JPS6028913B2 - Manufacturing method of electrolytic iron foil - Google Patents

Manufacturing method of electrolytic iron foil

Info

Publication number
JPS6028913B2
JPS6028913B2 JP56170723A JP17072381A JPS6028913B2 JP S6028913 B2 JPS6028913 B2 JP S6028913B2 JP 56170723 A JP56170723 A JP 56170723A JP 17072381 A JP17072381 A JP 17072381A JP S6028913 B2 JPS6028913 B2 JP S6028913B2
Authority
JP
Japan
Prior art keywords
iron
electrolytic
amount
iron foil
hydrochloric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56170723A
Other languages
Japanese (ja)
Other versions
JPS5873786A (en
Inventor
一幸 小池
準 石川
嘉一 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP56170723A priority Critical patent/JPS6028913B2/en
Publication of JPS5873786A publication Critical patent/JPS5873786A/en
Publication of JPS6028913B2 publication Critical patent/JPS6028913B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は延性ある電解鉄箔の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing ductile electrolytic iron foil.

電解鉄箔はステンレス、チタン、ニオブなどの剥離性を
有する雷錆用基体上に所定の厚みに鉄電着を行い、これ
を剥離することによって得られる。
Electrolytic iron foil is obtained by electrodepositing iron to a predetermined thickness on a peelable lightning rust substrate such as stainless steel, titanium, niobium, etc., and then peeling it off.

その製法には、陽極に原料となる鉄、または鋼を使用す
る可溶性の陽極法と、カーボンなどの不漆性の陽極を用
い、別槽で鉄、または鋼を溶解して原料とする不熔性の
陽極法がある。前者の場合、陽極が消耗するので陽極と
陰極の極間距離が変化し、最終的には陽極を交換する必
要がある。また極間距離を一定に保つため、露鏡用基体
に対応するような形状に加工する必要もあり、電解鉄箔
の原料として安価な鉄スクラップなどを用いることは困
難である。さらに、陽極の溶解時に発生する粉状の鉄が
電着物中に巻き込まれやすく、表面状態の良好な電解鉄
箔が得られない。後者の不熔性の陽極法におては、陽極
で鉄が溶解する代りに、Fe十2→Fe十3なる第一鉄
イオンの酸化反応がおこり、第二鉄イオンを生ずる。第
二鉄イオンは電解槽より取り出され、別に設けた再生槽
において、鉄や銅により第一鉄イオンに還元されるが、
一部加水分解して、スラッジ化し、雷着物中に巻込まれ
て、電解鉄箔の脆化の原因となる。特に生産性を上げる
ため、高電流密度にした場合、第二鉄イオンによる縦化
は著しく、鉄電着物を雷銭用基体から剥離できないこと
もある。このため陽極と陰極の間に隅膜を用いたり、陰
極と陽極の間で電解液を層流状に循環せしめて、第二鉄
イオンが陰極へ移行せぬような方法が考案されている。
しかし連続的に電解鉄箔を製造する場合、軍籍用基体を
ドラム状、あるいはエンドレスベルト状にして稼動させ
るので、隔膜法では装置が複雑になり、また陰極と陽極
の間で層流を生ぜしめることも、実施上非常に困難であ
る。本発明の目的は不溶性の陽極を用いる電解鉄箔の製
造において、隔膜および層流などを必要としない単純な
電解槽で、第二鉄イオンが陰極に混入しても、延性を失
わない電解鉄箔を高電流密度で製造することにある。
Its manufacturing methods include a soluble anode method that uses iron or steel as the raw material for the anode, and a non-meltable anode method that uses a non-lacquered anode such as carbon and melts the iron or steel as the raw material in a separate tank. There is sexual anodization. In the former case, as the anode wears out, the distance between the anode and cathode changes, and eventually it is necessary to replace the anode. In addition, in order to maintain a constant distance between the poles, it is necessary to process it into a shape that corresponds to the exposure mirror substrate, and it is difficult to use inexpensive iron scraps as a raw material for electrolytic iron foil. Furthermore, powdered iron generated during melting of the anode tends to get caught up in the electrodeposit, making it impossible to obtain an electrolytic iron foil with a good surface condition. In the latter non-fusible anodic method, instead of dissolving iron at the anode, an oxidation reaction of ferrous ions (Fe12→Fe13) occurs to produce ferric ions. Ferric ions are taken out of the electrolytic tank and reduced to ferrous ions with iron and copper in a separate regeneration tank.
It partially hydrolyzes, turns into sludge, and gets caught in lightning kimono, causing embrittlement of electrolytic iron foil. In particular, when a high current density is used to increase productivity, verticalization due to ferric ions is significant, and the iron electrodeposit may not be able to be peeled off from the lightning coin base. For this reason, methods have been devised to prevent ferric ions from migrating to the cathode, such as by using a corneal membrane between the anode and the cathode, or by circulating an electrolytic solution in a laminar flow between the cathode and the anode.
However, when producing electrolytic iron foil continuously, the military base is operated in the form of a drum or an endless belt, so the diaphragm method requires complicated equipment and also creates a laminar flow between the cathode and anode. This is also extremely difficult to implement. The purpose of the present invention is to produce electrolytic iron foil that uses an insoluble anode in a simple electrolytic cell that does not require a diaphragm or laminar flow, and that does not lose its ductility even if ferric ions are mixed into the cathode. The purpose is to produce foils at high current densities.

上記の目的に鑑み、種々検討したところ、従来にない高
濃度の第一鉄イオンを含む塩化鉄溶液を電解液とし、電
解液中の鉄イオン量と当量の塩素イオン量より過剰な塩
素イオン、すなわち遊離塩酸量を調整しながら、鉄電着
を行うことにより、隔膜法、あるいは層流法などの複雑
な方法を用いなくとも、延性ある電解鉄箔が高電流密度
で得られることが判明した。
In view of the above objectives, after various studies, we found that an iron chloride solution containing an unprecedentedly high concentration of ferrous ions was used as the electrolyte, and an excess of chlorine ions than the amount of chlorine ions equivalent to the amount of iron ions in the electrolyte, In other words, it was found that by performing iron electrodeposition while adjusting the amount of free hydrochloric acid, ductile electrolytic iron foil could be obtained at high current density without using complicated methods such as diaphragm method or laminar flow method. .

第一鉄イオンの濃度は200〜400g/そ、好ましく
は250〜300g′そであり、200g/〆以下であ
れば、電解鉄箔の延性は低下し、また露着応力も高くな
り、著しくは電鍍用基体から剥離ができなくなる。
The concentration of ferrous ions is 200 to 400 g/s, preferably 250 to 300 g/s, and if it is less than 200 g/s, the ductility of the electrolytic iron foil will decrease, and the dew stress will increase, significantly. It becomes impossible to peel off the electroplating substrate.

また生産性を上げるため、電流密度を50A/d〆以上
に上げた場合、電解鉄箔は腕化しやすいが、第一鉄イオ
ンが25雌ノそ以上の濃度であれば、このような高電流
密度においても、延性の良好な電解鉄箔が得られる。第
一鉄イオン濃度が400g/そ以上になると、電解鉄箔
が著しく上昇し、いたづらに電力を消費するばかりでな
く、塩化鉄が結晶として、晶出しやすくなるので好まし
くない。また遊離塩酸量が少ないと第一鉄イオンの量を
増しても、良好な延性のある電解鉄箔は得られない。電
解液中の全塩素イオン量と鉄イオンと結びつく塩素イオ
ン量の差が遊離塩酸量で、この遊離塩酸量は2〜60g
ノ夕が好ましい。遊離塩酸量が2g′〆以下になると、
第二鉄イオンの影響を抑制できず、電解鉄箔の延性は低
下する。遊離塩酸量が60g′〆以上になると、鉄の霞
着効率は著しく低下し「水素発生のため、霞銭用基体と
竜着した鉄の界面にブリスターを生じ、得られる電解鉄
箔の表面が凹凸状になるので好ましくない。遊離塩酸量
が2g/そのとき、水素イオン濃度にしてpHがほぼ0
に相当し、第二鉄イオンの影響を抑制するには、pHは
0以下であることが必要である。このような低いpH、
すなわち高水素イオン濃度での鉄の電着の例は見ないが
、第一鉄イオン濃度を高くすることによって、電着効率
が80〜95%と高い状態で、鉄電着を行うことができ
る。通常の鉄電解液の第一鉄イオン濃度は15雌/ク以
下であり、このような電解液において、pHを0以下に
すると、電着応力が高く、クラックを生じ、電解鉄箔と
して、霞銭用基体から剥離することはできない。遊離塩
酸量を2〜60g/その範囲に調整する方法として、第
二鉄イオンの還元剤でもあり、電解鉄箔の原料でもある
鉄、および鋼の再生槽への投入量を調整し、過剰な鉄の
溶解を抑制する方法、あるいは塩酸を添加する方法など
がある。一時的には塩酸添加の代りに、硫酸、フツ酸な
どの他の酸の添加も可能であるが、長時間の露着におい
ては、これらの酸が蓄積し、悪影響を及ぼすので好まし
くない。上記のように、電解液中に遊離塩酸を含み、水
素イオン濃度が高いので、電解温度は90q0以上が好
ましく、9oo0以であれば、露着応力が高く、かつ露
着した鉄は硫化するので、露銭用基体から離できず、鉄
箔は得られない。また温度が12000以上になると電
解液が沸謄し、電解鉄箔の表面状態を悪化させるので好
ましくなく、適正な温度範囲は90〜120ooである
。以上不溶性のを陽極を用いる電解鉄箔の製造において
、第一鉄イオンを200〜400g/〆と高濃度に含む
溶液を電解液とし、遊離塩酸量を2〜60g/そに調整
しながら鉄電着を行うことにより、隔膜や層流法などの
ように陽極と陰極の間の電解液を分離しなくとも、容易
に長尺物の電解鉄箔を連続して製造でき、しかも電流密
度を高くしても使用に耐えられるような延性を有する電
解鉄箔が得られる。さらに、実施例にて、具体的に説明
する。
In addition, when increasing the current density to 50 A/d or more to increase productivity, electrolytic iron foil tends to become sluggish, but if the concentration of ferrous ions is 25 female or more, such high current Electrolytic iron foil with good ductility also in terms of density can be obtained. If the ferrous ion concentration exceeds 400 g/concentration, the electrolytic iron foil will not only increase significantly and consume power unnecessarily, but also cause iron chloride to crystallize easily, which is not preferable. Furthermore, if the amount of free hydrochloric acid is small, even if the amount of ferrous ions is increased, an electrolytic iron foil with good ductility cannot be obtained. The difference between the total amount of chlorine ions in the electrolyte and the amount of chlorine ions combined with iron ions is the amount of free hydrochloric acid, and the amount of free hydrochloric acid is 2 to 60 g.
Noyu is preferred. When the amount of free hydrochloric acid becomes less than 2g',
The influence of ferric ions cannot be suppressed, and the ductility of the electrolytic iron foil decreases. When the amount of free hydrochloric acid exceeds 60 g'〆, the iron adhesion efficiency decreases significantly, and ``due to hydrogen generation, blisters are formed at the interface between the haze coin substrate and the adhering iron, and the surface of the electrolytic iron foil obtained is This is undesirable because it becomes uneven.When the amount of free hydrochloric acid is 2g/at that time, the pH in terms of hydrogen ion concentration is approximately 0.
In order to suppress the influence of ferric ions, the pH needs to be 0 or less. Such a low pH,
In other words, although we have not seen any examples of iron electrodeposition at high hydrogen ion concentrations, by increasing the ferrous ion concentration, iron electrodeposition can be performed with a high electrodeposition efficiency of 80 to 95%. . The ferrous ion concentration of a normal iron electrolyte is less than 15 mm/h, and in such an electrolyte, if the pH is lowered to 0 or less, the electrodeposition stress is high, cracks occur, and the electrolytic iron foil becomes hazy. It cannot be peeled off from the coin base. As a method of adjusting the amount of free hydrochloric acid within the range of 2 to 60 g, the amount of iron and steel, which is a reducing agent for ferric ions and a raw material for electrolytic iron foil, added to the regeneration tank is adjusted to prevent excess There are methods such as suppressing the dissolution of iron or adding hydrochloric acid. Although it is possible to temporarily add other acids such as sulfuric acid or hydrofluoric acid instead of hydrochloric acid, it is not preferred because these acids accumulate and have adverse effects during long-term exposure. As mentioned above, since the electrolytic solution contains free hydrochloric acid and has a high hydrogen ion concentration, the electrolysis temperature is preferably 90q0 or higher, and if it is 900 or higher, the stress of dew is high and the iron that is debonded becomes sulfurized. , cannot be separated from the base for Russian coins, and iron foil cannot be obtained. Moreover, if the temperature exceeds 12,000 degrees, the electrolytic solution will boil and the surface condition of the electrolytic iron foil will deteriorate, which is not preferable, and the appropriate temperature range is 90 to 120 degrees. In the production of electrolytic iron foil using the above-mentioned insoluble anode, a solution containing ferrous ions at a high concentration of 200 to 400 g/ml is used as the electrolyte, and the amount of free hydrochloric acid is adjusted to 2 to 60 g/ml. By applying this method, long electrolytic iron foils can be easily manufactured continuously without separating the electrolyte between the anode and cathode as in the diaphragm or laminar flow method, and the current density can be increased. An electrolytic iron foil having ductility that can withstand use even if Further, examples will be specifically explained.

回転するチタン製のドラムを陰極とし、陰極から1仇舷
離して、カーボン陽極を配置した電解槽を用い、第一鉄
イオン濃度が100,150,200,250,300
,350,400g/その塩化鉄溶液を電解液とし、電
流密度30,50,70A/dめ、温度103〜105
ooの条件で、ドラム上に25仏mの厚みに鉄を雷着し
、ドラムより剥離して、電解鉄箔を得た。
Using an electrolytic cell with a rotating titanium drum as the cathode and a carbon anode placed one ship's distance from the cathode, the ferrous ion concentration was 100, 150, 200, 250, 300.
, 350, 400 g/The iron chloride solution was used as the electrolyte, the current density was 30, 50, 70 A/d, the temperature was 103 to 105
Iron was deposited on the drum to a thickness of 25 m under conditions of 0.00, and then peeled off from the drum to obtain an electrolytic iron foil.

陽極で第二鉄イオンが生ずるので、電解槽より電解液を
取り出し、別に設けた再生槽において、鉄スクラップに
より第二鉄イオンを第一鉄イオンに還元し、再び電解槽
に戻した。再生槽において、鉄スクラップ量の調整、お
よび塩酸添加によって、遊離塩酸量を5〜1雌′〆に調
整した。得られた電解鉄箔を中1仇肋、長さ20仇灘こ
切断して、90o の折り曲げ試験を行い、破断するま
での折り曲げ回数により、電解鉄箔の延性を評価した。
その結果を第1図の実線で示した。第1図に示すように
第一鉄イオンが200g′〆以下では、延性の良好な電
解鉄箔は得られなかった。また第一鉄イオンが25雌/
ク以上であれば50A/dめ以上の高電流密度であって
も、良好な延性の電解鉄箔が得られた。比較例 1実施
例1と同様な電解槽において、第一鉄イオン濃度が20
0,250,300,350g′その塩化鉄溶液を電解
液とし、電流密度30,50,70A/dでの条件で、
ドラム上に25仏mの厚みに鉄を霞着し、ドラムより剥
離して、電解鉄箔を得た。
Since ferric ions are generated at the anode, the electrolytic solution was taken out from the electrolytic cell, and in a separately provided regeneration tank, the ferric ions were reduced to ferrous ions using iron scrap, and then returned to the electrolytic cell. In the regeneration tank, the amount of free hydrochloric acid was adjusted to 5 to 1 by adjusting the amount of iron scrap and adding hydrochloric acid. The obtained electrolytic iron foil was cut into a length of 20 squares and subjected to a 90° bending test, and the ductility of the electrolytic iron foil was evaluated by the number of times it was bent until it broke.
The results are shown by the solid line in FIG. As shown in FIG. 1, if the ferrous ion content was less than 200 g', an electrolytic iron foil with good ductility could not be obtained. In addition, ferrous ion is 25 female/
Even at a high current density of 50 A/d or higher, an electrolytic iron foil with good ductility could be obtained. Comparative Example 1 In an electrolytic cell similar to Example 1, the ferrous ion concentration was 20
0,250,300,350g'The iron chloride solution was used as the electrolyte, and the current density was 30,50,70A/d.
Iron was deposited on the drum to a thickness of 25 mm and peeled off from the drum to obtain an electrolytic iron foil.

陽極で第二鉄イオンが生ずるので、電解槽より電解液を
取り出し、別に設けた再生槽において、鉄スクラップに
より第二鉄イオンを第一鉄イオンに還元し、再び電解槽
に戻した。この際鉄スクラップ量の調整し、遊離塩酸量
が2g/そ以下、pHで0.3〜0.8になるようにし
た。得られた電解鉄箔の延性を折り曲げ試験により評価
し、その結果を第1図の破線で示した。第1図に示すよ
うに、第一鉄イオン濃度が高くても、遊離塩酸量が少な
いので、延性の良好な鉄箔は得られなかった。実施例
2 実施例1と同様な電解槽において、第一鉄イオンを28
0gノそ含む溶液を電解液とし、電流密度30,50,
70A/dの、温度103〜1060の条件で、厚み2
5仏mに鉄電着を行い、ドラムより剥離して、電解鉄箔
を得た。
Since ferric ions are generated at the anode, the electrolytic solution was taken out from the electrolytic cell, and in a separately provided regeneration tank, the ferric ions were reduced to ferrous ions using iron scrap, and then returned to the electrolytic cell. At this time, the amount of iron scrap was adjusted so that the amount of free hydrochloric acid was 2 g/or less and the pH was 0.3 to 0.8. The ductility of the obtained electrolytic iron foil was evaluated by a bending test, and the results are shown by the broken line in FIG. As shown in FIG. 1, even if the ferrous ion concentration was high, the amount of free hydrochloric acid was small, so an iron foil with good ductility could not be obtained. Example
2 In an electrolytic cell similar to Example 1, ferrous ions were
A solution containing 0 g is used as an electrolyte, and the current density is 30, 50,
70 A/d, temperature 103~1060, thickness 2
Iron was electrodeposited on a 5 mm plate and peeled off from the drum to obtain an electrolytic iron foil.

この際第二鉄イオンを還元する再生槽において、鉄スク
ラップ量、および塩酸添加量を調整して、遊離塩酸量を
0.5〜20g/そと変化させた。このようにして得た
電解鉄箔の延性を折り曲げ試験で評価し、第2図に示し
た。第2図のように、遊離塩酸量が2g/そ以上になる
と延性の良好な鉄箔得られた。比較例 2 実施例1と同様な電解槽において、第一鉄イオンを13
5g/〆含む溶液を電解液とし、電流密度30,50,
70A/d淋、温度103〜10500の条件で、厚み
25仏mの鉄電着を行った。
At this time, in the regeneration tank for reducing ferric ions, the amount of iron scrap and the amount of hydrochloric acid added were adjusted to vary the amount of free hydrochloric acid from 0.5 to 20 g/so. The ductility of the electrolytic iron foil thus obtained was evaluated by a bending test and is shown in FIG. As shown in FIG. 2, when the amount of free hydrochloric acid was 2 g/or more, an iron foil with good ductility was obtained. Comparative Example 2 In an electrolytic cell similar to Example 1, ferrous ions were
A solution containing 5g/〆 was used as an electrolyte, and a current density of 30, 50,
Electrodeposition of iron to a thickness of 25 mm was carried out under conditions of 70 A/d and a temperature of 103 to 10,500 mm.

この際、第二鉄イオンを還元するための再生槽において
、鉄スクラップ量、および塩酸添加量を調整して、遊離
塩酸量を1,5,log′そと変化させた。このように
して電解鉄箔を得ようとしたところ、遊離塩酸量が5,
log/そ、および電流密度が50A/dで、70A/
dめでは露着応力が著しく大きく、クラックを生じて箔
として取り出すことができなかった。また遊離塩酸量が
1g′夕、電流密度3帆/d〆の条件で、電解鉄箔は得
られたが、折り曲げ回数は10回以下で、電解鉄箔の延
性は良好でなかった。
At this time, in the regeneration tank for reducing ferric ions, the amount of iron scrap and the amount of hydrochloric acid added were adjusted to change the amount of free hydrochloric acid by 1,5,log'. When trying to obtain electrolytic iron foil in this way, the amount of free hydrochloric acid was 5,
log/so, and current density is 50A/d, 70A/
In the case of d, the exposure stress was extremely large and cracks occurred, making it impossible to take out the foil. Further, an electrolytic iron foil was obtained under the conditions that the amount of free hydrochloric acid was 1 g/d and the current density was 3/d, but the number of bending was less than 10, and the ductility of the electrolytic iron foil was not good.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電解鉄箔の延性と電解液中の第一鉄イオン濃度
の関係を示し、第2図は電解鉄箔の延性と遊離塩酸量の
関係を示すものである。 茅’図 第2図
FIG. 1 shows the relationship between the ductility of electrolytic iron foil and the ferrous ion concentration in the electrolytic solution, and FIG. 2 shows the relationship between the ductility of electrolytic iron foil and the amount of free hydrochloric acid. Kaya' figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 不溶性の陽極を用い、電鋳用基体上に鉄電着を行い
、鉄電着層を剥離してなる電解鉄箔の製造法において、
第一鉄イオンを200〜400g/l含有する塩化鉄溶
液を電解液とし、電解液中の遊離塩酸量を2〜60g/
lに調整しながら、温度90〜120℃で鉄電着を行う
ことを特徴とする電解鉄箔の製造法。
1. In a method for producing electrolytic iron foil by electrodepositing iron on an electroforming substrate using an insoluble anode and peeling off the electrodeposited iron layer,
An iron chloride solution containing 200 to 400 g/l of ferrous ions is used as the electrolyte, and the amount of free hydrochloric acid in the electrolyte is 2 to 60 g/l.
1. A method for producing electrolytic iron foil, which comprises performing iron electrodeposition at a temperature of 90 to 120° C. while adjusting the temperature to 1.
JP56170723A 1981-10-27 1981-10-27 Manufacturing method of electrolytic iron foil Expired JPS6028913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56170723A JPS6028913B2 (en) 1981-10-27 1981-10-27 Manufacturing method of electrolytic iron foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56170723A JPS6028913B2 (en) 1981-10-27 1981-10-27 Manufacturing method of electrolytic iron foil

Publications (2)

Publication Number Publication Date
JPS5873786A JPS5873786A (en) 1983-05-04
JPS6028913B2 true JPS6028913B2 (en) 1985-07-08

Family

ID=15910192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56170723A Expired JPS6028913B2 (en) 1981-10-27 1981-10-27 Manufacturing method of electrolytic iron foil

Country Status (1)

Country Link
JP (1) JPS6028913B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331676A (en) * 1992-05-27 1993-12-14 Sumitomo Metal Mining Co Ltd Iron electroplating liquid
JPH05331677A (en) * 1992-05-27 1993-12-14 Sumitomo Metal Mining Co Ltd Iron electroplating liquid

Also Published As

Publication number Publication date
JPS5873786A (en) 1983-05-04

Similar Documents

Publication Publication Date Title
JP4076751B2 (en) Electro-copper plating method, phosphor-containing copper anode for electrolytic copper plating, and semiconductor wafer plated with these and having less particle adhesion
US2872405A (en) Lead dioxide electrode
Rogers et al. Electroforming a gold matrix for indirect inlays
WO1990015171A1 (en) Process for electroplating metals
US4356069A (en) Stripping composition and method for preparing and using same
US3284333A (en) Stable lead anodes
US2923671A (en) Copper electrodeposition process and anode for use in same
JPS6028913B2 (en) Manufacturing method of electrolytic iron foil
US3111464A (en) Electrodeposition of chromium and chromium alloys
USRE34191E (en) Process for electroplating metals
US3271279A (en) Electrodeposition of copper from chromium-containing solution
JPH0610181A (en) Electrolytic copper foil
US2623848A (en) Process for producing modified electronickel
JPS5815550B2 (en) Method for manufacturing coated lead dioxide electrode
Lee et al. Evaluating and monitoring nucleation and growth in copper foil
JPS63307291A (en) Manufacture of high-purity copper
US3715286A (en) Electrorefined nickel of controlled size
CA1265470A (en) Manufacture of self supporting members of copper containing phosphorus
KR860001221A (en) Metal Plating Method of Stainless Steel
US2439935A (en) Indium electroplating
CA1081160A (en) Anodized steel cathode blanks
US3824160A (en) Manufacture of copper dichromate and related materials
JPS6020475B2 (en) High-speed electroplating bath and plating method
JPH0438834B2 (en)
JP2018031025A (en) CRYSTALLINE ELECTROLYTIC Al-Mn ALLOY FOIL AND MANUFACTURING METHOD THEREFOR