JPS6028606A - Manufacture of infrared ray transmitting fiber - Google Patents

Manufacture of infrared ray transmitting fiber

Info

Publication number
JPS6028606A
JPS6028606A JP58135910A JP13591083A JPS6028606A JP S6028606 A JPS6028606 A JP S6028606A JP 58135910 A JP58135910 A JP 58135910A JP 13591083 A JP13591083 A JP 13591083A JP S6028606 A JPS6028606 A JP S6028606A
Authority
JP
Japan
Prior art keywords
core
tube
fiber
heat
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58135910A
Other languages
Japanese (ja)
Inventor
Mitsuo Kasori
加曽利 光男
Hironori Maki
牧 博憲
Takeshi Takano
高野 武止
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58135910A priority Critical patent/JPS6028606A/en
Publication of JPS6028606A publication Critical patent/JPS6028606A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/106Single coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/102Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type for infrared and ultraviolet radiation

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To obtain a uniform core clad interface and to form a protective layer without impairing the surface of a core fiber by fitting a heat shrinkable tube onto the outer circumference of the clad surrounding the core. CONSTITUTION:The outer surface of a core fiber 3 is covered with a roll-pressed clad 2 and sheathed with a heat shrinkable tube 1. A fiber composed of the 3- layer structure of the core 3, the clad 2, and the tube 1 by shrinking it by properly heating the tube 1. Any material can be used for the core 3 and the clad 2 so long as they are small in loss of absorption in the IR region, and they can be constituted by combining ones high and low in the refractive index. Halides, such as TlBr, TlCl, AgBr, AgCl, CsCl, and CsBr, are suitable for the core fiber to be used here. A heat-shrinkable ''Teflon'' tube and a polyvinyl chloride tube, etc., heat shrink by 30% at low temps. up to the max. temp. of 250 deg.C, and hence, they are useful as the tube 1.

Description

【発明の詳細な説明】 〔発明の技術外野〕 本発明はコアとクラッド層を有するステップインデック
ス型の赤外伝送ファイバーの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a step-index type infrared transmission fiber having a core and a cladding layer.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

赤外光を伝送するファイバーの開発は近年急速に進歩し
、各種の組成が提案され、又、それに付随する特徴的な
製造方法が検討されている。
The development of fibers that transmit infrared light has progressed rapidly in recent years, and various compositions have been proposed, and associated characteristic manufacturing methods are being investigated.

例えばタリウムハライドや銀ハライドを熱間押し出しで
作る多結晶ファイバー、そしてアルカリハライドの単結
晶ファイバーをEFG法、MPD法などをでより製造し
ておシ、いずれも実用的な光損失値が得られている。こ
れらのファイバーはCO2レーザー光のような尚出力の
赤外光伝送用としてレーザー加工機そして医用レーザー
メスなどに応用されようとしている。ステップインデッ
クス型のファイバーとは多結晶又は単結晶よp成るコア
の周囲にコアよりも屈折率の低いクラッド層を被覆し、
コアとクラッドとの界面での反射をくり返して光を伝え
るものである〇 これらのステップインデックス型ファイバーのクシラド
層被覆の方法はファイバー組成その他によって異なるが
、代表例を孕げると次の錘でおる。
For example, polycrystalline fibers made by hot extrusion of thallium halide or silver halide, and single-crystalline fibers of alkali halide are produced by EFG method, MPD method, etc., and practical optical loss values can be obtained in both cases. ing. These fibers are being applied to laser processing machines and medical laser scalpels for transmitting high-power infrared light such as CO2 laser light. A step-index fiber is a core made of polycrystalline or single crystal, which is covered with a cladding layer that has a lower refractive index than the core.
Light is transmitted by repeated reflections at the interface between the core and cladding. The method of coating the Kushirad layer on these step-index fibers varies depending on the fiber composition and other factors, but in a typical example, the following weight is.

例えば多結晶ファイバーではコアをクラッドで被酒した
押し出し用のプリフォームをまず成形した後熱間押し出
しでファイバー化する方法がちシ、又多結晶ファイバー
ではコアファイバーの製造後にコア組成よりも低融点で
低屈折率の結晶融液中全通過させて被1する方法などが
ある。
For example, in the case of polycrystalline fibers, it is common to first form a preform for extrusion in which the core is covered with a cladding, and then convert it into fibers by hot extrusion. There is a method in which the entire beam is passed through a crystal melt having a low refractive index.

しかしながら熱間押し出し法では押し出し時にコア部結
晶とクラッド部1帖晶とかがみ合って粒成長するためコ
アークラッド果面が平滑にならず、云送光が故乱さJL
る欠点があった。又、低融点で低屈折率な結晶融液全1
IJ11遇させる際にはコア部かラクラソド部へのc5
け込みが生じ平滑なコアークラッド界面を得ることは困
推でちった。
However, in the hot extrusion method, the core crystal and the clad crystal interlock with each other during extrusion, resulting in grain growth, so the core clad surface does not become smooth and light transmission is disrupted.
There were some drawbacks. In addition, all crystal melts with low melting point and low refractive index
When dealing with IJ11, use c5 to the core part or lakrasod part.
It was difficult to obtain a smooth core-clad interface due to the denting.

尖i(光伝送ファイバーが具備すべき項目とじて保護層
の被覆が必要である。保護層−は樹脂又は低融点金属な
どによってファイバー外表面に施されるものでファイバ
ーの機械的、化学的劣化を防止する目的を持っている。
(One of the items that an optical transmission fiber should have is a protective layer coating.The protective layer is a coating made of resin or low melting point metal on the outer surface of the fiber, and prevents mechanical and chemical deterioration of the fiber.) The purpose is to prevent

しかしながらファイバー外表面を損うことなく保護層を
被覆するには困難なのが実状であシ、均一な外表面を保
ったまま施行できる保護層の被覆方法が望まれていた。
However, in reality, it is difficult to coat the fiber with a protective layer without damaging the outer surface of the fiber, and a method of coating the protective layer that can be applied while maintaining a uniform outer surface has been desired.

ファイバー外表面を損うことはひいてはファイバーの伝
送特性へ悪影響を及ぼすためである。
This is because damaging the outer surface of the fiber has an adverse effect on the transmission characteristics of the fiber.

〔発明の目的〕[Purpose of the invention]

本発明は上述した欠点を解消すべく成されたものでちり
、均一なコアークラッド界面を有し、かつファイバー表
面を損うことなく保護層の被覆が可能な赤外伝送ファイ
バーの製造方法を提供するものである。
The present invention has been made to solve the above-mentioned drawbacks, and provides a method for manufacturing an infrared transmission fiber that has a uniform core-clad interface and can be coated with a protective layer without damaging the fiber surface. It is something to do.

〔発明の概要〕[Summary of the invention]

本発明は単結晶又は多結晶ファイバーよ構成るコアの外
周囲に該コアよりも屈折率が低いクラット層を配し、更
に該クラッドの外周囲に熱収縮チューブを配した後、該
熱収縮チューブを収縮せしめることにより保強層を形成
する赤外伝送ファイバーの製造方法である0 すなわち第1図の即くコアコアイノ< −(3)の外周
囲をロール圧延成形したクラッド(2)でおおい、これ
を熱収縮チューブ(1)内に人ルる。しかる後熱収縮チ
ューブを適当な熱処理によシjilij縮せしめると第
2図の如くコア、クラソドセして島状昂チューブ(すな
わち保畿層)の三重14遺から成るファイバーとなる。
In the present invention, a cladding layer having a refractive index lower than that of the core is arranged around the outer periphery of a core made of a single crystal or polycrystalline fiber, and a heat-shrinkable tube is further arranged around the outer periphery of the cladding, and then the heat-shrinkable tube is This is a manufacturing method of an infrared transmission fiber in which a reinforcing layer is formed by shrinking the fiber. Place it inside the heat shrink tube (1). Thereafter, the heat-shrinkable tube is shrunk by an appropriate heat treatment, and as shown in FIG. 2, the fiber is made up of 14 triple layers of core and crass tubes (i.e., insulation layer).

本発明によればコアークラッド界面の平滑性を保つこと
ができ、又保護層被覆時にクラッド外表面を損うことが
ない。更に、保護INとしての島状+4hiチューブの
収縮させる工程のみによりコアークラッド−保護jりを
被覆させることができ、従来コアとクラッド、クラッド
と保護層を各々、別工程で行われていたよりも簡便であ
り、かつ短時間で施行できるものである。
According to the present invention, the smoothness of the core-clad interface can be maintained, and the outer surface of the clad is not damaged during coating with a protective layer. Furthermore, the core cladding and the protective layer can be covered only by the process of shrinking the island-like +4hi tube as the protective IN, which is simpler than the conventional process of separating the core and cladding, and the cladding and protective layer, respectively. and can be implemented in a short period of time.

本発明においてコアそしてクラッドの材質は赤外域での
吸収損失が小さい物質でめればよく屈折率の高低を組み
合せることで構成できる。
In the present invention, the materials of the core and cladding can be selected from materials with low absorption loss in the infrared region, and can be constructed by combining high and low refractive indexes.

ただしファイバーとして使用するためにはへき解性がな
く、可とう性VC富む事が必要で赤外域で透明で町とり
性に冨む材質、例えばTll3r 、TIJOII。
However, in order to use it as a fiber, it needs to be non-cleavable, rich in flexible VC, transparent in the infrared region, and highly flexible, such as Tll3r and TIJOII.

AgBr 、Ag0A! 、OsI 、0sBr など
のハロゲン化物、又は、それらの混会物から組み合わせ
ることができる。又、り2ツド材の可とう件が充分でな
い場合はクラッド層を薄くする。又は、ロール圧延加工
をタフマン温度以下の温度で77Fl熱しながら行なう
事が効果的である。又、保護層となる熱収縮チューブは
化学的、機械的な劣化が少ない材質で可とり性を有すれ
ばよく、例えば熱収縮テフロンチューブそして塩化ビニ
−iなどは最大でも250°C以下の低い温度で 〜3
0%収雇し有用である。
AgBr, Ag0A! , OsI, OsBr, or a mixture thereof. Also, if the flexibility of the resin material is not sufficient, the cladding layer should be made thinner. Alternatively, it is effective to carry out the roll rolling process while heating at 77 Fl at a temperature below the Tuffman temperature. In addition, the heat-shrinkable tube that serves as the protective layer only needs to be made of a material with little chemical and mechanical deterioration and have removability; for example, heat-shrinkable Teflon tubes and vinyl chloride-I can be used at temperatures as low as 250°C or less. At temperature ~3
It is useful as it earns 0%.

〔発明の実施例〕[Embodiments of the invention]

以下実施例にもとづき詳細に説明する。 A detailed explanation will be given below based on examples.

まずOsI単結晶ファイバーをMPIJ法で製造した。First, an OsI single crystal fiber was manufactured by the MPIJ method.

#精義法によp高純度化されたOsI結晶を用い、N2
 :l(2; 1 : l (vol比)の#囲気中で
l(7グステンヒータの抵抗加熱によシ融解した。
# Using OsI crystal purified by Seigi method, N2
:l(2; 1:l (vol ratio)) was melted by resistance heating with a gsten heater in a # atmosphere of 1:l (vol ratio).

MPD法用のるつぼオリフィスから流出したOsI融液
を柚結晶で受け、該種結晶を徐々に引きさげながら融液
を単結晶ファイバー化した。ファイバーの一部からX線
ラウェ写真を撮影し、単結晶でめることを確めた。得ら
れた直径1.2蔵、長さ80Ctaの7アイバーの周囲
にロール圧延成形した0、3i1irN厚のU s l
(+ r薄板を第1図の120ぐに配し、更に外径3,
0朋、内径2.6+;+wLQ熱収縮島状ロ7チューブ
内YCjI人した。これをホットエアーガ/により一端
から加熱して熱収縮チューブを収縮せしめ、コア、クシ
ノドぞし゛C昧護層(熱収縮デフロンナユーフ)から成
る直径2.2uのノアイバートシた。
The OsI melt flowing out from the orifice of the crucible for the MPD method was received by a yuzu crystal, and the melt was turned into a single crystal fiber while gradually pulling down the seed crystal. An X-ray Laue photograph was taken of part of the fiber, confirming that it was a single crystal. A U sl of 0.3ilirN thickness was roll-formed around the obtained 7-eye bar with a diameter of 1.2Cta and a length of 80Cta.
(+r Arrange the thin plate at 120 in Fig. 1, and further set the outer diameter to 3,
0, inner diameter 2.6+; This was heated from one end with a hot air gas to shrink the heat-shrinkable tube, resulting in a 2.2-u-diameter plastic tube consisting of a core and a carbon protective layer (heat-shrinkable defroner tube).

このファイバーの002レーザー光(波長10.6μI
n)の1べ送損失ケ測〆したところ0.82 dB/I
anと低損失で心つ1こ〇 父、同様にして得た直径1.10誠、長さl mのCs
1ノアイバーにロール圧延成形した0、15i+g厚の
0s13r薄板を第3図の如くに配して熱収縮テフロン
チューブ内に挿入した。この時、チューブは外径2.4
TIm、内径2.0鮎のものを使用した。挿入後ホノト
エアーガ/ll′icよQ加熱してナユープを収縮させ
外径1.6mmのファイバーとした。このファイバーの
CO□レーザー光伝送損失は0.78dB/m と低損
失であシフラッド層を薄くしても伝送損失に影響しなか
った。
This fiber's 002 laser light (wavelength 10.6μI
The transmission loss of n) was measured and was 0.82 dB/I.
A Cs with a diameter of 1.10 mm and a length of l m obtained in the same way with an and low loss.
A 0s13r thin plate having a thickness of 0.15i+g, which was roll-formed from a No. At this time, the tube has an outer diameter of 2.4
TIm, sweetfish with an inner diameter of 2.0 was used. After insertion, the fibers were heated with a honoto air gas to shrink the nape and form a fiber with an outer diameter of 1.6 mm. The CO□ laser light transmission loss of this fiber was as low as 0.78 dB/m2, and even if the shift layer was made thinner, the transmission loss was not affected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明VCよる熱収縮チューブを収縮させる前
段階における+11r面図である。第2図は収縮後の横
断面図である。第3図は実施例中の熱収縮チューブを収
量させる前段階シておける横111r面でbる0 1、 熱収縮チューブ(保護層) 2、 クラッド層 3、 コア 代理人 弁理士 則 :I!1: 憲 佑(他1名)第
1 第2図 ユ( −ミ 第8図 ・Z 3 ア
FIG. 1 is a +11r side view of a heat-shrinkable tube made of the VC of the present invention at a pre-shrinkage stage. FIG. 2 is a cross-sectional view after shrinkage. Figure 3 shows the horizontal 111r plane of the heat-shrinkable tube in the example before it is harvested. 1: Kensuke (and 1 other person) 1st Figure 2 U (-mi Figure 8/Z 3 A

Claims (1)

【特許請求の範囲】 ■)多結晶又は単結晶から成るコアの外周囲に、該コア
よシも屈折率の小さいクラッド部を有し、該クラッドの
外周囲に保一層を有する赤外伝送ファイバーの製造方法
において、保護層として熱収縮ナユープを用い、該チュ
ーブの熱収縮により保護層を形成することを特徴とする
赤外伝4ファイバーの製造方法。 2)熱収縮チューブの収縮が250°C以下の温度亭 で行なわれることを特徴とする特許請求範1t1第1”
A 1iピ載の赤外伝送ファイバーの製造方法。 3)熱収縮チューブの材質かテフロ/又は塩化ビニール
であることを特徴とする特許謂^囲第2項記載の赤外1
へ送ファイバーの製造方法。 ・1)コアおよびクランドの材質がOsl、0sBr。 TRI 、TlBr 、kgBr 、kgcllの一奸
より選ばれた結晶から成る単−6外もしくは混合物でら
る也とを4し 特徴とする特許請求範囲第3項記載の赤外伝送ファイバ
ーの製造方法。
[Claims] (1) Infrared transmission fiber having a core made of polycrystal or single crystal, a cladding portion having a small refractive index around the core, and a protective layer around the outside of the cladding. 1. A method for producing an infrared ray 4 fiber, characterized in that a heat-shrinkable tube is used as the protective layer, and the protective layer is formed by heat-shrinking the tube. 2) Claim 1t1 No. 1, characterized in that the shrinkage of the heat-shrinkable tube is carried out at a temperature of 250°C or less.
A method for manufacturing an infrared transmission fiber mounted on a 1i pin. 3) Infrared light 1 described in item 2 of the so-called patent, characterized in that the material of the heat-shrinkable tube is Teflon/or vinyl chloride.
A method for producing fibers to be fed to.・1) Core and gland materials are Osl and 0sBr. 4. The method for manufacturing an infrared transmission fiber according to claim 3, characterized in that the fiber is made of a single crystal or a mixture of crystals selected from TRI, TlBr, kgBr, and kgcll.
JP58135910A 1983-07-27 1983-07-27 Manufacture of infrared ray transmitting fiber Pending JPS6028606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58135910A JPS6028606A (en) 1983-07-27 1983-07-27 Manufacture of infrared ray transmitting fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58135910A JPS6028606A (en) 1983-07-27 1983-07-27 Manufacture of infrared ray transmitting fiber

Publications (1)

Publication Number Publication Date
JPS6028606A true JPS6028606A (en) 1985-02-13

Family

ID=15162688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58135910A Pending JPS6028606A (en) 1983-07-27 1983-07-27 Manufacture of infrared ray transmitting fiber

Country Status (1)

Country Link
JP (1) JPS6028606A (en)

Similar Documents

Publication Publication Date Title
CA1246913A (en) Low loss cladded optical fibers from halides and process for making same
JPS6053844B2 (en) Infrared optical fiber and its manufacturing method
EP0079708B1 (en) Infrared transmitting material consisting of silver chloride and silver bromide
JPH0684254B2 (en) Radiation resistant multiple fibers
US6074968A (en) Chalcogenide glass fiber
US4652288A (en) Method of producing infrared image guide
US5651083A (en) Core insertion method and apparatus for making optical fiber preforms and optical fibers fabricated therefrom
JPS6124349B2 (en)
JPS5844403A (en) Light transmission cable
JPS58149007A (en) Multiple fibers
JPS6028606A (en) Manufacture of infrared ray transmitting fiber
Nishii et al. Low‐loss chalcogenide glass fiber with core‐cladding structure
JPH0380131A (en) Chalogenide glass fiber having core-clad structure
JPS6051083B2 (en) Optical transmitter for infrared transmission
JPS61252505A (en) Image fiber and its manufacture
JPS6051082B2 (en) infrared transmitter
JPS61232242A (en) Production of bundle fiber for simultaneous transmission of visible and ultraviolet light
JP2547068B2 (en) Radiation resistant multiple fibers
JPH02275732A (en) As-s glass fiber having core clad structure
JPS60218607A (en) Image guide of two-layer structure
JP2846452B2 (en) Carbon coated optical fiber
JPS5941932B2 (en) Method and apparatus for optical fiber manufacturing
JPH0555456B2 (en)
JPS60101502A (en) Infrared transmitting fiber and its manufacture
JPS63167305A (en) Taper-like optical transmission body and its production