JPS6029134A - Production of living body electrode - Google Patents

Production of living body electrode

Info

Publication number
JPS6029134A
JPS6029134A JP58137573A JP13757383A JPS6029134A JP S6029134 A JPS6029134 A JP S6029134A JP 58137573 A JP58137573 A JP 58137573A JP 13757383 A JP13757383 A JP 13757383A JP S6029134 A JPS6029134 A JP S6029134A
Authority
JP
Japan
Prior art keywords
plastic substrate
solution
electrode
biological
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58137573A
Other languages
Japanese (ja)
Inventor
石川 則夫
朴 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Koden Corp
Original Assignee
Nippon Koden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Koden Corp filed Critical Nippon Koden Corp
Priority to JP58137573A priority Critical patent/JPS6029134A/en
Publication of JPS6029134A publication Critical patent/JPS6029134A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は生体用電極の製造方法に関するものであり、更
に詳しくは生体用電極の形状に成型されたプラスチック
基体の表面が銀−塩化銀(Ag−hgO))で被覆され
た生体用電極の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a biological electrode, and more specifically, the surface of a plastic substrate molded into the shape of a biological electrode is coated with silver-silver chloride (Ag-hgO). The present invention relates to a method of manufacturing a biological electrode.

生体用電極として、Ag−Aメソを素材とするものが広
く用いられている。これは静止電極電位、分極電圧、安
定性等の点で優れているからである。
As biological electrodes, those made of Ag-A meso are widely used. This is because they are excellent in terms of static electrode potential, polarization voltage, stability, etc.

しかし生体用電極をすべてAg−AgC/で形成された
ものは、重くかつ高価である。このため最近では生体用
電極の形状に成型されたプラスチック等の基体の表面を
Ag−Agoノで被覆した生体用電極が用いられるよう
になった。このような生体用電極は耐久性に欠けるが軽
量であシ安価であるから、いわゆる使い捨て電極として
きわめて有用である。
However, a biomedical electrode made entirely of Ag-AgC is heavy and expensive. For this reason, recently, biomedical electrodes have been used in which the surface of a base material such as plastic molded into the shape of a biomedical electrode is coated with Ag-Ago. Although such biological electrodes lack durability, they are lightweight and inexpensive, so they are extremely useful as so-called disposable electrodes.

一般にプラスチ、り基体表面を金属で被覆する方法とし
て、真空蒸着法、スパッタリング法等があるがこれらは
設備、費用の点で問題がある。そこで現在生体用電極の
製造には主に、次の2つの方法が用いられている。
Generally, there are vacuum evaporation methods, sputtering methods, etc. as methods for coating the surface of plastic substrates with metals, but these methods have problems in terms of equipment and costs. Therefore, the following two methods are currently used to manufacture biological electrodes.

第1は、生体用電極の形に成型されたプラスチ、り基体
の表面に銀ペースト(銀塗料)を塗布する方法である。
The first method is to apply silver paste (silver paint) to the surface of a plastic substrate molded into the shape of a biological electrode.

第2は、生体用電極の形に成型されたプラスチック基体
の表面を化学エツチング法等で凹凸を設け、その凹部を
埋めるようにNi、Cu等を付着させて(溶液メッキで
折力う)下地を作り、この下地の上にAgを電気メッキ
する方法である。
Second, the surface of a plastic substrate molded into the shape of a biological electrode is made uneven by chemical etching, etc., and Ni, Cu, etc. are attached to fill the indentations (reinforced by solution plating), and a base layer is formed. This method involves making a substrate and electroplating Ag on top of this substrate.

上記第1の方法は、銀粉を混入した塗料を使うためコス
ト高となるという欠点がある。一方上記第2の方法は、
経済的には優れているが異種金属が接することになるか
ら、電気的、化学的安定性に欠は心電図等の生体信号に
雑音が混入する原因となる。またこの第2の方法で製造
された電極は、被覆材であるAgにピンホールがあると
、下地のCu。
The first method described above has the disadvantage of being expensive because it uses a paint containing silver powder. On the other hand, the second method above is
Although it is economically superior, since different metals come into contact with each other, it lacks electrical and chemical stability, which causes noise to be mixed into biological signals such as electrocardiograms. Further, in the electrode manufactured by this second method, if there is a pinhole in the Ag coating material, the Cu underlying layer will be removed.

Niが表出するためその部分から酸化が進みいわゆる静
止電極電位が不安定となる。特にCuが酸化される(緑
青となる)と有害でちる。
Since Ni is exposed, oxidation progresses from that part and the so-called resting electrode potential becomes unstable. In particular, when Cu is oxidized (becomes patina), it is harmful.

本発明は上記欠点に鑑みなされたものでその目的は、す
べてがAg −Ag (Mで作製された生体用電極と同
様な電気的化学的特性を有しかつ軽量で安価な生体用電
極を製造する方法を提供することである。
The present invention was made in view of the above-mentioned drawbacks, and its purpose is to produce a lightweight and inexpensive biomedical electrode that has electrochemical properties similar to biomedical electrodes made entirely of Ag-Ag (M). The goal is to provide a method to do so.

そこで本発明では、生体用電極の形状に成型されたプラ
スチック基体をアンモニア性硝酸銀溶液中に浸漬しこの
溶液中に還元性有機物を添加して上記プラスチ、り基体
の表面に銀を付着させた後、表面に銀を付着された上記
プラスチック基体を陽極に用いてMail溶液を電気分
解し上記プラスチック基体の表面をAg−Ago)にし
て生体用電極を製造した。
Therefore, in the present invention, a plastic substrate molded into the shape of a biological electrode is immersed in an ammoniacal silver nitrate solution, and a reducing organic substance is added to this solution to adhere silver to the surface of the plastic substrate. A biological electrode was manufactured by electrolyzing the Mail solution using the plastic substrate with silver adhered to its surface as an anode to make the surface of the plastic substrate Ag-Ago.

本発明の方法は2つの過程から成り立っている。The method of the invention consists of two steps.

まず第1の過程は、いわゆる鋼装反応を利用して、あら
かじめ生体用電極の形に成型されているプラスチック基
体の表面をAgで神覆するものである。
In the first step, the surface of a plastic substrate, which has been previously formed into the shape of a biological electrode, is coated with Ag using a so-called steel-cladding reaction.

まず硝酸銀溶液にアンモニア水を注入し、当初できる沈
殿物Ag2Oが完全に溶解する寸で加える。
First, aqueous ammonia is poured into the silver nitrate solution until the Ag2O precipitate that is initially formed is completely dissolved.

このときの溶液がアンモニア性硝酸銀溶液である。The solution at this time is an ammoniacal silver nitrate solution.

次に、あらかじめ生体用電極の形に成型しである清浄な
プラスチック基体を、前記のアンモニア性硝酸銀溶液と
ホルマリン等の還元性有機物(以下単に還元剤という)
との混合液に浸漬する。こうしてプラスチック基体の表
面にAgが析出する。
Next, a clean plastic substrate, which has been previously molded into the shape of a biological electrode, is mixed with the ammoniacal silver nitrate solution and a reducing organic substance such as formalin (hereinafter simply referred to as a reducing agent).
Soak in a mixture of In this way, Ag is deposited on the surface of the plastic substrate.

ここでアンモニア性硝酸銀溶液の濃度は、0.3mji
/l〜8moV1の範囲が良い。この濃度が低いと反応
速度が小さくなりプラスチック基体の表面′に必要量の
Agが付着する才で長時間を要する。またこの濃度が高
いと、例えば溶解度の限界近くまで高ければ、プラスチ
ック基体の表面に付着するAgはむらを生じる。同様に
還元剤の5・も、少なければプラスチック基体表面にA
gが付着する効率が悪くなり、多ければプラスチ、り基
体表面に付着するAgはむらを生じる。
Here, the concentration of the ammoniacal silver nitrate solution is 0.3 mji
A range of /l to 8moV1 is preferable. If this concentration is low, the reaction rate will be low and it will take a long time to deposit the required amount of Ag on the surface of the plastic substrate. Also, if this concentration is high, for example close to the solubility limit, the Ag deposited on the surface of the plastic substrate will become uneven. Similarly, if there is less reducing agent 5, A
The efficiency with which Ag adheres becomes poor, and if too much Ag adheres to the surface of the plastic substrate, the Ag adheres to the surface of the substrate becomes uneven.

第2の過程は上記のようにして表面にAgを付着された
プラスチック基体をHBO#溶液に浸漬し、これを陽極
としてNaCjノ !液を電気分解しプラスチック基体
表面をAg −Ag 01とするものである。
In the second step, the plastic substrate with Ag adhered to its surface as described above is immersed in an HBO# solution, and this is used as an anode to generate NaCjNO! The liquid is electrolyzed to make the surface of the plastic substrate Ag-Ag 01.

このとき陰極にはpt板を用いる。At this time, a PT plate is used as the cathode.

ここで例えばNao4′溶液の濃度が0.9俤であると
き、電流密度は0.1mVcJ〜6.5mA/cryと
し、通電時間は60分〜3分とすれば良好である。
For example, when the concentration of the Nao4' solution is 0.9, it is preferable to set the current density to 0.1 mVcJ to 6.5 mA/cry and to set the current application time to 60 minutes to 3 minutes.

なお、プラスチック基体の材質の軸頚は問わずメッキは
可能であるが、Agが剥離しやすく生体用電極として実
用にlえないものもある。ナチュラルABS樹脂、ガラ
ス繊維入りABS樹脂等巳gが良く付着しており、生体
用電極として十分使用可能である。
Although plating is possible regardless of the material of the plastic substrate, there are some that cannot be used as biological electrodes because the Ag tends to peel off easily. Natural ABS resin, glass fiber-containing ABS resin, etc. have good adhesion and can be used as biological electrodes.

本発明によれば、プラスチック基体表面に直接付着した
AgをAg −Agczとすることができるので電気的
化学的特性が安51了シた生体用1打極を作製すること
ができる。また、このような方法によれば、従来ノ化学
エッヂング管の前処理を必要とする方法と比べ、工程が
簡略化されるので製造が簡単でかつ経済的である。
According to the present invention, since the Ag directly attached to the surface of the plastic substrate can be made into Ag-Agcz, it is possible to produce a single electrode for biological use with excellent electrochemical properties. Further, according to such a method, the manufacturing process is simpler and more economical than the conventional method which requires pre-treatment of the chemically etched pipe because the process is simplified.

本発明により製造された生体用電極は、プラスチック基
体をAgあるいはAg−AgC!ノで被覆しだ構造の従
来型電極がもつ利点(軽量、安価、電気的化学的に安定
等)をすべて備えている。
The biomedical electrode manufactured according to the present invention has a plastic base made of Ag or Ag-AgC! It has all the advantages of conventional electrodes with a sheathed structure (light weight, low cost, electrochemical stability, etc.).

以下実施例を示す。Examples are shown below.

実施例1 硝酸銀5gを純水25cc・に入れて完全に溶解させ硝
酸銀溶液を作る。この硝酸銀溶液に10チのアンモニア
水を徐々に点滴すると当初この溶液は褐色になる。更に
10チアンモニア水を点滴して溶液が透明になったとこ
ろで点滴を止める。この溶液がアンモニア性硝酸銀溶液
である。次に電極の形状に成型されたナチュラルABS
樹脂をホルマリンに浸した後、上記のアンモニア性硝酸
銀溶液に浸漬する。浸漬してから5分後、更にホルマリ
ンをQ、5CC1゛追加する。このときプラスチック(
ナチュラルABS樹脂)基体表面にAgが析出する。ア
ンモニア性硝酸銀溶液に浸漬してから7分後、プラスチ
、り基体を取シ出して水洗いをして乾燥させる。次に表
面にAgを付着されたこのプラスチ、り基体を0.9チ
のNaOΔ溶液に浸漬し、これを陽極としてNaOノ溶
液を電気分解する。このとき陰極はpt板とする。そし
て5臥の直流電流を約3分間流すとプラスチ、り基体表
面はAg−Ag0#となる。
Example 1 A silver nitrate solution was prepared by adding 5 g of silver nitrate to 25 cc of pure water and completely dissolving it. When 10 g of aqueous ammonia is gradually dripped into this silver nitrate solution, the solution initially turns brown. Furthermore, 10 thiammonia water is instilled, and the infusion is stopped when the solution becomes clear. This solution is an ammoniacal silver nitrate solution. Next, natural ABS molded into the shape of the electrode
After the resin is immersed in formalin, it is immersed in the ammoniacal silver nitrate solution described above. 5 minutes after immersion, add Q, 5CC1'' of formalin. At this time, plastic (
(Natural ABS resin) Ag is deposited on the substrate surface. After 7 minutes of immersion in the ammoniacal silver nitrate solution, the plastic substrate is removed, washed with water, and dried. Next, this plastic substrate with Ag adhered to its surface is immersed in a 0.9 inch NaOΔ solution, and the NaO solution is electrolyzed using this as an anode. At this time, the cathode is a PT plate. Then, when 5 degrees of direct current is passed for about 3 minutes, the surface of the plastic substrate becomes Ag-Ag0#.

このようにして製造された生体用電極を実際に心電計に
接続して作成した心電図は、従来の生体用電極を同様に
して用いて作成した心電図と比べ何等異なることはなか
った。また、このようにして製造された生体用電極を取
り扱うとき、プラスチ、り基体表面のAg−AgGJが
剥離する等の不都合は生じなかった。
An electrocardiogram created by actually connecting the biological electrode manufactured in this manner to an electrocardiograph was not different from an electrocardiogram created using a conventional biological electrode in the same manner. Further, when handling the biomedical electrode manufactured in this manner, no problems such as peeling of Ag-AgGJ on the surface of the plastic substrate occurred.

実施例2 硝酸銀5gを純水IQQ+ccに入れて完全に溶解させ
硝酸鋼溶液を作る。この硝酸銀溶液に28係のアンモニ
ア水を徐々に点滴し、実施例1と同様に溶液が透明にな
ったところで点滴を止めアンモニア性硝酸銀溶液を作る
。次に電極の形状に成型されたガラス繊維入りABS樹
脂をアンモニア性硝酸銀溶液に入れ、アセトンを2CC
入れて1時間浸漬する。このときプラスチック(ガラス
繊維入、9ABS樹脂)基体表面にAgが析出する。そ
してプラスチ、り基体を溶液から取り出して水洗いをし
た後乾燥させる。次に、表面にhiを付着されたこのプ
ラスチック基体を0,9チのNaC1溶液に浸漬し、こ
れを陽極に用いてNa(17溶液を電気分解する。この
とき陰極はpt板とする。そして0.511’LAの直
流電流を30分流すとプラスチ、り基体表面はAg−A
g01となる。
Example 2 5 g of silver nitrate was completely dissolved in pure water IQQ+cc to prepare a nitric acid steel solution. Aqueous ammonia No. 28 was gradually dripped into this silver nitrate solution, and as in Example 1, when the solution became transparent, the dripping was stopped to prepare an ammoniacal silver nitrate solution. Next, the glass fiber-containing ABS resin molded into the shape of an electrode was placed in an ammoniacal silver nitrate solution, and 2cc of acetone was added.
Pour in and soak for 1 hour. At this time, Ag is deposited on the surface of the plastic (glass fiber-containing, 9ABS resin) substrate. The plastic substrate is then removed from the solution, washed with water, and then dried. Next, this plastic substrate with hi adhered to the surface is immersed in a 0.9-inch NaCl solution, and this is used as an anode to electrolyze the Na(17 solution). At this time, a PT plate is used as the cathode. When a DC current of 0.511'LA is applied for 30 minutes, the substrate surface becomes Ag-A.
It becomes g01.

このようにして製造された生体用電極は、実施例1と同
様充分実用に耐えるものであシ、従来の電極と比べ電気
的あるいは化学的特性は異なるところがない。
The biological electrode manufactured in this way is sufficiently usable as in Example 1, and there is no difference in electrical or chemical properties compared to conventional electrodes.

Claims (1)

【特許請求の範囲】[Claims] 生体用電極の形状に成型されたプラスチック基体をアン
モニア性硝酸銀溶液中に浸漬し該溶液中に還元性有機物
を添加して前記プラスチ、り基体表面に銀を付着した後
、表面に銀を付着された前記プラスチック基体を陽極に
して塩化ナトリウム溶液を電気分解し前記グラ・スナッ
ク基体の表面を銀−塩化銀とすることを特徴とする生体
用電極の製造方法。
A plastic substrate molded into the shape of a biological electrode is immersed in an ammoniacal silver nitrate solution, and a reducing organic substance is added to the solution to adhere silver to the surface of the plastic substrate. A method for producing a biological electrode, characterized in that a sodium chloride solution is electrolyzed using the plastic substrate as an anode to make the surface of the glass-snack substrate silver-silver chloride.
JP58137573A 1983-07-29 1983-07-29 Production of living body electrode Pending JPS6029134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58137573A JPS6029134A (en) 1983-07-29 1983-07-29 Production of living body electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58137573A JPS6029134A (en) 1983-07-29 1983-07-29 Production of living body electrode

Publications (1)

Publication Number Publication Date
JPS6029134A true JPS6029134A (en) 1985-02-14

Family

ID=15201875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58137573A Pending JPS6029134A (en) 1983-07-29 1983-07-29 Production of living body electrode

Country Status (1)

Country Link
JP (1) JPS6029134A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132632A (en) * 1986-11-26 1988-06-04 フクダ電子株式会社 Electrode element for living body induction electrode and its production
JPH024322A (en) * 1988-06-13 1990-01-09 Fukuda Denshi Co Ltd Organism induction electrode for four limbs
JPH024324A (en) * 1988-06-13 1990-01-09 Fukuda Denshi Co Ltd Organism induction electrode for chest
JPH024325A (en) * 1988-06-13 1990-01-09 Fukuda Denshi Co Ltd Organism induction electrode for four limbs
JPH024320A (en) * 1988-06-13 1990-01-09 Fukuda Denshi Co Ltd Organism induction electrode for four limbs

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130647A (en) * 1979-03-02 1980-10-09 Tokyo Tokushu Densen Kk Silverrsilver chloride compound material for electrode and its preparation
JPS5729336A (en) * 1980-07-31 1982-02-17 Fujikura Kasei Kk Conductive resin electrode for living body
JPS587227A (en) * 1981-07-02 1983-01-17 ティーディーケイ株式会社 Preparation of electrode for live body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130647A (en) * 1979-03-02 1980-10-09 Tokyo Tokushu Densen Kk Silverrsilver chloride compound material for electrode and its preparation
JPS5729336A (en) * 1980-07-31 1982-02-17 Fujikura Kasei Kk Conductive resin electrode for living body
JPS587227A (en) * 1981-07-02 1983-01-17 ティーディーケイ株式会社 Preparation of electrode for live body

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132632A (en) * 1986-11-26 1988-06-04 フクダ電子株式会社 Electrode element for living body induction electrode and its production
JPH0230249B2 (en) * 1986-11-26 1990-07-05 Fukuda Denshi Kk
JPH024322A (en) * 1988-06-13 1990-01-09 Fukuda Denshi Co Ltd Organism induction electrode for four limbs
JPH024324A (en) * 1988-06-13 1990-01-09 Fukuda Denshi Co Ltd Organism induction electrode for chest
JPH024325A (en) * 1988-06-13 1990-01-09 Fukuda Denshi Co Ltd Organism induction electrode for four limbs
JPH024320A (en) * 1988-06-13 1990-01-09 Fukuda Denshi Co Ltd Organism induction electrode for four limbs
JPH059094B2 (en) * 1988-06-13 1993-02-04 Fukuda Denshi Kk
JPH0513662B2 (en) * 1988-06-13 1993-02-23 Fukuda Denshi Kk
JPH0581133B2 (en) * 1988-06-13 1993-11-11 Fukuda Denshi Kk

Similar Documents

Publication Publication Date Title
CA1232227A (en) Manufacturing electrode by immersing substrate in aluminium halide and other metal solution and electroplating
US5178745A (en) Acidic palladium strike bath
Li et al. The acceleration of nonformaldehyde electroless copper plating
JPS634920B2 (en)
CN111850625B (en) Electroplating liquid for direct electrodeposition of iron on magnesium alloy surface and electroplating process thereof
Stojek et al. Silver based mercury film electrode: I. General characteristics and stability of the electrode
CN110369712A (en) A kind of preparation method for covering silver-bearing copper powder
US4180442A (en) Electrodeposition of coatings on metals to enhance adhesive bonding
US3989606A (en) Metal plating on aluminum
JPS6029134A (en) Production of living body electrode
US4285784A (en) Process of electroplating a platinum-rhodium alloy coating
US4624754A (en) Ionic liquid compositions for electrodeposition
US4067783A (en) Gold electroplating process
US4437948A (en) Copper plating procedure
US2834724A (en) Method of electroplating plastic articles
JPH02500602A (en) Method for depositing composite oxide-nickel coating on metal substrate and oxide-nickel electrode
US4624753A (en) Method for electrodeposition of metals
CN102274093A (en) Medical magnesium alloy bracket and processing method
JPH0245710B2 (en) CHITANOYOBICHITANGOKINNOMAESHORYOKU
Gardam Polarisation in the electrodeposition of metals
JPS6223195A (en) Conductive circuit board and improvement in conductivity thereof
JPH031383B2 (en)
GB2065175A (en) Method and Composition for Producing Palladium Electrodeposition
JPH05287542A (en) Electroless silver plating method
JPH02500603A (en) Method for depositing composite nickel-oxide-titanium coatings on metal substrates