JPS6028614A - Rear focus conversion lens - Google Patents

Rear focus conversion lens

Info

Publication number
JPS6028614A
JPS6028614A JP58137375A JP13737583A JPS6028614A JP S6028614 A JPS6028614 A JP S6028614A JP 58137375 A JP58137375 A JP 58137375A JP 13737583 A JP13737583 A JP 13737583A JP S6028614 A JPS6028614 A JP S6028614A
Authority
JP
Japan
Prior art keywords
lens
focus
objective lens
group
focal length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58137375A
Other languages
Japanese (ja)
Other versions
JPH0441804B2 (en
Inventor
Yoshinori Hamanishi
濱西 芳徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Nippon Kogaku KK filed Critical Nikon Corp
Priority to JP58137375A priority Critical patent/JPS6028614A/en
Priority to US06/632,103 priority patent/US4655558A/en
Publication of JPS6028614A publication Critical patent/JPS6028614A/en
Publication of JPH0441804B2 publication Critical patent/JPH0441804B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/142Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having two groups only
    • G02B15/1421Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having two groups only the first group being positive

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To make it possible to set a rear focus conversion lens to even an objective lens having a short back focus and to make the conversion lens compact by constituting the conversion lens with a positive front group and a negative rear group and moving both groups to focus the lens and satisfying prescribed conditions. CONSTITUTION:A lens system RFC (focal length fR) set between an objective lens L0 and a camera body consists of a positive front group (f1) G1 and a negative rear group (f2) G2, and both groups are moved to focus the lens system. The front group has a negative meniscus lens, whose convex is directed to the object side, and a positive lens following this lens. In equalities (1)-(6) are satisfied when a magnifying power of the focal length in the in-focus state in the infinity, a variation in the focus range of a composite back focus Bf, and a length from the lens surface nearest to the object of the RFC to the image point due to the object lens are denoted as beta, DELTABf, and d0 respectively.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は一眼レフレックスカメラ用レンズに装着可能で
汎用的に用いることができる合焦用リアコ/パージョ/
レンズに関する。
Detailed Description of the Invention (Technical Field of the Invention) The present invention provides a focusing rear lens/perjo/
Regarding lenses.

(発明の背景) 一眼レフレックスカメラにおいても、自動合焦可能なレ
ンズは既VC種々商品化されているが、いずれもある特
定のし/ズの自動合焦のみが可能な専用レンズであるた
め汎用性がなく、しかも高価なものであった。
(Background of the invention) For single-lens reflex cameras, various autofocus lenses have already been commercialized by VC, but all of them are dedicated lenses that are only capable of autofocus for a specific lens. It lacked versatility and was expensive.

このため、対物し/ズとカメ2ボデイとの間に合焦専用
のレンズ系を装着(2て汎用的に自動合焦を可能とする
合焦用コノバーターの構成が、例えば、特開昭54−2
8133号公報により提案されているが、実用に耐える
ものではなかった。すなわち、あらゆる対物レンズに装
着可能とするためKは、大口径比対物し/ズに対しても
、寸だバックフォーカスが短い対物レンズに対しても装
着用能な小型なものであり、しかも優れた結像性能を維
持することが必要であり、これらを全て満たすコノバー
ターの設計は極めて難しいことであった。
For this reason, a lens system dedicated to focusing is installed between the objective lens and the camera body (2) The configuration of a focusing conoverter that enables general-purpose automatic focusing is, for example, -2
Although this was proposed in Japanese Patent No. 8133, it was not practical. In other words, in order to be able to be attached to any objective lens, the K is small enough to be attached to both large aperture ratio objectives and objective lenses with extremely short back focal lengths. It was necessary to maintain high imaging performance, and it was extremely difficult to design a conoverter that satisfied all of these requirements.

(発明の目的) 本発明の目的は、種々の対物レンズに対(−で汎用的に
装着でき、特に、短いバンクフォーカスら対物し/ズに
も装着+=]能で、コ/バクトでありながら優れた結像
性能を維持し得る合焦用リアコンバージョ/・レンズす
なわち、リアフォーカスコ/バニジョンレ/ス゛を提供
することKある。
(Object of the Invention) The object of the present invention is to be able to be universally attached to various objective lenses (-), and in particular to be attached to objectives such as short bank focus (+=), and to be able to be attached to objective lenses such as short bank focus and other objectives (+=), and to be able to be attached to various objective lenses. It is an object of the present invention to provide a rear focusing lens that can maintain excellent imaging performance while maintaining excellent imaging performance.

(発明の概要) 本発明によるリアフォーカスコンパ−ジョンレンズは、
対物レンズとカメラボディとの間に装着され、該対物し
/ズとの合成1系の焦点距離を該対物レンズの焦点距離
よりも拡大するためのリアコンバーショ/し/ズであっ
て、該対物レンズ及び該カメラボディに対して相対的に
光軸上を移動可能な正屈折力の前群と負屈折力の後群と
を有し、該両群の移動により無限遠から所定の近距離捷
での物体に合焦可能であり、該正屈折力の前群は最も物
体側に配置され物体側に凸面を向けた負メニスカスレン
ズと該負メニスカスレンズの像側に配置された正レンズ
とを有し、無限遠合焦状態、における焦点距離の拡大倍
率をβ、無限遠から所定の近距離まで合焦し7たときの
合成バックフォーカスBfの変化量を△Bf、該リアコ
すバージョ/レンズの焦点距離をfl(、、該リアコノ
バージョンレンズの最も物体側し/ズ面頂点から前記対
物レンズによる像点までの距離をdo、前記前群及び後
群の焦点距離をそれぞれfl、f2よするとき、]3〈
β< 2.5 (1) 1 △B flfRl <0.2 (210,4< l
 B f/d o’βl < 0.9 (3)−2,0
< f 2 / f 1 < 0.31 (4)0、6
 < l f1/ f Rl < 1.8 (5)0、
3 < I f2 / f Rl < 0.6 (6J
の各条件を満足するものである。
(Summary of the invention) The rear focus conversion lens according to the present invention has the following features:
A rear conversion lens mounted between an objective lens and a camera body for expanding the focal length of a composite system with the objective lens than the focal length of the objective lens; It has a front group with a positive refractive power and a rear group with a negative refractive power that can move on the optical axis relative to the objective lens and the camera body, and by moving both groups, it is possible to move from infinity to a predetermined short distance. The front group with positive refractive power includes a negative meniscus lens placed closest to the object side with a convex surface facing the object side, and a positive lens placed on the image side of the negative meniscus lens. 7, the magnification of the focal length in the infinity focusing state is β, the amount of change in the composite back focus Bf when focusing from infinity to a predetermined short distance is ΔBf, and the amount of change in the composite back focus Bf when focusing from infinity to a predetermined short distance is ΔBf, The focal length is fl (, the distance from the vertex of the most object-side/z plane of the rear conversion lens to the image point of the objective lens is do, and the focal lengths of the front and rear groups are fl and f2, respectively. When, ]3
β< 2.5 (1) 1 △B flfRl <0.2 (210,4< l
B f/d o'βl < 0.9 (3)-2,0
< f 2 / f 1 < 0.31 (4) 0, 6
< l f1/ f Rl < 1.8 (5) 0,
3 < I f2 / f Rl < 0.6 (6J
It satisfies each of the following conditions.

すなわち、本発明による几Fcは、本願と同一の出願人
による先願(特願昭57−32194号)に開示したI
t F Cと基本的には同様の構成を有し。
That is, the Fc according to the present invention is based on the I.
It has basically the same configuration as tFC.

つつ、特に、Rli’ Cを収斂性の前群と発散性の後
群とに分割して構成し、さらに収斂性の前群として、物
体側に凸面を向けた負メニスカスレンズを最も物体側に
配置する構成としたことを特徴とするものである。
In particular, Rli' C is divided into a convergent front group and a divergent rear group, and as the convergent front group, a negative meniscus lens with a convex surface facing the object side is placed closest to the object side. This feature is characterized by having a configuration in which it is arranged.

以下、本発明によるリアフォーカスコ/バーショ/レン
ズ(以−1;’l(、I°゛Cという)を図面に基づい
て説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A rear focus lens (referred to as I°C) according to the present invention will be described below with reference to the drawings.

第1図は対物し/ズ白o)と−眼しフヵメラボヂイ(2
0)との間に本発明によるR F C: (30)を装
着した状態の概略構成を示す断面図である。
Figure 1 shows the objective camera body (2) and the eye camera body (2).
0) is a sectional view showing a schematic configuration of a state in which an RFC (30) according to the present invention is installed between the device and the device.

図中にはフィルム面(21)K達する軸上物点からの周
縁光線を記[た。−眼レフカメラボディ(20)は、揺
動可能な反射鏡(22)、焦点板(23)、コンデンサ
ーレンズ(24)、ぺ/タダハゾリズム(25)、接眼
レンズ(26)を有している。
In the figure, a peripheral ray from an on-axis object point reaching the film surface (21)K is shown. - The eye reflex camera body (20) has a swingable reflector (22), a focus plate (23), a condenser lens (24), a lens system (25), and an eyepiece (26).

反射鏡(22)はフィルム面(21)の露光時以外には
通常点線の位置で斜設されている。−眼レフカメラでは
、との揺動反射鏡(22)の揺動空間を確保するために
、−眼しフ力メラボディ(20)のレンズマウ/ト面(
28)とフィルム面(21)との距離、いわゆるフラン
ジバック(MB)はカメラボディに個有の値に定められ
ている。そして対物レンズの最後レンズ面とフィルム面
との距離、すなわちバックフォーカス(Br勺は反射鏡
(22)の揺動空間以上に十分長く設計されている。
The reflecting mirror (22) is normally provided obliquely at the position indicated by the dotted line except when exposing the film surface (21). - In an eye reflex camera, in order to secure a swinging space for the swinging reflector (22), - the lens mounting surface (
28) and the film surface (21), the so-called flange back (MB), is set to a value unique to the camera body. The distance between the last lens surface of the objective lens and the film surface, that is, the back focus, is designed to be sufficiently long than the swinging space of the reflecting mirror (22).

従って、RF Cを対物レンズに装着した状態でも対物
レンズとの合成系のバックフォー、カス(Br)を反射
鏡(22)の揺動空間以上に確保しなければならないし
、さらに、近距離物体への合焦のためにRF Cを形成
する負レンズ群の主点を像側へ移動した場合でも十分な
バックフォーカスを維持することが必要である。
Therefore, even when the RF C is attached to the objective lens, it is necessary to ensure that the back focus of the synthesis system with the objective lens (Br) is greater than the swing space of the reflecting mirror (22), and furthermore, it is necessary to ensure that the RF C is larger than the swing space of the reflecting mirror (22). It is necessary to maintain sufficient back focus even when the principal point of the negative lens group forming the RF C is moved to the image side for focusing.

このように本発明によるIもli’ Cけリアコ/バー
ゾヨ/し/ズとしての条件をそのまま満足しなければな
らないと同時に、さらに、合焦機能をも十分達成するた
めVこ種々の条件を満たすことが必要である。具体的V
CVi、汎用性をめるため明るい対物し/ズはもとより
暗い対物し/ズを装着しても合焦精度を良好に保つため
にはRFCが和う拡大倍率には上限があり、また、至近
距離撮影時にも十分なバックフォーカスを確保し、かつ
RFCの移動量をあ寸り大きくすることが望ましくない
ので、拡大倍率には下限も存在している。
In this way, the I according to the present invention must satisfy the conditions as they are as they are, and at the same time, in order to fully achieve the focusing function, various conditions must be satisfied. It is necessary. concrete V
For CVi, in order to increase versatility, there is an upper limit to the magnification magnification at which the RFC can be maintained, and in order to maintain good focusing accuracy even when attaching a bright objective lens or a dark objective lens. Since it is not desirable to ensure sufficient back focus even during distance photography and to increase the amount of movement of the RFC too much, there is also a lower limit to the magnification.

寸だ、本発明による几]イ’Cは、対物レンズとカメラ
ボディとの間の限られた空間を移動することKよって合
焦を行なうので、この点からも制限を受ける。
Since the camera according to the present invention focuses by moving in a limited space between the objective lens and the camera body, it is also limited in this respect.

すなわち、最至近距離の合焦時において、几FC1’を
最も像側へ光軸上を移動する。このとき−眼しフレ/ズ
システムとして成立するには、充分なバックフォーカス
の長さが必要であるため、RF Cのレンズ系はできる
限り、対物し/ズ側へ偏在させておかねばならない。
That is, when focusing at the closest distance, the FC1' is moved on the optical axis to the closest image side. At this time, in order to establish an eye lens system, a sufficient back focal length is required, so the RF C lens system must be biased towards the objective lens system as much as possible.

一方、一般の一眼レフカメラ用対物し/ズのバンクフォ
ーカスは、タイツクリター/ミラーの揺動空間を確保す
るために必要最小限の値が定められており、し/ズタイ
ゾによってはこの範囲で極めて短いバックフォーカスの
対物し/ズも存在する。
On the other hand, the bank focus of general single-lens reflex camera objectives is set to the minimum necessary value in order to secure the swing space of the tight critter/mirror, and depending on the objective lens/lens reflex camera, the bank focus is extremely short within this range. There are also back focus objects.

汎用性を満足するには、このような長さのバックフォー
カスを有する対物レンズに装着可能にすることも必要で
あり、これらを考慮するならば、RFCと対物レンズに
よる像点捷での距離、すなわちRF Cの物点距離をあ
1り長くすることができず、RF Cのレンズ配置の偏
在のさせ方にも限界がある。そして、移動することのな
い従来の一般的リアコンバージョンレンズと比較すれば
、斜光束と軸上物点からの光束とがそれぞれリアコ/バ
ージョ/レンズを切る位置の光軸からの距離に差が少な
いため、収差補正の自由度が少なく、合焦の全範囲にわ
たって諸収差を良好に補正することけ極めて難(2い。
In order to satisfy the versatility, it is also necessary to be able to attach it to an objective lens with such a long back focus, and taking these into consideration, the distance between RFC and the image point shift by the objective lens, That is, the object point distance of the RF C cannot be made very long, and there are limits to how the RF C lenses can be unevenly distributed. And compared to conventional general rear conversion lenses that do not move, there is little difference in the distance from the optical axis at the position where the oblique light flux and the light flux from the on-axis object point cut the rear conversion/version/lens, respectively. Therefore, there is little freedom in correcting aberrations, and it is extremely difficult to correct various aberrations satisfactorily over the entire focusing range (2).

寸だ、RF Cによって合焦可能な領域をできる限り広
0るためにR,E’ Cとしてのレンズ長(’RFCの
最前面から最終面までの長さ)を短くし、て、バンクフ
ォーカスを確保する方法もあるが、これも、収差補正上
限界がある。すなわちRFCの中に充分な空気間隔を作
ることによって収差補正の自由度を確保することが困難
となるからである。
In order to widen the focusable area with RF C as much as possible, we shortened the lens length for R and E'C (the length from the frontmost surface of 'RFC to the last surface), and set bank focus. There is a method to ensure this, but this also has its limits in terms of aberration correction. In other words, it is difficult to ensure a degree of freedom in correcting aberrations by creating a sufficient air gap within the RFC.

このため、本発明では、上述したごとく、RF’Cの最
も対物レンズ側に、物体側に凸面を向けた負メニスカス
レンズを配置することによって、色消しの効率がよくな
り、特に軸上の色収差を容易に補正できること、さらに
高次の色球面収差の補正も容易であることを見い出した
。そして、収斂性の前群と発散性の後群との空気間隔を
可能な範囲で広けることにより、中間画角におりる主光
線の上側の光線の外向性コマ収差を補正できると共に、
主光線の下側の光線の内向性コマ収差をも補正可能とな
った。
Therefore, in the present invention, as described above, by arranging a negative meniscus lens with a convex surface facing the object side closest to the objective lens side of the RF'C, the efficiency of achromatization is improved, and in particular, axial chromatic aberration can be reduced. We have found that it is easy to correct chromatic and spherical aberrations, and that it is also easy to correct higher-order chromatic spherical aberrations. By widening the air distance between the convergent front group and the diverging rear group as much as possible, it is possible to correct the extroverted coma of the rays above the principal ray that fall at the intermediate angle of view, and
It is now possible to correct inward coma aberration in the rays below the chief ray.

また、R,FCを光軸上で像側へ移動させ、有限距離合
焦をしたときの収差変動については、先の出願に開示し
た正レンズが先行しているものよりも角レンズが先行す
る本発明のものの方が、小さい変動であり、安定した結
像性を維持する点で有利であることも見い出された。
In addition, regarding aberration fluctuations when R and FC are moved to the image side on the optical axis and focused at a finite distance, the angle lens precedes the positive lens disclosed in the previous application. It has also been found that the method of the present invention has smaller fluctuations and is advantageous in maintaining stable imaging performance.

以下、上述した本発明による各条件について説明する。Each condition according to the present invention described above will be explained below.

(1)式の上限を超えると収差補正が困難となりレンズ
枚数が増加(2てしまう。また合成レンズ系のFす/バ
ーが大きくなり過ぎ暗くなる。このため明るい対物レン
ズでしかも充分な測距精度を得ることができなくなり汎
用性を欠いてしまう。下限を超えると所定の至近距離ま
で合焦しようとするとRFCの移動量が犬きくなり過ぎ
、他方−眼レフレンズとし7てのバックフォーカスを確
保した状態で合焦すると、合焦可能な領域が狭くなり、
実用上いずも不適尚である。
If the upper limit of equation (1) is exceeded, it becomes difficult to correct aberrations and the number of lenses increases (2). Also, the f/bar of the composite lens system becomes too large and dark. It becomes impossible to obtain precision and lacks versatility.If the lower limit is exceeded, the amount of movement of the RFC becomes too sharp when trying to focus at a predetermined close distance, and on the other hand - ensuring back focus as an eye reflex lens 7 If you focus with
It is unsuitable for practical use.

(2)式の条件を超えるとRFCの最前レンズ面頂点か
ら対物レンズによる像点捷での距離d。
If the condition of formula (2) is exceeded, the distance d from the vertex of the frontmost lens surface of RFC to the image point deflection by the objective lens.

を大きくする必要が生じ、RFCを装着可能な対物レン
ズ数が少くなり過ぎ汎用性がなくなるので不適当である
。またf几が短くなって1−tp’cの屈折力が強くな
り過ぎるので非点収差、ペソパール和の補正が困難とな
ると共に、1jFcの移動によつ′C最至近距距離こ合
焦したときの収差変動が太きくなるのでやはり不適当で
ある。
It is necessary to increase the number of objective lenses to which the RFC can be attached, and the number of objective lenses to which the RFC can be attached becomes too small, which results in a loss of versatility, which is inappropriate. In addition, since the refractive power of 1-tp'c becomes too strong due to the shortening of f, it becomes difficult to correct astigmatism and Peso-Pearl sum, and the movement of 1jFc makes it difficult to focus at the closest distance of 'C'. This is still inappropriate because the aberration fluctuations become large when the lens is turned.

(3)式の上限を超えると、1tlL″Cのレンズ長が
短くなり過ぎ、Kノバール和か負に過大になり収差補正
の自由度も欠落してし寸う。またβが小〈なり過ぎ、像
の劣化により合焦できる撮影範囲が小さくなり不適当で
ある。
If the upper limit of equation (3) is exceeded, the lens length of 1tlL''C becomes too short, the K Noval sum becomes too negative, and the degree of freedom for aberration correction is almost lost. Also, β becomes too small. , the photographing range that can be focused becomes smaller due to image deterioration, which is inappropriate.

下限を超えると、倍率が大きくなり過ぎるので非点収差
の補正が困難となり、し77枚数も増加する。しかもR
F Cのレンズ長も長くなり過ぎるので不適当である。
If the lower limit is exceeded, the magnification becomes too large, making it difficult to correct astigmatism and increasing the number of images. Moreover, R
The lens length of FC is also unsuitable because it becomes too long.

(4)式は■もFCの前群r(対する後群の適正な屈折
力、配分を規定するものであり、上限を超えると正屈折
力の前群の屈折力が強くなり過ぎ、を 合焦VC充分なバンクフォーカス1保しようとすること
か困難となるので不適当である。
Equation (4) also specifies the appropriate refractive power and distribution of the front group r (relative to the rear group) of the FC; if the upper limit is exceeded, the refractive power of the front group with positive refractive power becomes too strong, and the This is inappropriate because it becomes difficult to maintain a sufficient bank focus of 1.

下限を超えると、球面収差の補正が困難となるので不適
当である。捷だ、(5)式及び(6)式は上記(4)式
の条件を補足するものであり、これらの条件を外れると
、前群と後群との屈折力のバランスがくずれ、諸収差の
補正が難しくなる。尚、(4)式の条件においては、さ
らに 0、6 < f 2 / f l< 0. :31とす
ることが諸収差の補正上より好ましい。
Exceeding the lower limit is inappropriate because it becomes difficult to correct spherical aberration. However, Equations (5) and (6) supplement the conditions of Equation (4) above, and if these conditions are violated, the balance of refractive power between the front and rear groups will be lost and various aberrations will occur. becomes difficult to correct. Furthermore, under the condition of equation (4), 0, 6 < f 2 / f l < 0. :31 is more preferable from the viewpoint of correcting various aberrations.

以上のごとき本発明のRF Cにおいては、さらに、R
FCの最前し/ズ面頂点と対物レンズによる像点との距
離d。、及びカメシボディの対物し/ズマウ/ト面とフ
ィルム面との距離いわゆるフランジバッグMBとについ
て、0.7< l d o /MB l <0.9の条
件を満たすことが望捷しい。ここで、一般的な一眼レフ
レックスカメラボディではMB−46、5mmである。
In the RF C of the present invention as described above, furthermore, R
Distance d between the vertex of the front/front surface of the FC and the image point formed by the objective lens. , and the distance between the objective plane of the camera body and the film plane, ie, the so-called flange bag MB, preferably satisfies the condition of 0.7<l d o /MB l <0.9. Here, a common single-lens reflex camera body is MB-46, 5 mm.

さらに、ペッツバール和を良好に補正するためには、 06〈β・do/f几〈10 04(’do/fR<”07 の条件を満たすことが実用的である。Furthermore, in order to properly correct the Petzval sum, 06〈β・do/f几〈10 04(’do/fR<”07 It is practical to satisfy the following conditions.

捷だ、具体的し/ズ構成については、前群を物体側より
順に、物体側に凸面を向けた負メニスカスレ/ズと両凸
正レンズとで構成し、両レンズに分離さねでいても接合
されでいてもよく、さらに前群としての収斂性屈折力を
分担させるために両凸正レンズの像側にもう1個の正レ
ンズを設けても良い。後群を物体側からJIElに、両
凹負し/ズと物体側により曲率の強い面を向Cた正し/
ズとで構成(−1これらの像側にはさらに後群としての
発散性屈折力を分担させる/ζめに貼合せ又は単一の負
し/ズを設けることも可能である。
As for the specific lens configuration, the front group consists of, in order from the object side, a negative meniscus lens with a convex surface facing the object side and a biconvex positive lens. They may be cemented together, and another positive lens may be provided on the image side of the biconvex positive lens to share the convergent refractive power as the front group. Direct the rear group from the object side to JIEL, with a double concave negative/Z and the object side facing the surface with a stronger curvature.
It is also possible to further share the divergent refractive power as a rear group on the image side of these lenses, or to provide a single negative lens or lens on the ζth side.

(実施例) 以下に本発明によるRFCの実施例を示す。(Example) Examples of RFC according to the present invention are shown below.

各実施例は表1に示す対物レンズを基準として設言1さ
れたものでるる。この基準対物レンズは本願と同一出願
人に、よる特開昭52−88020号公報に記載されて
いるものである。
Each example is based on the objective lens shown in Table 1. This reference objective lens is described in Japanese Patent Application Laid-Open No. 52-88020, filed by the same applicant as the present application.

表Iにおいて、Rは各レンズ面の曲率半径、dは各レン
ズの中心厚及び空気間隔、nは各レンズの屈折率、νは
各し/ズのアツベ数を表わし、添数字は物体側からの順
序を表わすものとする。また、本発明によるR、F’C
の第1〜第8実施例の諸元をそれぞれ表2〜表9に示す
。担し、これらの各表では表の左端に物体側からの順序
を示[7、doはRFCの最前レンズ面と対物し/ズに
よる像点との間隔を表わし1、Doは対物レンズの最前
レンズ面から物点までの距離、Dlは対物レンズとRF
Cとの空気間隔、flはRFC前群(G1)の焦点距離
、f2はRFC後群(G2)の焦点距離を表わすものと
する。また、Bfは几Ii”Cと基準対物レンズとの合
成系のバンクフォーカスを表わし、ΔB(ば1(Ji’
Cによる無限連合焦時と至近距離合焦時トにおけるバン
クフォーカスの変化量を表わし、FはRF’ Cと対物
レンズとの合成焦点距離、MFi合成系の撮影倍率を表
わす。
In Table I, R is the radius of curvature of each lens surface, d is the center thickness and air gap of each lens, n is the refractive index of each lens, ν is the Abbe number of each lens, and the subscript number is from the object side. Let it represent the order of . Furthermore, R, F'C according to the present invention
The specifications of the first to eighth embodiments are shown in Tables 2 to 9, respectively. In each of these tables, the order from the object side is shown at the left end of the table [7, do represents the distance between the frontmost lens surface of RFC and the image point according to the objective lens; The distance from the lens surface to the object point, Dl is the distance between the objective lens and the RF
It is assumed that fl represents the focal length of the RFC front group (G1), and f2 represents the focal length of the RFC rear group (G2). In addition, Bf represents the bank focus of the composite system of the lens Ii''C and the reference objective lens, and ΔB(B1(Ji'
C represents the amount of change in bank focus between infinite joint focusing and close range focusing, F represents the combined focal length of RF'C and the objective lens, and the photographing magnification of the MFi combining system.

表1(基準対物レンズ) β;51.6 i”ナンバー18 2ω=46”R1=
 41.000 d1= 4.6 n)、=1.796
31 ν1==408R2= 197.900 d2”
 0.1R3”” 21.400 63= 4.7 n
2=1..78797 シ2==4751も。−32,
600d4= 1.CIR5= 51.000 d5=
 1.1 n3””1.74000 1’3=28.2
H2r= ] 6.200 d6”] 3.1p、、、
−−−16500d7= 1.3 n4=1.7400
0 1’4=28.2RB=−1(10,000dB=
 5.4 15=]74443 ν5 = 49.41
tQ”” −2(1640dg” 0.11(=10=
 204.3(Hl dlo” 3.45 n5 =1
.79631 シロ= 40.81(,1,二 −49
,652Bf’=37.(i05表2(第1実施例) 倍率:β;16 焦点距離fR,= −68,833表
3(第2実施例) 倍率°β=1,6 熱漬距離fB=−71,029表4
(第3実施例) 倍率:β;16 焦点距離fT(、=−70,0,98
表5(第4実施例) 倍率:β= 1.6 焦点用@ fH,=−70,20
1表6(第5実施例) 倍率:β:16 焦点距離fH,=−70,937表7
(第6実施例) 倍率:β:16 焦点距離fR=−71.201表8(
第7実施例) 倍率:β:1.6 焦点距離f几ニー71.603表9
(第8実施例) 倍率:β=16 焦点距離fH,=−72,800上記
の第1〜第゛8実施例のレンズ構成図をそれぞれ順に第
2図〜第9図に示す。第2図に示した第1実施例のレン
ズ構成図には、表1の基準対物レンズ(Lo )のレン
ズ構成も示した。
Table 1 (Reference objective lens) β; 51.6 i” number 18 2ω=46”R1=
41.000 d1= 4.6 n), = 1.796
31 ν1==408R2= 197.900 d2”
0.1R3”” 21.400 63= 4.7 n
2=1. .. 78797 shi2==4751 too. -32,
600d4=1. CIR5= 51.000 d5=
1.1 n3””1.74000 1'3=28.2
H2r= ] 6.200 d6”] 3.1p,,,
---16500d7=1.3 n4=1.7400
0 1'4=28.2RB=-1(10,000dB=
5.4 15=]74443 ν5 = 49.41
tQ""-2(1640dg" 0.11(=10=
204.3 (Hl dlo" 3.45 n5 = 1
.. 79631 Shiro = 40.81 (,1,2 -49
, 652Bf'=37. (i05 Table 2 (first example) Magnification: β; 16 Focal length fR, = -68,833 Table 3 (second example) Magnification °β = 1,6 Heat immersion distance fB = -71,029 Table 4
(Third example) Magnification: β; 16 Focal length fT (, = -70, 0, 98
Table 5 (4th example) Magnification: β = 1.6 Focus @ fH, = -70,20
1 Table 6 (Fifth Example) Magnification: β: 16 Focal length fH, = -70,937 Table 7
(6th example) Magnification: β: 16 Focal length fR = -71.201 Table 8 (
7th Example) Magnification: β: 1.6 Focal length f 71.603 Table 9
(Eighth Embodiment) Magnification: β=16 Focal Length fH,=-72,800 Lens configuration diagrams of the above-described first to eighth embodiments are shown in FIGS. 2 to 9, respectively. The lens configuration diagram of the first example shown in FIG. 2 also shows the lens configuration of the reference objective lens (Lo) in Table 1.

上記第1〜第8実施例のRFCをそれぞれ表1に示した
基準対物レンズに装着した場合の諸収差図を順に、第1
0図(A)(B)〜第17図(A)(’ B )に示す
。各図の(A)は各RPCを装着した無限連合焦時の諸
収差図を示し、各図(B)は各RP Cの装着してRF
Cにより至近距離に合焦した時の諸収差図を示す。そし
て、各収差図KVi球面収差(S p b )、非点収
差(A3 t )、歪曲収差(pis)、基準波長d線
(λ= 587.6nm)に対するg線(λ” 435
.8 nm )の倍率色収差(Lat、cbr)、コマ
収差(Coma)を示した0 上記の第1・〜第8実施例は、いずれも前群(Go)及
び後群(G2)を一体的に像側へ移動することによって
近距離物体への合焦を行なう構成であるが、第18図に
示すごとく前群(Go)と後群(G2)とを異なる速度
で移動させて合焦を行うように構成することもできる。
The various aberration diagrams when the RFCs of the above-mentioned first to eighth embodiments are attached to the reference objective lens shown in Table 1 are shown in order.
0(A)(B) to FIG. 17(A)('B). (A) of each figure shows various aberration diagrams when each RPC is attached to the infinite combined focus, and (B) of each figure shows the RF aberration diagram when each RPC is attached.
This shows various aberration diagrams when focusing at close range using C. Then, each aberration diagram KVi spherical aberration (S p b ), astigmatism (A3 t ), distortion aberration (pis), g-line (λ” 435 for the reference wavelength d-line (λ = 587.6 nm)
.. In all of the first to eighth embodiments described above, the front group (Go) and rear group (G2) are integrated. This configuration focuses on a close object by moving toward the image side, but as shown in Figure 18, focusing is performed by moving the front group (Go) and rear group (G2) at different speeds. It can also be configured as follows.

この場合、近距離合焦による撮影倍率をより高めること
が可能であると共に、近距離合焦峙の収差変動を補正す
ることも可能となる。
In this case, it is possible to further increase the imaging magnification due to close-range focusing, and it is also possible to correct aberration fluctuations during close-range focusing.

そし7て、RF Cの拡大倍率βが比較的高倍率である
場合にはRF Cの前群(G1)と後群(G2)との相
対的移動のみによって十分合焦を行なうことができるが
、比較的低倍率で像面(21)に対して対物レンズ(L
o )自体の移動を加えて合焦を行なうこともできる。
7. If the magnification β of the RF C is relatively high, sufficient focusing can be achieved only by relative movement between the front group (G1) and the rear group (G2) of the RF C. , the objective lens (L
o) It is also possible to perform focusing by adding movement of the lens itself.

いま、対物レンズ(Lo)とカメラボディ(20)との
間に本発明によるl(・li’ Cを装着し、無限遠物
体に合焦した時の合成系の全長(対物し/ズ最前面から
像面(21)までの距離)をTL、第19図に示すごと
く有限距離物体に合焦した時の全長をTL′とし、対物
レンズ(LO)とRFCの前群(Gよ)との間隔D□が
ΔD工たけ変化してDlからD1+ΔDIK、RIl’
C前群(G1)とRli” C後群(G2)との間隔D
2がΔD2だけ変化してG2からD2+ΔD2に、合成
系のパックフォーカスBfがB(+ΔBfになったとす
ると、全長の変化量ΔTLはΔTL=TL’ −1’L
=ΔD1+ΔD2+ΔBfと表わされる。
Now, the l(・li' C) according to the present invention is installed between the objective lens (Lo) and the camera body (20), and the total length of the synthesis system when focused on an object at infinity (the frontmost surface of the objective lens) As shown in Figure 19, the total length when focused on a finite distance object is TL', and the distance between the objective lens (LO) and the front group (G) of the RFC is The interval D□ changes by ΔD, and from Dl to D1+ΔDIK, RIl'
Distance D between the front C group (G1) and the rear C group (G2)
2 changes by ΔD2 from G2 to D2+ΔD2, and the pack focus Bf of the synthesis system becomes B(+ΔBf.The amount of change ΔTL in the total length is ΔTL=TL'-1'L.
=ΔD1+ΔD2+ΔBf.

ここで、全長の変化量ΔTLを合成系バックフォーカス
の変化量ΔBfで除した係数値αはα=ΔTL/ΔBf =ΔD1/ΔBf十ΔD2/ΔB (十Iとなる。そし
7て、 と置けば、 α=α、十α2+1 ・・・・・(7)となり、G1及
びG2は対物レンズ(Lo)とRFC前群(Go)との
間隔変化量ΔD1及びRPC前群(Gよ−)と後群(G
2)との間隔変化量ΔD2それぞれ′の合成系バンクフ
ォーカスの変化量ΔBfに対する変化率である。
Here, the coefficient value α obtained by dividing the amount of change ΔTL in the total length by the amount of change ΔBf in the synthetic back focus is α = ΔTL/ΔBf = ΔD1/ΔBf + ΔD2/ΔB (10 I. Then, if we put , α=α, tenα2+1 (7), and G1 and G2 are the distance change ΔD1 between the objective lens (Lo) and the RFC front group (Go), and the RPC front group (G-) and rear Group (G
2) is the rate of change of the interval change ΔD2 with respect to the change ΔBf of the synthetic bank focus.

上記(7)式により本発明のRFCに関する移動形態に
ついて、合成系バックフォーカスが変化しない場合を除
いて即ちΔB f=oの場合の全てを表わすことができ
る。例えば、α=0のときは対物レンズが像面に対[7
て固定され、RFCのみによって合焦がなされることを
意味する。但し、α=0でα1=−1、G2−oの場合
u RF C+7) M 後群01、G2が一体となっ
て移動する合焦方式であり、前述した第1〜第8実施例
の合焦方式である。
Equation (7) above can express all cases of movement related to the RFC of the present invention except for the case where the synthetic back focus does not change, that is, when ΔB f =o. For example, when α=0, the objective lens is opposite to the image plane [7
This means that the lens is fixed and focused only by RFC. However, in the case of α=0, α1=-1, and G2-o, this is a focusing method in which the rear group 01 and G2 move together, and the focusing method of the first to eighth embodiments described above is It is a focus method.

本発明においてに、近距離合焦時に几FCの前P(G]
、)と後群(G2)とを共に像側へ移動し、両群の間隔
を小さくするJ:う移動することが望まし7い。そし、
て、上記(方式に基づく係数値αについて、本発明にお
いては、 −10〈α≦o(8) α]<0 (91 0くG2 < 1 (10) の各条件を満たすことが適切であることが判明した。
In the present invention, P(G) in front of the FC during short-distance focusing
, ) and the rear group (G2) toward the image side to reduce the distance between the two groups. stop,
Therefore, in the present invention, it is appropriate for the coefficient value α based on the above (method) to satisfy the following conditions: -10〈α≦o(8) α]<0 (91 It has been found.

条件式(8)は、ΔB f<0であるから、ΔTL≧0
であり、基準対物し/7:′を積極的に物側へRF’C
とは反対側へ連動してくり出すことを意味している。こ
のようにすることにより、最至近距離を短くできる。条
件式(9)は、ΔBf〈0であるから、RFCと対物レ
ンズの間隔を広げることを示している。このようにする
ことによりやはり積極的にRFCによって撮影倍率をか
せぐことができる。
Conditional expression (8) is ΔB f<0, so ΔTL≧0
, and the reference object /7:' is actively transferred to the object side by RF'C.
This means that it moves in conjunction with the opposite direction. By doing so, the closest distance can be shortened. Since ΔBf<0, conditional expression (9) indicates that the distance between the RFC and the objective lens is increased. By doing so, it is possible to actively increase the imaging magnification by RFC.

条件式(10)の上限を超えると非点収差が過大に負に
なり不適当である。下限を外れてG2が負になると、Δ
B f〈0であるから、前後群の間隔が広がることにな
り、負に過大に発生する球面収差の補正が困難となる。
If the upper limit of conditional expression (10) is exceeded, the astigmatism becomes excessively negative, which is inappropriate. When G2 becomes negative beyond the lower limit, Δ
Since B f <0, the distance between the front and rear groups increases, making it difficult to correct spherical aberration that occurs excessively negatively.

第20図は本発明による第9実施例のレンズ構成図であ
り、本実施例では)?、FCの前群(G1)が後群(G
2)より早い速度で像側へ移動すると共に、同時に対物
レンズ(Lo )が物体側へ移動することによって近距
離合焦がなされる。
FIG. 20 is a lens configuration diagram of a ninth embodiment according to the present invention. , the front group (G1) of FC is the rear group (G
2) By moving toward the image side at a faster speed and at the same time moving the objective lens (Lo) toward the object side, short-range focusing is achieved.

第21図は第10実施例のレンズ構成図であり、第20
図に示した第9実施例と同様KRFCの前群(G1)と
後群(G2)とが異なる速度で像側へ移動をすると共に
対物レンズ(Lo)が物体側へ移動することによって近
距離合焦がなされる。
FIG. 21 is a lens configuration diagram of the 10th embodiment.
Similar to the ninth embodiment shown in the figure, the front group (G1) and the rear group (G2) of the KRFC move toward the image side at different speeds, and the objective lens (Lo) moves toward the object side, so that short distances can be achieved. Focus is achieved.

第22図は第11実施例のレンズ構成図であり、本実施
例でに、近距離合炸に際して対物レンズ(■・。)け像
面に対]−1て固定さね、RFCの前群(01)が後群
(G2)よりも早い速度で像側へ移動する。
FIG. 22 is a lens configuration diagram of the 11th embodiment. In this embodiment, the objective lens (■. (01) moves toward the image side at a faster speed than the rear group (G2).

上記第9、第10、第11実施例の諸元を表10.11
.12に示す。尚、これらの実施例は、順に前述した第
1、第4、第8実施例の)t F’ Cをそれぞれ基礎
とするものである。
Table 10.11 shows the specifications of the ninth, tenth, and eleventh embodiments.
.. 12. Note that these embodiments are based on t F' C of the first, fourth, and eighth embodiments described above, respectively.

表10(第9実施例) 倍率:β−1,6焦点距離f几=−68,833α =
 −5,331 α1= −6,665 α2= 0.334 表11 (第10実施例) 倍率:β=1,6 焦点距離fR,=−70,202α
、= −3,333 表12(第11実施例) 倍率:β=16 焦点距離fB=−72,800α1=
−1,053 上記第9、第10、第11実施例による最至近距離状態
の諸収差図をそれぞれ第23図、第24図、第25図に
示す。これらの実施例の無限連合焦時の諸収差図は、第
10図(’A)、第13図(A)、第17図(A)とそ
れぞれ同一であるから省略した。
Table 10 (9th example) Magnification: β-1,6 focal length f = -68,833α =
-5,331 α1= -6,665 α2= 0.334 Table 11 (10th Example) Magnification: β=1,6 Focal length fR,=-70,202α
, = -3,333 Table 12 (11th example) Magnification: β = 16 Focal length fB = -72,800 α1 =
-1,053 Various aberration diagrams in the closest distance state according to the ninth, tenth, and eleventh embodiments are shown in FIGS. 23, 24, and 25, respectively. Various aberration diagrams of these embodiments at the time of infinite joint focusing are omitted because they are the same as those in FIG. 10 ('A), FIG. 13 (A), and FIG. 17 (A).

各収差図より、本発明によるR F Cの各実施例とも
無限連合焦時のみならず近距離合焦時においても優れた
結像性能を維持していることが明らかである。また、第
9、第10実施例では補助的に対物し/ズをも物体側へ
移動させることによって撮影倍率M=−0,15という
高倍率においても実用」二十分な結像[4+能を維持し
ていることが分る。
From each aberration diagram, it is clear that each embodiment of the RFC according to the present invention maintains excellent imaging performance not only when focusing at infinity but also when focusing at close range. In addition, in the ninth and tenth embodiments, by moving the auxiliary objective lens to the object side, it is possible to achieve practical imaging even at high magnifications such as M=-0 and 15. It can be seen that it is maintained.

ぞして、各実施例は、表1に示した基準対物レンズのみ
ならず、種々の対物し/ズにも装着され得るものであり
、同様に優れた結像性能を維持しつつ、無限遠から所定
の近距離捷での合焦を簡単に行なうことが可能である。
Therefore, each embodiment can be attached not only to the reference objective lens shown in Table 1 but also to various objective lenses, and can be used to capture images from infinity while maintaining the same excellent imaging performance. It is possible to easily perform focusing at a predetermined short distance.

尚、上記第9〜第10実施例では本発明における収斂性
の前群と発散性の後群とを相対的に移動させて合焦して
おり、このような合焦方式によって、球面収差と非点収
差との両者の近距離変動を補正し得るのであるが、例λ
ばRFC中で最も像側に位置する正レンズのみを異なる
速さで移動させることとすれば、本願と同一出願人によ
る先願(特願57−67061号)に開示した実施例の
ごとく球面収差をあまり変化させることなく、非点収差
を主VC補正することが可能である。
In the ninth and tenth embodiments described above, focusing is performed by relatively moving the convergent front group and the diverging rear group of the present invention, and by such a focusing method, spherical aberration and It is possible to correct short-range fluctuations in both astigmatism and astigmatism, but for example λ
For example, if only the positive lens located closest to the image side in the RFC is moved at different speeds, spherical aberration will be reduced as in the embodiment disclosed in a previous application (Japanese Patent Application No. 57-67061) by the same applicant as the present application. It is possible to correct astigmatism in the main VC without changing much.

(効果) このように、本発明によるRFCは、あらゆる対物レン
ズに汎用的に装着でき、コンパクトでありながら無限遠
から近距離捷で優れた性能を有している。そして自動合
焦装置と組合せるならば、あらゆる対物レンズに対して
RFCの移動によって合焦が可能であるため、合焦機構
が共通となり対物レンズを交換し2でも、合焦機構を何
ら交換する必要がなく極めて便利である。
(Effects) As described above, the RFC according to the present invention can be universally attached to any objective lens, and although it is compact, it has excellent performance from infinity to close range. If combined with an automatic focusing device, it is possible to focus on any objective lens by moving the RFC, so the focusing mechanism is common and even if the objective lens is replaced, there is no need to replace the focusing mechanism at all. It is unnecessary and extremely convenient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、対物レンズと一眼レフカメラボディの間に本
発明によるリアフォーカスコンバーショ/i//ズを装
着し′に、状態の概略構成を示す断面図、第2図は、本
発明による第1実施例のレンズ構成図で、無限遠合焦状
態における基準対物レンズとリアフォーカスコンバージ
ョンレンズとの位置関係を示[7、第3図〜第9図はそ
れぞれ第2〜第8実施例のし/ズ構成図、第10図(A
)(B)〜第17図(A)(B)はそれぞれ第1〜第8
実施例の諸収差図であり、各図の(A)は無限遠合焦状
態を、各図(B)は最至近距離合焦状態を示しており、
家、18図は対物し/ズとカメラボディとの間に本発明
によるRFCの他の実施例を装着し、無限遠物体に合焦
したときの合成糸の概略構成説明図、第19図は有限距
離物体に合焦したときの概略構成説明図、第20図は、
第9実施例のRF Cを基準対物し/ズに装着した無限
遠合焦状態のし/ズ構成図、第21図は第10実施例の
1(FCを基準対物し/ズに装着した無限遠合焦状態の
し/ス゛構成図、第22図は第11実施例の)(、F 
Cを基準対物レンズに装着した無限遠合焦状態のレンズ
構成図、第23図〜第25図はそれぞれ第9、第10、
第11実施例の最至近距離合焦状態における諸収差図で
ある。 (主要部分の符号の説明) Lo・・・・・・対物レンズ I(、F C・・・す77オーカスコンパージヨ/し/
ズG0・・・・・・前群 G2・・・・・・後群 出願人 日本光学工業株式会社 代理人 渡 辺 隆 男 第2図 オ、5図 第4図 第5図 オ6図 矛7図 RFC FD 第3囚 RFC 、f−10囚 、5ph Asty (A) Oθ777a δPhASt/ Dis △αt、(Ar 囚(f3) (、、oma 第11 5PhASt/ 図(A) o777a 矛月囚 5PhASt/ D15 △B、chr (f3) 、 6θ77?α 21Z図(7 A) oma オ グ2 sPh A 5v Dis lαt、chγ 図CB) Cθma 第15 Di5 △at、、 C々r 図(A) Co預α 矛翻 、sp’h A3−b D;δ L(Zb、 Chr 図CB) C0グa Sph Asう Dノδ L(2t・θ・々′ ](A) ovta 矛j4 DノS L(It、 C/rr 図(6) (o77?a 第15図 DK3 △at chr (A) Cθγで /+15 δphAst/ D75 Lat、 Chr 図 (B) 牙j6図 D;、s Lat、 Chr (A) □o’rnα 矛16図 δph Ast/ Di、5 Lt2t、 Chr CB) C/θ77?a 第11囚( 3ph 13+st D;s lat、 C1w ’A) C0γa f−17図 (B) Cθ曹a オ’ 23 SphAsv 図 co’yna 矛24 D;s Lat、 C/ンr 図 Co77?a オーグ1 因 Cθ777a 手 続補 正 目(自発) 13月11牛の表示 昭[1158年q元′U願第137375号2、発明の
名称 リアフォー力スコンバージョンレンズ 3゜補正をする者 事件との関171g ’lVI’fRJllhIj、/
\東京都−[代III区九の内3−T目2番3号(4]
 1) 11本光学工゛宿!■、式会社フタオカ シゲ
クダ TTり斬貯1−長1+、+岡 成忠 4、代理人 〒140 東5;祐1%l、7川区西人ノl’ l 1
−1−16番3号11本光!:?−L’JJ、’l、1
(会?1 大)1製作所内(781i1) yr1里上
 1JfE 辺 隆 !柑し、゛電話 (77:l) 
l II l ”ミ茫夕′5、補正の対象 明に111潜の[発明の、’l’inlな説明」のfl
l’l及び「図面の第2図」 6、補正の内容 1)明m書第10頁12行目の「明るい対物レンズでし
かも充分な」を「明るい対物レンズでしか、充分な」と
訂正する。 2)同第11頁11行目の「像の劣化により」を削除す
る。 3)同第14頁6行目の「担し」を「但し」と訂正する
。 4)同第17頁下から4行目のrM = −0,45J
をrM=−0,045Jと訂正する。 5)同第18頁下から4行目のrM=−0,40Jをr
 M =−0,04Jと訂正する。 6)図面の第2図中の記号「dO」をrDI Jと別紙
のとおり訂正する。 以上
Fig. 1 is a sectional view showing a schematic configuration of a rear focus converter according to the present invention installed between an objective lens and a single-lens reflex camera body, and Fig. 2 is a cross-sectional view showing a schematic configuration of a rear focus converter according to the present invention installed between an objective lens and a single-lens reflex camera body. This is a lens configuration diagram of the first embodiment, showing the positional relationship between the reference objective lens and the rear focus conversion lens in the infinity focusing state. System configuration diagram, Figure 10 (A
) (B) to Figure 17 (A) and (B) are the 1st to 8th figures, respectively.
These are various aberration diagrams of Examples, in which (A) of each figure shows an infinity focused state, and each figure (B) shows a closest distance focused state,
Figure 18 is a schematic illustration of the composition of the composite thread when another embodiment of the RFC according to the present invention is attached between the objective lens and the camera body and focused on an object at infinity. Fig. 20 is a schematic configuration explanatory diagram when focusing on a finite distance object.
Figure 21 is a diagram of the configuration of the lens in the infinity focused state in which the RF C of the ninth embodiment is used as a reference objective and is attached to the lens. FIG. 22 is a configuration diagram of the lens/swivel in the far-focus state, and is of the 11th embodiment.
23 to 25 are lens configuration diagrams in the infinity focus state with C attached to the reference objective lens, and 9th, 10th, and 10th, respectively.
FIG. 9 is a diagram of various aberrations in the closest distance focusing state of the eleventh embodiment. (Explanation of symbols of main parts) Lo...Objective lens I (, F C...77 Orcus comparator/shi/
G0... Front group G2... Back group Applicant Nippon Kogaku Co., Ltd. Agent Takashi Watanabe Male Figure 2 O, 5 Figure 4 Figure 5 O 6 Figure 7 Figure RFC FD 3rd prisoner RFC, f-10 prisoner, 5ph Asty (A) Oθ777a δPhASt/ Dis △αt, (Ar prisoner (f3) (,,oma 11th 5PhASt/ Figure (A) o777a Kozuki prisoner 5PhASt/ D15 △B, chr (f3), 6θ77?α 21Z diagram (7 A) oma og2 sPh A 5v Dis lαt, chγ Figure CB) Cθma 15th Di5 △at,, Ccr Figure (A) Co deposit α Translation, sp'h A3-b D; δ L (Zb, Chr Figure CB) C0 ga Sph AsuDノδ L(2t・θ・ ](A) ovta Sp'j4 DノSL(It, C/rr Figure (6) (o77?a Figure 15 DK3 △at chr (A) At Cθγ/+15 δphAst/ D75 Lat, Chr Figure (B) Fang j6 Figure D;,s Lat, Chr (A) □o 'rnα 16th figure δph Ast/ Di, 5 Lt2t, Chr CB) C/θ77?a 11th prisoner (3ph 13+st D;s lat, C1w 'A) C0γa f-17 figure (B) Cθ Cao a O' 23 SphAsv Figure co'yna Spear 24 D;s Lat, C/nr Figure Co77?a Aug 1 Cause Cθ777a Procedural correction Eye (spontaneous) 2. Name of the invention Rear Force Conversion Lens 3° Corrector Incident 171g 'lVI'fRJllhIj, /
\Tokyo-[Kunouchi 3-T, III Ward, No. 2-3 (4]
1) 11 optical engineering facilities! ■, Shikisha Futaoka Shigekuda TT Rizansamu 1-Cho 1+, + Shigetada Oka 4, Agent 〒140 East 5; Yu 1%l, Seven Rivers Ward Nishijinnol'l 1
-1-16 No. 3 11 lights! :? -L'JJ,'l,1
(Meeting? 1 Large) 1 Factory (781i1) yr1 Satogami 1JfE Takashi Be! Please call (77:l)
l II l ``Mi'inl explanation of the invention'' of 111 subtitles in the subject of amendment '5, subject of amendment fl
l'l and "Figure 2 of the drawings" 6. Contents of correction 1) "A bright objective lens is sufficient" on page 10, line 12 of the Meiji M is corrected to "Only a bright objective lens is sufficient." do. 2) Delete "Due to image deterioration" on page 11, line 11. 3) In the 6th line of page 14, ``carry'' is corrected to ``provided''. 4) rM on page 17, 4th line from the bottom = -0,45J
is corrected to rM=-0,045J. 5) Set rM=-0,40J on the 4th line from the bottom of page 18 to r
Correct M = -0.04J. 6) Correct the symbol "dO" in Figure 2 of the drawings to rDI J as shown in the attached sheet. that's all

Claims (1)

【特許請求の範囲】 対物レンズとカメラボディとの間r装着され、該対物し
/ズとの合成系の焦点距離を該対物レンズの焦点距離よ
りφ、拡大するためのリアコ/バージョ/し/ズであっ
て、該対物し/ズ及び該カメラボディに対して相対的に
光軸上を移動可能な正J11;折力の前群と負屈折力の
後群とを有し、該両群の移動VCより無限遠から所定の
近距離までの物体VC合焦り能であり、該jf′屈折力
の前群は最も物体側に配置され物体側に凸面を向けた負
メニスカスレ/ズと該負メニスカスレ/ズの像側に配置
された正レンズとを有し7、無限遠合焦状態における焦
点距離の拡大倍率をβ、無限遠から所定の近距離1で合
焦Lブ(ときの合成パンクフォーカスBf (r)変化
量をΔBf、該リアコすバージョ/レンズの焦点距離=
 r Hl、該リアコ/バーショ/し/ズの最も物体側
レンズ面の頂点からAil配対物し/ズによる像点寸で
の距離をd。、前記前群及び後群の焦点距離をそれぞれ
fl、f2とするとき、13くβ< 2.5 (11 1ΔB (/ f B l < 0.2 (2)0.4
< l B l /d o’βH< 0.9 (3)−
2,0< f 2/’f 1<−0,31(410,6
< l f1/fR1<1.8 (5)0.3<’ l
 f 2/ f kL l (0,6(61の各条件を
満足することを特徴とするリアフォーカスコンバージョ
ンレンズ0
[Scope of Claims] A rear camera/version/shield mounted between an objective lens and a camera body for enlarging the focal length of a composite system with the objective lens by φ than the focal length of the objective lens. a positive lens movable on the optical axis relative to the objective lens and the camera body; a front group having a refracting power and a rear group having a negative refractive power; It is the ability to focus on an object VC from infinity to a predetermined short distance from the moving VC of , and the front group of the jf' refractive power is a negative meniscus lens with a convex surface facing the object side and a negative meniscus lens with a convex surface facing the object side. A positive lens placed on the image side of / (r) The amount of change is ΔBf, the rear correction version/lens focal length =
r Hl, d is the distance from the vertex of the most object-side lens surface of the rear camera/version/shi/z in terms of the image point size according to the Ail objective lens. , when the focal lengths of the front group and the rear group are fl and f2, respectively, 13 β < 2.5 (11 1 ΔB (/ f B l < 0.2 (2) 0.4
<lBl/d o'βH<0.9 (3)-
2,0<f2/'f1<-0,31(410,6
< l f1/fR1<1.8 (5) 0.3<' l
f 2/ f kL l (0, 6 (rear focus conversion lens 0 characterized by satisfying each of the 61 conditions)
JP58137375A 1983-07-27 1983-07-27 Rear focus conversion lens Granted JPS6028614A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58137375A JPS6028614A (en) 1983-07-27 1983-07-27 Rear focus conversion lens
US06/632,103 US4655558A (en) 1983-07-27 1984-07-18 Rear focus conversion lens apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58137375A JPS6028614A (en) 1983-07-27 1983-07-27 Rear focus conversion lens

Publications (2)

Publication Number Publication Date
JPS6028614A true JPS6028614A (en) 1985-02-13
JPH0441804B2 JPH0441804B2 (en) 1992-07-09

Family

ID=15197212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58137375A Granted JPS6028614A (en) 1983-07-27 1983-07-27 Rear focus conversion lens

Country Status (1)

Country Link
JP (1) JPS6028614A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015152618A (en) * 2014-02-10 2015-08-24 オリンパス株式会社 Teleconverter and imaging system including the same
GB2583820A (en) * 2019-02-27 2020-11-11 Canon Kk Converter lens, interchangeable lens, and image capturing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015152618A (en) * 2014-02-10 2015-08-24 オリンパス株式会社 Teleconverter and imaging system including the same
GB2583820A (en) * 2019-02-27 2020-11-11 Canon Kk Converter lens, interchangeable lens, and image capturing apparatus
GB2583820B (en) * 2019-02-27 2022-03-02 Canon Kk Converter lens, interchangeable lens, and image capturing apparatus
US11474332B2 (en) 2019-02-27 2022-10-18 Canon Kabushiki Kaisha Converter lens, interchangeable lens, and image capturing apparatus

Also Published As

Publication number Publication date
JPH0441804B2 (en) 1992-07-09

Similar Documents

Publication Publication Date Title
US5136430A (en) Inner focusing type telephoto zoom lens
US5315441A (en) Inverse telephoto large aperture wide angle lens
US4394071A (en) Lens system with fill-in lens
JPH0437403B2 (en)
JPH07119888B2 (en) Re-imaging optics
US5448412A (en) Telephoto zoom lens system
US5007720A (en) Lens system enabling close distance photographing
US4437734A (en) Lenses capable of close-up photography
US5502597A (en) Wide-angle photographic lens system and a photographic camera
JPS6155088B2 (en)
US4705364A (en) Wide angle lens
US4412725A (en) Rear stop diaphragm zoom lens
US4422734A (en) Photographic lens system having an auxiliary lens
JPS588482B2 (en) compact nazum lens
JPH028282B2 (en)
JPH0576607B2 (en)
JPS5979212A (en) Zoom lens using synthetic resin material
JPH0420163B2 (en)
US4426137A (en) Gauss type photographic lens
JPS58132207A (en) Wide angle zoom lens
JPS6028614A (en) Rear focus conversion lens
JPH07318798A (en) Photographic lens
US4934797A (en) Wide-angle lens system of a retrofocus type
JPH0128923B2 (en)
US5900988A (en) Viewfinder having a high magnification ratio

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees