JPS602901A - Method for dyeing thin film - Google Patents

Method for dyeing thin film

Info

Publication number
JPS602901A
JPS602901A JP10916783A JP10916783A JPS602901A JP S602901 A JPS602901 A JP S602901A JP 10916783 A JP10916783 A JP 10916783A JP 10916783 A JP10916783 A JP 10916783A JP S602901 A JPS602901 A JP S602901A
Authority
JP
Japan
Prior art keywords
dyeing
thin film
solution
light
immersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10916783A
Other languages
Japanese (ja)
Inventor
Saburo Nobutoki
信時 三郎
Takaaki Kumochi
雲内 高明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10916783A priority Critical patent/JPS602901A/en
Publication of JPS602901A publication Critical patent/JPS602901A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)

Abstract

PURPOSE:To enable measurement with high accuracy without requiring cleaning and drying operations, and suspending dyeing, by measuring optical characteristics of a dyed thin film in a dyeing-stabilized transparent soln. CONSTITUTION:A thin film 2 made of a high mol.wt. substance, such as natural protein is formed on one side of a transparent glass base 1, and the obtained body to be dyed is immersed in a dyeing soln. 3 made of an acidic dye to dye it in prescribed conditions. Then, it is immersed in an acidic soln. and its light transmittance is measured there with a light guide type photometer. A light emit ting guide 5 and a light receiving guide 6 are arranged at a prescribed interval, and each of their end faces 7, 8 is opposite to each other across the body. The light transmittance is determined by measuring an amt. of light received with the guide 6, and when additional dyeing is necessary, the body is again immersed in the dyeing soln. to dye it for a time length estimated in accordance with the measured result. When it is overdyed, it is immersed in an alkaline decoloring soln. to decolor it for a estimated time.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、光学色フィルタを形成する場合のように、透
明基板上に被着形成した薄膜を染色して所定の光学特性
とする薄膜染色法に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a thin film dyeing method in which a thin film deposited on a transparent substrate is dyed to have predetermined optical properties, such as when forming an optical color filter. It is related to.

〔発明の背景〕[Background of the invention]

光学色フィルタの形成方法として、透明基板、例えばガ
ラス基板上に被染色性の被膜として例えばゼラチン、カ
ゼイン等の薄膜を形成し、これを染料、例えば酸性染料
を溶解した染色液に浸漬して染色薄膜付きの透明基板を
得る方法が知られている。
As a method for forming an optical color filter, a thin film of gelatin, casein, etc. is formed as a dyeable coating on a transparent substrate, such as a glass substrate, and the film is immersed in a dye solution containing a dye, such as an acid dye, to be dyed. A method of obtaining a transparent substrate with a thin film is known.

ところで、このような光学色フィルタは、その使用目的
から、その分光透過特性が品質上留意すべき重要な項目
となることは当然で、所望の分光透過特性を得るために
最適な染色液を決定し、被染色被膜の材箪ト、膜厚およ
び被1厘形成を決定することはもとよりであるが、これ
らを適当に選んでも、なお被膜材料の品質の変動、特に
ゼラチンやカゼイン等の天然樹脂材料においては材料口
゛ソトの品質不安定や被膜形成液の溶解調整後の菅性変
化があシ、一方染色液についても液の使用に伴っての染
料濃度の変化、染色液染色能の変化などがあり、所定の
条件で染色を行なっても必ずしも同一の染色結果が得ら
れない。このため、染色の進行にしたがって随時光学特
性を測定しつつ、その結果に基いてそれ以後の染色進行
についての判断をすることが行なわれている。
By the way, due to the purpose of use of such optical color filters, it is natural that the spectral transmission characteristics are an important item to keep in mind in terms of quality, and it is necessary to determine the optimal staining solution to obtain the desired spectral transmission characteristics. Of course, it is necessary to determine the material size, film thickness, and coating formation of the coating to be dyed, but even if these are selected appropriately, there are still variations in the quality of the coating material, especially natural resins such as gelatin and casein. Regarding materials, there are unstable quality at the beginning of the material and changes in ductility after dissolving and adjusting the film-forming solution.On the other hand, regarding dyeing solutions, changes in dye concentration and changes in dyeing ability of the dyeing solution occur as the solution is used. Even if staining is performed under predetermined conditions, the same staining results may not always be obtained. For this reason, the optical properties are measured as needed as the staining progresses, and the subsequent progress of the staining is judged based on the results.

この場合、従来は一旦染色を打ち切如、洗浄・乾燥を行
なった後に光学測定を行なっていた。このため、作業手
数が増大するとともに、測定中に被膜面に損傷を与えた
シすることがあるなどの欠点があった。
In this case, optical measurements were conventionally carried out after the dyeing was stopped and the sample was washed and dried. For this reason, there are drawbacks such as an increase in the number of work hours and the possibility of damage to the coating surface during measurement.

これに対し、染色の進行状況を常時−り定する方法とし
ては、例えばライトガイド形光量計を用いる方法が考え
られる。すなわち基板の被染色部に若干の間隔、例えば
約1朔をおいて光学繊維または繊維束を配置し、こhに
対向するように反対側の基板面に同様の間隔をおいて他
の光学繊維体を配し、一方の繊維端から光を照射し、被
染色基板を透過しえ光を対向する繊維端で受光し、その
受光繊維の他端に配された感光素子を感応させて光の透
過量を知り、染色の進行を知る方法である(非公知)。
On the other hand, as a method for constantly determining the progress of staining, for example, a method using a light guide type light meter can be considered. In other words, optical fibers or fiber bundles are placed on the dyed portion of the substrate at a slight interval, for example, approximately 1 cm, and other optical fibers are placed on the opposite side of the substrate at a similar interval. Light is irradiated from one end of the fiber, passes through the substrate to be dyed, is received at the opposite end of the fiber, and the photosensitive element placed at the other end of the light-receiving fiber is sensitized. This is a method (unknown) to know the amount of penetration and the progress of staining.

しかし、この方法では光照射端と被染色面間および反対
側の基板面と受光端間の染色液層による光吸収量が被染
色膜による光吸収量に比べてはるかに大きいため、受光
端における光量が少なくなって信号対雑音比が小さくな
るとともに、ライトガイドの2つの繊維端および試料間
の距離、染色液濃度のわずかな変動の影響を受けて誤差
が大きくなり、精度の高いm11[定かできない欠点が
ある。
However, in this method, the amount of light absorbed by the dyeing liquid layer between the light irradiation end and the surface to be dyed, and between the opposite substrate surface and the light receiving end is much larger than the amount of light absorbed by the film to be dyed. As the light intensity decreases and the signal-to-noise ratio decreases, the error increases due to the influence of the distance between the two fiber ends of the light guide and the sample, as well as slight variations in the staining solution concentration. There is a drawback that it cannot be done.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情に鑑みてなされたものであり、
その目的は、染色を′41ち切ることなく、しかも高精
度に染色の進行状況を測定し制御することが可能な、j
・ygt染色法を提供することにある。
The present invention was made in view of these circumstances, and
The purpose is to measure and control the progress of staining with high precision without cutting the staining process.
- To provide a ygt staining method.

〔発明の概要〕[Summary of the invention]

このような目的を達成するために、本発明は、予め定め
られた一定条件の染色を行なった後、その薄膜を、染色
を安定させる透明な浴液中に浸漬し、当該液中で安定し
た状態で光学特性を測定するものである。
In order to achieve such an objective, the present invention involves dyeing under certain predetermined conditions, and then immersing the thin film in a transparent bath solution that stabilizes the dyeing. The optical properties are measured under the conditions.

光学特性の測定は、上述したと同様にライトガイド九蛍
割を用いて行なうが、浴液が透明であるため、液層によ
る光の吸収分が少すく、十分な受光量が得られる。
The measurement of optical properties is carried out using the light guide nine-fluorescence in the same manner as described above, but since the bath liquid is transparent, the amount of light absorbed by the liquid layer is small and a sufficient amount of light can be obtained.

このようにして染色薄膜による光透過率を測定した結果
によシ、以後の処理、すなわち染色を続行するかそこで
終了するかあるいは脱色を行なうかを判定する。
Based on the results of measuring the light transmittance of the dyed thin film in this manner, it is determined whether to proceed with subsequent processing, that is, whether to continue dyeing, end it there, or perform decolorization.

〔発明の実施例〕[Embodiments of the invention]

被染色薄膜として天然たんばく質系の高分子物質を使用
した場合、染色液には酸性染料を水に溶かし、もしくは
さらに添加剤を加えた酸性溶液が最も広く用いられる。
When a natural protein-based polymer material is used as the thin film to be dyed, the most widely used dyeing solution is an acidic solution prepared by dissolving an acidic dye in water or adding an additive.

この場合、染色液から引き上げた被染色薄膜は、酸性溶
液に浸漬することによシ染料の再溶出は防止され定着す
る。逆に、一旦染着した染料もアルカリ性の溶液に浸漬
することにより若干の溶出、すなわち被染色薄膜の退色
が生じる。また、一旦酸性溶液に浸漬した後に、再度染
色液に浸Wiすることによりさらに追加染色が行なえる
In this case, the dyed thin film removed from the dyeing solution is immersed in an acidic solution, thereby preventing the dye from re-eluting and fixing it. On the other hand, once a dye has been dyed, immersion in an alkaline solution causes some elution, that is, discoloration of the dyed thin film. Furthermore, additional dyeing can be performed by once immersing the material in an acidic solution and then immersing it in a dyeing solution again.

この特性を利用し、第1図に示すように透明なガラス基
板1の片側に上記高分子物質からなる被染色部M2を形
成した被染色体を、酸性染料からなる染色液3に浸漬し
て予め定められた一定条件の染色を行なった後、第2図
に示すようにこれを酸性溶液4に浸漬し、この酸性溶液
中で前述したライトガイド方式光量計により被染色薄膜
の光透過率を測定する。これには、図示のように予め被
染色体に対し、光出射用ライトガイド5と光取出し用ラ
イトガイド6とを所定の間隔をおいて、かつ光出射端7
と受光端8とが当該被染色体を介して対向するように固
定した治具に組込んでおき、そのまま各法に浸漬するの
が便利である。光出射端7から照射され、被染色体を透
過し、受光端8で受光された光は、ライトガイド6によ
シ図示しない外部検光素子に導かれる。この受光量によ
り光透過率を測定した結果、染色の進行状況が所望の程
度に満たず、追加染色を必要とする場合には、再び第1
図に示すように染色液中に浸漬し、上記測定結果から推
定された所要時間だけ、追加して染色を行なう。測定結
果が過剰の染色状況を示した場合には、当該測定結果か
ら推定さノ1.る所要時間だけ、第3図に示すようにア
ルカリ性の脱色液9に浸漬し、染料の溶出を行なって退
色させるか、またはさらに精密な制御を行なうためには
途中でさらに光透過率の測定を行ないながら溶出作業を
行なって、所望の光学特性を得るようにする。場合によ
り、これら光透過率の測定および追加染色もしくは脱色
作業を繰り返し行なう。測定結果が所望の光学特性を示
した場合には、染色を終了し、第4図に示すように洗浄
液10に浸漬して洗浄を行なった後、乾燥する、 前述したようなライトガイド形光縫針を用いて染色液中
で測定する方法においては染色液の着色による光吸収に
より有効な測定が行なえなかったのに対し、本方法では
光学的にほぼ誘明々浴液中で測定するため、高S/N比
の高精度測定が行なえる。なお、アルカリ性の退色液9
で退色中に測定する場合も、液が透明であるため同様に
高精度の測定が行なえる。
Utilizing this characteristic, as shown in FIG. 1, a chromosome to be dyed, which has a dyed portion M2 made of the above-mentioned polymer substance formed on one side of a transparent glass substrate 1, is immersed in a staining liquid 3 made of an acidic dye. After dyeing under certain defined conditions, as shown in Figure 2, it is immersed in an acidic solution 4, and the light transmittance of the thin film to be dyed is measured in this acidic solution using the light guide type photometer described above. do. For this, as shown in the figure, the light guide 5 for light emission and the light guide 6 for light extraction are placed at a predetermined distance with respect to the chromosome, and the light emission end 7
It is convenient to incorporate the sample into a fixed jig so that the sample and the light-receiving end 8 face each other with the target chromosome in between, and then immerse it in each method as it is. Light emitted from the light emitting end 7, transmitted through the chromosome, and received by the light receiving end 8 is guided by the light guide 6 to an external analyzer (not shown). As a result of measuring the light transmittance based on the amount of received light, if the progress of the staining is not at the desired level and additional staining is required, the first staining is performed again.
As shown in the figure, the sample is immersed in the staining solution and dyed for the additional time estimated from the above measurement results. If the measurement results indicate excessive staining, the results are estimated from the measurement results. As shown in Figure 3, the dye is immersed in an alkaline decolorizing solution 9 for the required time to elute the dye and fade the color, or for more precise control, the light transmittance is further measured midway. The desired optical properties are obtained by performing elution operations as the process progresses. Depending on the case, these light transmittance measurements and additional staining or bleaching operations are repeated. If the measurement results show the desired optical characteristics, the dyeing is completed, and as shown in FIG. 4, the needle is immersed in a cleaning solution 10 for cleaning and then dried.The light guide type optical sewing needle as described above is dried. In contrast, in the method of measuring in a staining solution using a dye, effective measurements could not be performed due to light absorption due to the coloring of the staining solution, whereas in this method, measurement is performed in a bath solution that is almost optically clear, so high S /N ratio can be measured with high precision. In addition, alkaline fading liquid 9
Even when measuring during discoloration, the liquid is transparent, so highly accurate measurements can be made as well.

両側定法による測光量の比較を一例について行なうと、
上記被染色薄膜2が、光学色フィルタの特定の特性管理
波長においてその光透過率が50%である例において、
染色液の光透過率が上記波長において液層1膿当たり1
0%であった場合、ライトガイドの光出射端7および受
光端8と被染色体との距離がそれぞれ1πmとすると、
光出射端と受光端間の光損出が染色液および被染色薄膜
2の吸収のみで、他に光拡散φ散乱等がないと仮定して
も、前者によった場合、受光量は染色初期において照射
光の1%、終期においてはわずか0.5%にしかならな
い。これに対し、本方法による場合には、液による吸収
がほとんどないため、染色初期では100%、終期でも
50%の受光量が得られ、高精度の測定が可能なことは
明らかである。
An example of a comparison of photometric quantities using the two-sided method is as follows:
In an example in which the thin film 2 to be dyed has a light transmittance of 50% at a specific characteristic control wavelength of the optical color filter,
The light transmittance of the staining solution is 1 per liquid layer at the above wavelength.
If it is 0%, and the distance between the light emitting end 7 and light receiving end 8 of the light guide and the chromosome to be detected is 1πm, then
Even if we assume that the light loss between the light emitting end and the light receiving end is only due to absorption by the staining solution and the thin film 2 to be dyed, and there is no other light diffusion, φ scattering, etc., in the case of the former, the amount of received light will be the same as that at the initial stage of dyeing. It accounts for 1% of the irradiated light at the final stage, and only 0.5% at the final stage. In contrast, in the case of this method, since there is almost no absorption by the liquid, the amount of light received is 100% at the initial stage of staining and 50% at the final stage, and it is clear that highly accurate measurement is possible.

酸性溶液4としては、材料に対して侵蝕・酸化等の激し
い性質をもっていてはならないことは言うまでもないが
、完成後の変質を避ける意味からも揮発性の弱酸、例え
ば酢酸の水溶液などが好ましい。
It goes without saying that the acidic solution 4 must not have severe properties such as corrosive or oxidizing the material, but a volatile weak acid such as an acetic acid aqueous solution is preferable in order to avoid deterioration after completion.

また、脱色液9としては、酸性染料溶出を目的として、
同様に揮発性の弱アルカリとしてのアンモニア水溶液が
好適である。また、単なる水による染料の溶出を行なっ
てもよいことは当然である。
In addition, as the decolorizing liquid 9, for the purpose of acidic dye elution,
Likewise suitable is an aqueous ammonia solution as a volatile weak alkali. Furthermore, it goes without saying that the dye may be simply eluted with water.

また、上記酸性浴液または退色11爽の安定性を得るた
めに、それぞれ酢酸アンモニウムを溶解しておくことも
有効である。
Further, in order to obtain the stability of the acidic bath solution or the discoloration solution, it is also effective to dissolve ammonium acetate in each solution.

なお、ライトガイド形光量計は、当該光学色フィルタの
目的に応じて単なる光量計であっても、単色光光度計で
あっても、または分光光度計であってもよいことは言う
までもない。
It goes without saying that the light guide type light meter may be a simple light meter, a monochromatic photometer, or a spectrophotometer depending on the purpose of the optical color filter.

以上、光学フィルタ製造のために天然たんばく系高分子
物質から々る薄膜を染色する場合について述べたが、本
発明はこれに限定されるものではなく、一般に透明基板
上に形成した薄膜を染色液中に浸漬して染色する場合に
おいて、染色を安定させる透明な浴液中で当該薄膜の光
学特性を測定する方法をとることによシ、同様の効果を
得ることができる。
The above describes the case of dyeing a thin film made of natural protein-based polymer material for the production of optical filters, but the present invention is not limited to this, and generally dyes a thin film formed on a transparent substrate. In the case of dyeing by immersing the thin film in a liquid, a similar effect can be obtained by measuring the optical properties of the thin film in a transparent bath liquid that stabilizes the dyeing.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、染色を安定させ
る透明な浴液中で被染色薄膜の光学特性を測定する方法
をとることによシ、染色液中で測定する場合には液中で
の吸収が大きく、測定条件のわずかな変動により誤差が
大きくなるのに対し、十分な光量が得られ、容易に高精
度な測定が行なえるとともに、従来の方法のように−1
染色作業を児全に停止して洗浄−乾燥を行にう作業千載
を必要としない。特に光量計を構成する2台のライトガ
イドDiMと被染色体とを位置関係を固定した治具に組
込んでおくようにすれば、ノ九ンドリンクがきわめて容
易となシ、測定するたびに両者の位置関係を合せる必要
がなく、またその際に薄膜を損傷したりするおそれもな
く高効率・高品位の光学フィルタ等が得られる利点があ
る。
As explained above, according to the present invention, by adopting a method of measuring the optical properties of a thin film to be dyed in a transparent bath solution that stabilizes the dyeing, when measuring in a dyeing solution, it is possible to In contrast, a sufficient amount of light can be obtained, and high-precision measurements can be easily performed, and -1
It is not necessary to stop the dyeing operation at every stage and perform washing and drying. In particular, if the two light guides DiM that make up the light meter and the target chromosome are assembled into a jig with a fixed positional relationship, it will be extremely easy to link the two light guides and the target chromosome. There is an advantage that a highly efficient and high quality optical filter etc. can be obtained without the need to match the positional relationship between the two and without the risk of damaging the thin film at that time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第4図は本発明の一実、施例を説明するため
の図である。 1・・・φガラス基板(透明基板)、2・・・・被染色
薄膜、3・・・・染色液、4・・・・酸性浴液、5・・
・書光出射用ライトガイド、6争・嗜・光取出し用ライ
トガイド、7・・・睡光出射端、8・・・・受光端、9
・os・脱色液、10・・・・洗浄液。 第1図 第2図 第3図 第4図
FIGS. 1 to 4 are diagrams for explaining one embodiment of the present invention. 1... φ glass substrate (transparent substrate), 2... Thin film to be dyed, 3... Staining liquid, 4... Acidic bath liquid, 5...
・Light guide for writing light output, 6 Light guide for light extraction, 7... Light output end, 8... Light receiving end, 9
・OS・Decolorizing liquid, 10...Cleaning liquid. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1、透明基板上に被着した薄膜を染色液中に浸漬して所
定の光学特性を有する薄膜に染色する薄膜染色法におい
て、薄膜を染色液中に浸漬して染色を行なった後、染色
を安定させる透明浴液中に移行し、当該液中で薄膜の光
学特性を測定して、その測定結果に基いて引続き染色を
続行するか終了するかまたは脱色液中に浸漬して脱色を
行なうかの判定を行なうことを特徴とする′R膜染色法
。 2、薄J1etが天然たんばく系高分子物質からなり、
染色液が酸性染料水溶液またはそれに添加剤を付加した
水溶液であ)、透明基板がガラスまたは上記染色液と反
応性のない透明高分子物質からなシ、測定時の浴液が稀
酸性液であり、脱色液が水または水を主液とする稀アル
カリ液であることを特徴とする特許請求の範囲第1項記
載の薄膜染色法。
[Claims] 1. In a thin film dyeing method in which a thin film deposited on a transparent substrate is immersed in a dyeing solution to dye the thin film to have predetermined optical properties, the thin film is immersed in the dyeing solution and dyed. After this, the thin film is transferred to a transparent bath solution that stabilizes the dyeing, and the optical properties of the thin film are measured in the solution, and based on the measurement results, it is decided whether to continue dyeing, terminate it, or immerse it in a decolorizing solution. 'R membrane staining method, which is characterized in that it is determined whether decolorization is performed or not. 2. Thin J1et is made of natural protein-based polymer material,
The staining solution is an acidic dye aqueous solution or an aqueous solution containing additives), the transparent substrate is not made of glass or a transparent polymeric substance that does not react with the dyeing solution, and the bath solution used for measurement is a dilute acidic solution. 2. The thin film dyeing method according to claim 1, wherein the decolorizing liquid is water or a dilute alkaline liquid containing water as a main liquid.
JP10916783A 1983-06-20 1983-06-20 Method for dyeing thin film Pending JPS602901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10916783A JPS602901A (en) 1983-06-20 1983-06-20 Method for dyeing thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10916783A JPS602901A (en) 1983-06-20 1983-06-20 Method for dyeing thin film

Publications (1)

Publication Number Publication Date
JPS602901A true JPS602901A (en) 1985-01-09

Family

ID=14503345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10916783A Pending JPS602901A (en) 1983-06-20 1983-06-20 Method for dyeing thin film

Country Status (1)

Country Link
JP (1) JPS602901A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62217203A (en) * 1986-03-19 1987-09-24 Stanley Electric Co Ltd Color filter forming method
JPS62217202A (en) * 1986-03-18 1987-09-24 Stanley Electric Co Ltd Color filter forming method
US5424015A (en) * 1992-09-29 1995-06-13 Yamashita Rubber Kabushiki Kaisha Method and device for manufacturing rubber bend pipe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62217202A (en) * 1986-03-18 1987-09-24 Stanley Electric Co Ltd Color filter forming method
JPS62217203A (en) * 1986-03-19 1987-09-24 Stanley Electric Co Ltd Color filter forming method
US5424015A (en) * 1992-09-29 1995-06-13 Yamashita Rubber Kabushiki Kaisha Method and device for manufacturing rubber bend pipe

Similar Documents

Publication Publication Date Title
Wolfbeis et al. Optical sensors: an ion-selective optrode for potassium
EP0521128B1 (en) Method and apparatus for optically measuring concentration of an analyte
US5094958A (en) Method of self-compensating a fiber optic chemical sensor
US4826313A (en) Method of analysis
US3885877A (en) Electro-optical fine alignment process
Leiner et al. Theory and practice in optical pH sensing
JPH05504619A (en) flow optrode
DE4128846C2 (en) Integrated optical fabric sensor
Krska et al. Polymer coated silver halide infrared fibers as sensing devices for chlorinated hydrocarbons in water
Shortreed et al. Development of a fluorescent optical potassium-selective ion sensor with ratiometric response for intracellular applications
KR0166584B1 (en) Method for controlling and optimizing industrial process for manufacturing dyes
US5271073A (en) Optical fiber sensor and method of manufacture
JPS602901A (en) Method for dyeing thin film
CN106855513A (en) A kind of assay method of oxygen in water
JPS5892844A (en) Method and device for colorimetric measurement
Brode et al. Optically active dyes. III. Physical properties, dyeing reactions and mechanism of dyeing
CN110849826B (en) Reaction membrane manufacturing method and ammonia nitrogen detection device and method based on reaction membrane
JP3055082B2 (en) Concentration management method and device
JPS60402A (en) Dyeing method of thin film
JP2704679B2 (en) Composition for measuring ionic strength or specific gravity of liquid sample and test piece using the composition
EP1762843A1 (en) Metal indicator
JPS58167942A (en) Correcting method of varied length of optical path of cuvette
JPS60125542A (en) Measured data correcting method
Commerford Difficulties in Preparing Dye Solutions For Accurate Strength Measurements.
US4181442A (en) Apparatus for determining amino acids