, and suppresses color unevenness and color noise at the minimum necessary level. Since it is possible to suppress -(), there is no problem of greatly reducing the saturation in a chromatic image.In addition, depending on the highlight detection signal (YWK,), the signal may be abnormally large as explained in the conventional example in FIG. The gain is greatly attenuated in the highlight portion to prevent the highlight from being colored green.Of course, the gain control circuit is effectively shared here, but it may be provided separately.

つぎに低輝度検出信号は、AGCIgl昂5以前の映像
信号から得た方が極めて有効な理由を以下に述べる。被
写体照度が比較的明かるい状態すなわちアイリス機構2
の動作領域ではプリアンプ40入力レベルか一定化され
るのでAGC回路5の以前、以後において映像信号は所
定の定格レベルに保たれ、かつ、S/Nはプリアンプ回
路のノイズ発生I4によって決定されるのでS / N
は一定状態に保たれる。ところが被写体照度が除々に低
く(暗く)なって、アイリスが開放状態となり、さらに
暗くなるにつれて、A(J Ctv動作禎域に入り、A
GC回路は利得減衰量最大から、利得上昇させる様に制
御されてAGC回路5の出力を一定に保つ。すなわちA
GCの動作領域に入ると、被写体照度が低くなるにつれ
てプリアンプ4に入力される映像信号レベルも少なくな
るのでS/Nが低下し、その結果、色ノイズも照度に比
例して目立ってくる。
Next, the reason why it is extremely effective to obtain the low luminance detection signal from the video signal before AGCI gl 5 will be described below. A state where the subject illuminance is relatively bright, that is, iris mechanism 2
In the operating region of , the input level of the preamplifier 40 is kept constant, so the video signal is maintained at a predetermined rated level before and after the AGC circuit 5, and the S/N is determined by the noise generation I4 of the preamplifier circuit. S/N
is kept constant. However, as the subject illuminance gradually decreases (darkens), the iris becomes open, and as it becomes even darker, A (J Ctv enters the operating range and A
The GC circuit is controlled to increase the gain from the maximum gain attenuation to keep the output of the AGC circuit 5 constant. That is, A
When entering the GC operating range, the level of the video signal input to the preamplifier 4 decreases as the subject illuminance decreases, resulting in a decrease in S/N and, as a result, color noise becomes noticeable in proportion to the illuminance.

同時にAGCl路5以前の映像信号レベルは被写体照度
が低(なるとともに所定の定格レベルY丁から低下して
ゆくので、第4図下部波形図に示すようζこ明度部も除
々に所定の検出しづル]−以下となって検出されでくる
。すなわちS/Nの低1とともに明度レベル部から黒レ
ベル部にかりて、除々に利得減衰効果をもたせるような
動作となり、全画面にわたる色ノイズ抑圧効果が大きく
画質向上効果は著るしい。
At the same time, the video signal level before AGCl path 5 decreases from the predetermined rated level Y as the subject illuminance becomes low (as the illuminance of the subject becomes low), so as shown in the lower waveform diagram of FIG. In other words, with a low S/N ratio of 1, the operation gradually brings about a gain attenuation effect from the brightness level area to the black level area, resulting in a color noise suppression effect over the entire screen. The effect of improving image quality is significant.

この時は、弔彩色画像の明度部の彩度も除々に低下−c
j−るが、撮影画面そのものの87Nが全搬に低下して
きている画像内容であり、その影響は問題とならず不自
然感はない。
At this time, the saturation of the brightness part of the mourning color image also gradually decreases.
However, the image content is such that 87N of the photographic screen itself has decreased completely, so the effect is not a problem and there is no unnatural feeling.

第5図は本発明の要部であるハイライト(高輝度)信号
検出回路23と、低輝度信号横用回路33、加算回路3
5の具体回路例である。第5図においてトランジスタQ
l、Q2.Q3.Q4、定電流源回路11.ダイオード
D1.抵抗几1.■も2.几3゜R4によってハイライ
ト信号検出回路23が構成さレル。トランジスタQ2の
ベースに所定のレベル(例えば定格の2〜3倍)以上の
ハイライト信号をスライス検出するレベルを設定するバ
イアス電圧VWHが印加され、トランジスタQlのベー
スに映像信号が入力されVWllを越えるとトランジス
タQ1がONし1.DI、R2,R3,Q3からなる゛
Hi流ミラー回路により電流変mされ、4、の比で増幅
されて、トランジスタQ4のエミッタに人力と同極性の
ハイライト信号が検出される。一方、トランジスタ(上
6+Q7+Qs+Q9、定電流源回路■2、ダイオード
D3、抵抗1も101)Lll 、 lL12 、R1
4,R13によって低輝夏信号検出回路33が同様に構
成される。トランジスタQ7のベースに所定のレベル以
下(例えば定格輝度レベルの73)ノ低輝度信号を得る
ためのクリップレベルを決めるバイアス電圧VBを印加
する。トランジスタQ6のベースに映像信号が入力され
、VB以下になるとトランジスタQ7が0 、N l、
で、同様R14/R1oの比で増幅され、人力信号と連
極性の低輝度検出信号がトランジスタQ9のエミッタに
出力される。抵抗几6.几15で加算回路35を構成し
、トランジスタQ5.タイオードD2、抵抗lも7 、
 I(,8、R9は電流吸込み直流レベルシフト回路で
、■も7.■七8.J(,9を設定することで、制御電
圧の動作点を任意に選ぶことかできる。
FIG. 5 shows a highlight (high brightness) signal detection circuit 23, a low brightness signal horizontal use circuit 33, and an addition circuit 3, which are the main parts of the present invention.
This is a specific circuit example of No. 5. In Figure 5, transistor Q
l, Q2. Q3. Q4, constant current source circuit 11. Diode D1. Resistance 1. ■Also 2. The highlight signal detection circuit 23 is configured by R4. A bias voltage VWH is applied to the base of the transistor Q2 to set a level for slice detection of highlight signals of a predetermined level (for example, 2 to 3 times the rated value) or higher, and a video signal is input to the base of the transistor Ql to exceed VWll. , transistor Q1 turns on and 1. The current is changed by a Hi-flow mirror circuit consisting of DI, R2, R3, and Q3, and is amplified by a ratio of 4, and a highlight signal having the same polarity as the human input is detected at the emitter of the transistor Q4. On the other hand, transistors (upper 6 + Q7 + Qs + Q9, constant current source circuit ■2, diode D3, resistor 1 is also 101) Lll, lL12, R1
4 and R13, the low brightness summer signal detection circuit 33 is similarly configured. A bias voltage VB is applied to the base of the transistor Q7 to determine a clip level for obtaining a low luminance signal below a predetermined level (for example, rated luminance level 73). A video signal is input to the base of transistor Q6, and when it becomes less than VB, transistor Q7 becomes 0, Nl,
Similarly, the low luminance detection signal is amplified by the ratio R14/R1o and is output to the emitter of the transistor Q9. Resistance 6. The adder circuit 35 is configured by the transistor Q5. Diode D2 and resistor l are also 7,
I(, 8, R9 are current sinking DC level shift circuits, and by setting 7.■78.J(, 9), the operating point of the control voltage can be arbitrarily selected.

なお、本実施例では詳述しなかったが、周波数分離方式
カラーヒテオヵメラでは一般に、輝度n1ffi号と、
R信号およびB信号のトラッキングを良くして、暗部か
ら明部までのボ“ノイドバランスを改善する。すなわち
、所定レベルの輝度(、M号を3〜4分割し、該分割し
たそれぞれの信号に応動して、分廃した搬送赤色(A号
、搬送青色信号を利得fllJ御し、輝度信号との暗レ
ベルがら明レベルに到るまでのトラッキングをよくする
という信も処理手段が多々採用される。
Although not described in detail in this embodiment, in a frequency separation type color photo camera, the luminance n1ffi and
This improves the tracking of the R signal and B signal to improve the bonoid balance from dark to bright areas.In other words, the luminance at a predetermined level (M) is divided into 3 to 4, and each of the divided signals is In response, processing means are often adopted to control the gain of the red (A) and blue (transfer) signals to improve tracking with the luminance signal from the dark level to the bright level. .

この様な場合は、本発明に用いる低輝度検出イu号と、
上記トラッキンク桶正用信号の低輝度成分を共通にオb
用でき、本発明を夾Mμするに極めて簡易に実現できる
In such a case, the low luminance detection IU used in the present invention,
The low-luminance component of the above tracking bucket signal is commonly turned off.
It is possible to implement the present invention extremely easily.

〔発明の効果〕〔Effect of the invention〕

以上蔽す」シたようζこ本発明ζこよれば、有彩色画像
の彩度を低下させることなく、無彩色系画像で目立つ色
むらを・FfK部、Q)ら明部lζゎたり一様の視覚的
改善効果を得ることができる。さらに暗部、あるいは被
写体照度が低くなるにつれて目立ちはじめる色ノイズも
、それとともに改善効果を大きくすることかでさる。本
発明により、1I111質に不自然感、違和感はなく画
質向上効果は極めて大きい。
According to the present invention, color unevenness that is noticeable in achromatic images can be eliminated without reducing the saturation of chromatic images. You can get similar visual improvement effects. Furthermore, the effect of improving color noise, which becomes noticeable in dark areas or as the subject illuminance decreases, is also increased. According to the present invention, the 1I111 quality does not feel unnatural or strange, and the effect of improving image quality is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

絽1図は従来のカラービデオカメラ0)信号処理LU路
の一例を示すブロック構成図、第2図は向米の1汀号処
理回路を説明するための特性図、第3図は本発明を用い
た信号処理回路の要部を示すブロック襦rj”j、図、
第4図は本発明を説明するための特性図、丙5図は本発
明の要部を実現するための一具体回路例を示す回路図で
ある。 1・・・レンズ 2・・・アイリス機構3・・・撮(7
1,X子 4・・・プリアンプ5・・・AGC回路 6・・・AGC,アイリス検波、切換回路7・・・アイ
リス駆動回路 9・・・輝度信ぢ抽出用低域フィルタ 10・・・輝rR信号低域成分抽出用低」■フィルタ1
1・・・搬送色信号抽出用帯域、フィルタ12.14,
17.20・・・ガンマ補正回路13・・・IkiDL
 15・・・加算回路16.19・・・検波回路 18
・・・減界回路21 、22・・・色差゛マトリクスL
!回路23・・・カラーエンコーダ 24.25−・・千′#7RA回路 26 ・)tu 
11. @路27・・・低彩度抑圧(ベースクリップ)
回路28・・・利傅制#(カラーキラー)回路30・・
・信号処理回路 32・・・搬送色信号抑圧用フィルタ 33・・・低輝度信号検出回路 35・・・〃目算回路
Figure 1 is a block configuration diagram showing an example of the signal processing LU path of a conventional color video camera, Figure 2 is a characteristic diagram for explaining the No. 1 processing circuit of Mukai, and Figure 3 is a block diagram showing an example of the signal processing LU path of a conventional color video camera. Block diagram illustrating the main parts of the signal processing circuit used,
FIG. 4 is a characteristic diagram for explaining the present invention, and FIG. 5 is a circuit diagram showing an example of a specific circuit for realizing the main part of the present invention. 1... Lens 2... Iris mechanism 3... Shooting (7
1. rR signal low frequency component extraction filter 1
1... Carrier color signal extraction band, filter 12.14,
17.20... Gamma correction circuit 13... IkiDL
15...Addition circuit 16.19...Detection circuit 18
...Reducing field circuits 21, 22...Color difference matrix L
! Circuit 23...Color encoder 24.25-...1'#7RA circuit 26 ・)tu
11. @Route 27...Low saturation suppression (base clip)
Circuit 28...Limited system # (color killer) circuit 30...
・Signal processing circuit 32... Carrier color signal suppression filter 33... Low luminance signal detection circuit 35... Calculation circuit

Claims (1)

【特許請求の範囲】 (リ カラービデオカメラにおいて、撮像して得た映像
信号より、輝度信号の所定レベル以下の低輝度成分を検
出し、該検出信号のレベルに応動して、色差信号変調搬
送色4i号通路に設けた利得制御回路の利得制御を行な
うことを特徴とするカラービデオカメラの信号処理回路
。 (2)上記、低輝度信号成分はカラービデオカメラの自
動利得制御(AGC)回路以前より検出することを特徴
とする特許H請求の範囲第(り項記載の信号処理回路。 (3)映像信号より上記低輝度成分を検出するとともに
、第2の所定のレベル以上の高輝度成分を検出し、該両
成分の検出信号を加算した信号で上記利得制御回路の利
得を制御することを特徴とする特、i’F 請求の範囲
第(り項又は第(2)項記載の信号処理回路。 (4) 上記利得制御回路を輝度信号を複数のレベルで
分割した分割信号によって、搬送色信号を利得制御して
輝度信号と色信号のトラッキングを補正して暗部から明
部にイつたるホワイトバランスを改善するイハ号処理を
行なうようにするとともに、上記分割16号の低輝度領
域成分と、上記所定レベル以下の低輝度検出信号とを共
通にすることを特徴とする特許請求の範囲第(り項〜第
(3)項のいずれかに記載の信号処理回路。
[Claims] (In a recolor video camera, a low luminance component below a predetermined level of a luminance signal is detected from a video signal obtained by imaging, and a color difference signal is modulated and transmitted in response to the level of the detected signal. A signal processing circuit for a color video camera characterized by controlling the gain of a gain control circuit provided in the color 4i path. (2) The above low-luminance signal component is generated before the automatic gain control (AGC) circuit of the color video camera. The signal processing circuit according to claim 1 of Patent H is characterized in that it detects the low luminance component from the video signal, and detects the high luminance component at a second predetermined level or higher. i'F is characterized in that the gain of the gain control circuit is controlled by a signal obtained by adding the detected signals of both components. (4) The above gain control circuit controls the gain of the carrier chrominance signal using divided signals obtained by dividing the luminance signal into multiple levels, corrects the tracking of the luminance signal and the chrominance signal, and moves from a dark area to a bright area. Claim 1, characterized in that the IHA processing for improving the white balance is performed, and the low luminance area component of the division No. 16 and the low luminance detection signal below the predetermined level are made common. (The signal processing circuit according to any one of (3) to (3) above.
JP58137544A 1983-07-25 1983-07-29 Signal processing circuit of color video camera Pending JPS6030290A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58137544A JPS6030290A (en) 1983-07-29 1983-07-29 Signal processing circuit of color video camera
DE8484108808T DE3467278D1 (en) 1983-07-25 1984-07-25 Signal processing circuit of video camera
EP84108808A EP0132841B1 (en) 1983-07-25 1984-07-25 Signal processing circuit of video camera
US06/634,070 US4680624A (en) 1983-07-25 1984-07-25 Signal processing circuit for a color video camera providing shading correction by varying the black clamping level

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58137544A JPS6030290A (en) 1983-07-29 1983-07-29 Signal processing circuit of color video camera

Publications (1)

Publication Number Publication Date
JPS6030290A true JPS6030290A (en) 1985-02-15

Family

ID=15201166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58137544A Pending JPS6030290A (en) 1983-07-25 1983-07-29 Signal processing circuit of color video camera

Country Status (1)

Country Link
JP (1) JPS6030290A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS536531A (en) * 1976-07-08 1978-01-21 Toshiba Corp Frequency multiplex type color television camera
JPS5315714A (en) * 1976-07-28 1978-02-14 Matsushita Electric Ind Co Ltd Color television camera
JPS5575388A (en) * 1978-12-04 1980-06-06 Matsushita Electric Ind Co Ltd Color noise suppression device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS536531A (en) * 1976-07-08 1978-01-21 Toshiba Corp Frequency multiplex type color television camera
JPS5315714A (en) * 1976-07-28 1978-02-14 Matsushita Electric Ind Co Ltd Color television camera
JPS5575388A (en) * 1978-12-04 1980-06-06 Matsushita Electric Ind Co Ltd Color noise suppression device

Similar Documents

Publication Publication Date Title
NL194570C (en) Color television receiver.
JP3153147B2 (en) Imaging device
JPH0568147B2 (en)
US4680624A (en) Signal processing circuit for a color video camera providing shading correction by varying the black clamping level
JPH0355078B2 (en)
JPS6245285A (en) Video signal processing circuit
JPS5946159B2 (en) Frequency multiplexed color television camera
US5208661A (en) Color picture display device and color camera
US4336552A (en) Vertical aperture correction circuit
JPS6030290A (en) Signal processing circuit of color video camera
US4979024A (en) Vertical contour enhancement suppression circuit
JP2596460B2 (en) TV camera contour enhancement device
JPH06105323A (en) Flesh color detecting circuit and image pickup device
JPS6361563A (en) Image pickup device
JPH04280579A (en) Smear correction circuit in image pickup signal processor
KR200266865Y1 (en) Contrast controlling circuit of video signal
JPH07105958B2 (en) Video camera signal processing circuit
JPS6219115B2 (en)
JPS5925549B2 (en) Image quality improvement device for color television receivers
JPH02151181A (en) Video camera
JPH02119381A (en) Black level correction circuit
JP3600678B2 (en) Television signal processing method and television signal processing device
JPS58143690A (en) Video signal processing circuit
JPH02296469A (en) Contour compensation circuit
JPS58209286A (en) Coloring preventive circuit