JPS6028605A - Manufacture of infrared ray transmitting material - Google Patents

Manufacture of infrared ray transmitting material

Info

Publication number
JPS6028605A
JPS6028605A JP58135909A JP13590983A JPS6028605A JP S6028605 A JPS6028605 A JP S6028605A JP 58135909 A JP58135909 A JP 58135909A JP 13590983 A JP13590983 A JP 13590983A JP S6028605 A JPS6028605 A JP S6028605A
Authority
JP
Japan
Prior art keywords
filter
quartz glass
transmitting material
crucible
infrared transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58135909A
Other languages
Japanese (ja)
Inventor
Yoshihiro Akasaka
芳浩 赤坂
Kazuo Anzai
安斎 和雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58135909A priority Critical patent/JPS6028605A/en
Publication of JPS6028605A publication Critical patent/JPS6028605A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D17/00Rubidium, caesium or francium compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/102Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type for infrared and ultraviolet radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To form an IR transmitting material into granules or a flaky powder by filtering it in a molten state to remove impurities and successively dropping it to solidify it through rapid cooling. CONSTITUTION:High purity CsBr power available on the market is solidified in advance into ingot 3 and placed in a filtration device as a starting material. H2 is introduced in a flow rate of 200cc/min through a gas inlet 6 at the bottom of the device for one hr, and the temp. is raised to 500 deg.C in an atmospheric pressure. The ingot 3 begins to melt on reaching the m.p. and gradually passes through a quartz glass filter 1 to remove impurities. Then, it drops through the outlet end 2b of the filter 1 as liquid droplets, and collides with the bottom of a crucible 5 made of transparent quartz having the bottom 30cm below the lower end of an electric heater 4. The droplets are scattered and solidified by rapid cooling into granules or a flaky powder in a state easily capable of being taken out without crushing the crucible 5.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は赤外線透過材料の製造方法(二関し、更に詳し
くはアルカリハライド、金属ハライドを主成分とする赤
外線透過材料の製造方法!−関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for producing an infrared transmitting material (more particularly, it relates to a method for producing an infrared transmitting material whose main component is an alkali halide or a metal halide!).

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

CO,レーザ光等の大パワー赤外線レーザー光を透過又
は伝送する赤外線透過材料としては、CsI。
An example of an infrared transmitting material that transmits or transmits high power infrared laser light such as CO or laser light is CsI.

CsBr、kgcl、TlBr及びT/I等が知られて
いる。
CsBr, kgcl, TlBr, T/I, etc. are known.

ところがこれらの赤外線透過材料から成る光ファイバ(
=、パワー密度が数Kwlcd1以上の高エネルギーの
レーザー光を透過伝送した場合、しばしば、光ファイバ
が溶解破損することがあった。この現象C二ついては、
材料中C二含まれる不純物が光を吸収して発熱すること
が一因としてあげられる。また不純物が存在した場合、
不純物の光吸収(二よるレーザー光伝送時の光損失量の
増加、更には、光フアイバ表面の粗面化に起因する光の
散乱損失量の増加といった問題が生じていた。本発明者
等は先≦二乾燥ガス雰囲気中で、不純物を含有する赤外
線透過材料を加熱溶融した後、該材料を石英ガラス製フ
ィルターでろ過し、次いで得られたろ液を固化する方法
で上記問題を解決した赤外線透過材料を得る方法を出願
した。しかしろ液を固化する際、透明石英ガラス製ルツ
ボ中で行うため、赤外線透過材料と透明石英ガラス製ル
ツボとが固着して赤外線透過材料の取出しが容易でない
場合があった。この場合、取出しのためには透明石英ル
ツボを破壊して取出しを行なう方法が比較的簡便である
が、石英ルツボの再使用ができない欠点の他破壊の際、
石英ガラス粉等の不純物が赤外線透過材料C:混入し、
高エネルギーのレーザ光を透過伝送した場合、溶解破損
することが考えられる。よって透明石英ガラス製ルツボ
を破壊せずに赤外線透過材料を取り°出す方法が望まれ
ている。
However, optical fibers made of these infrared-transmissive materials (
=, When a high-energy laser beam with a power density of several Kwlcd1 or more is transmitted through the optical fiber, the optical fiber is often melted and damaged. For this phenomenon C two,
One reason for this is that impurities contained in C2 in the material absorb light and generate heat. Also, if there are impurities,
Problems have arisen, such as an increase in light loss during laser beam transmission due to light absorption by impurities, and an increase in light scattering loss due to the roughening of the optical fiber surface. An infrared transmitting method that solves the above problem by heating and melting an infrared transmitting material containing impurities in a dry gas atmosphere, filtering the material through a quartz glass filter, and then solidifying the obtained filtrate. However, since the filtrate is solidified in a transparent quartz glass crucible, the infrared transmitting material and the transparent quartz glass crucible may stick together, making it difficult to take out the infrared transmitting material. In this case, it is relatively easy to destroy the transparent quartz crucible and take it out, but in addition to the disadvantage that the quartz crucible cannot be reused,
Impurities such as quartz glass powder are mixed into the infrared transmitting material C:
If high-energy laser light is transmitted through it, it is possible that it will be melted and damaged. Therefore, there is a need for a method of taking out an infrared transmitting material without destroying a transparent quartz glass crucible.

〔発明の目的〕[Purpose of the invention]

本発明は上記の欠点を改良し、透明石英ガラス製ルツボ
な破壊することなく容易(二高純度の赤外線透過材料を
製造する方法を提供することを目的とする。
The object of the present invention is to improve the above-mentioned drawbacks and provide a method for easily producing a high-purity infrared transmitting material without destroying a transparent quartz glass crucible.

〔発明の概要〕[Summary of the invention]

本発明の赤外線透過材料の製造方法は赤外線透過材料を
溶融状態で不純物をろ過除去し、引き続き溶融液な滴下
急冷固化すること(二よって果粒状ないしはフレーク状
の粉末を製造することを特徴とする。
The method for producing an infrared transmitting material of the present invention is characterized by filtering and removing impurities from the infrared transmitting material in a molten state, and then rapidly cooling and solidifying the melt by dropping it (thereby producing a powder in the form of granules or flakes). .

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の対象物である赤外線透過材料としては、KCI
 、KB’r 、CsBr及びCsI等のアルカリハラ
イド、AgCl!、 AgBr 、 TlCl及びTl
Br等の金属ハライドが例示されるがこの他C二も赤外
線透過材料とじて使用されるものであればいかなるもの
も適用可能である。
The infrared transmitting material that is the object of the present invention includes KCI
, KB'r , alkali halides such as CsBr and CsI, AgCl! , AgBr, TlCl and Tl
Metal halides such as Br are exemplified, but in addition to C2, any material that can be used as an infrared transmitting material can be used.

係る赤外線透過材料を中の不純物を溶融状態でろ過する
フィルターとしては、例えば、石英ガラス粒子焼結体及
び石英ガラスファイバーがあげられる。石英ガラス製フ
ィルターを用いると、不純物であるStO,が効率良く
除去される。
Examples of filters that filter impurities in the infrared transmitting material in a molten state include sintered quartz glass particles and quartz glass fibers. When a quartz glass filter is used, StO, which is an impurity, is efficiently removed.

石英ガラス焼結体を用いたろ過器の一例を第1図L:示
した。該ろ過器は、石英ガラスを粉砕し、その粒度なそ
ろえて円板状(二焼結成形したフィルターlを、例えば
石英ガラス製のロー1z(alt二溶着固定して成る構
造を有する。焼結成形フィルター1の細孔径は、不純物
を除去する上で、小さい程良く、実用上数μm以下が好
ましい。
An example of a filter using a sintered silica glass body is shown in FIG. 1L. The filter has a structure in which a filter L is formed by crushing quartz glass and arranging the granules into a disk shape (secondary sintering) and fixing it to a quartz glass row 1z (alt 2) welding. The smaller the pore diameter of the shaped filter 1 is, the better, in terms of removing impurities, and for practical purposes, it is preferably several μm or less.

また、石英ガラスファイバを用いたろ過器の一例を第2
図〜第4図に示した。いずれのろ過器も、ガラスファイ
バをロー ト2(a)のろ液漏山部入口付近(二密(二
充填し、これをフィルター1としたものである。ガラス
ファイバの径は、不純物を除去する上で小さい程良く、
実用上数μm以下が好ましい。
In addition, an example of a filter using silica glass fiber is shown in the second example.
It is shown in Figs. In both filters, glass fibers are placed near the inlet of the filtrate leakage part of funnel 2 (a) (two-packed (two-packed), and this is used as filter 1. The diameter of the glass fiber is The smaller the better,
Practically speaking, the thickness is preferably several μm or less.

ガラスファイバの充填量、充填密度は、ろ過器の大きさ
、ろ過器の量等を勘案した上で決定されるが、一般C二
光填量を多くシ、密度を高くすることが奸才しい。
The filling amount and packing density of the glass fibers are determined by taking into account the size of the filter, the amount of the filter, etc., but it is a good idea to increase the filling amount and density of the glass fiber. .

一方、ろ過器の構造等は格別限定されないか、通常1石
英ガラスから成り、薗たる過試料の回収率を高めるため
には、フィルター部の体積を小さくシ、かつろ過動率が
島い構造とすることが好ましい。溶融状態でろ過し、不
純物を除去された赤外線透過材料の溶融液は、次いでろ
過器の下端に設けられた開口端からに’6閑として落下
し液滴は石英ガラス製ルツホ底あるいはルツボC二股け
られた石英ガラス製シャヘイ板で飛散するととも(二急
冷同化されること(二よって未粒状あるいはフレーク状
の粉末となる。石英ガラス製ルツボは底部及び底部近傍
は赤外線透過材料の融点よりも充分低い温at=保たれ
ている必要がある。すなわち底部の位置が′心気炉下端
より約30CI!L以上離れていることが望ましいが、
ルツボな例えは水冷構造にして冷却するなどの方法をと
ればルツボ底部の位置は約30(Xよりも高くても差つ
かえがい。以上のような赤外線透過材料の製造装置の一
例を第5図に概略図で示した。図中、3はロー)2(a
)に収納されたろ過試料、4は試料を周囲から加熱溶解
する電気炉、5はろ液を収容する石英ガラス製ルツボ、
6は乾燥ガスの導入口、7は乾燥ガスの排出口、8はろ
過器の温度測定用熱電対、9Vi石英ガラス製炉心管、
10は石英ガラス製ルツボ5の支持具、11は石英ガラ
ス製円板、12は炉心管9の上下C:挿嵌〜されたシリ
コンゴム栓である。
On the other hand, the structure of the filter is not particularly limited, and is usually made of quartz glass.In order to increase the recovery rate of the excess sample, the volume of the filter part should be small and the filtration rate should be low. It is preferable to do so. The molten liquid of the infrared transmitting material, which has been filtered in a molten state and impurities removed, then falls gently from the open end provided at the lower end of the filter, and the droplets are transferred to the bottom of a quartz glass crucible or to the bifurcated crucible C. When it is dispersed on the quartz glass Shahei plate (2), it is rapidly cooled and assimilated (2) and becomes an ungranular or flake-like powder. It is necessary to maintain a low temperature at.In other words, it is desirable that the bottom position is at least about 30 CI!L away from the lower end of the core.
As an example of a crucible, if a method such as using a water-cooled structure for cooling is used, the bottom of the crucible will be at a position of approximately 30° (even if it is higher than It is shown in a schematic diagram. In the figure, 3 is low) 2 (a
), 4 is an electric furnace that heats and melts the sample from the surroundings, 5 is a quartz glass crucible that houses the filtrate,
6 is a drying gas inlet, 7 is a drying gas outlet, 8 is a thermocouple for measuring the temperature of the filter, 9Vi quartz glass furnace tube,
10 is a support for the crucible 5 made of quartz glass, 11 is a disk made of quartz glass, and 12 is a silicone rubber stopper inserted into the upper and lower parts of the furnace core tube 9.

以下区:、該装置を用いた本発明の製造方法!二ついて
述べる。まず、本発明方法を適用する(=際しては、予
め残存する有機物を除去しておくことが望ましいが1通
常、その除去は困難であるため、予めろ過試料を加熱し
て、残存有機物を分解し炭化しておくことが望ましい。
The following sections: The manufacturing method of the present invention using the apparatus! I will talk about two things. First, when applying the method of the present invention, it is desirable to remove the remaining organic substances in advance.1 Normally, it is difficult to remove them, so the filtered sample is heated in advance to remove the remaining organic substances. It is desirable to decompose and carbonize it.

まず、不純物を含有するろ過試料3を所定量ろ過器内(
二収納する。次いで、装置下部のガス導入口6から塵埃
を除去した乾燥ガスの導入を開始する。ここで使用する
乾燥ガスとしては、水素及びアルコン、望累等の不活性
ガスが例示される。尚、全編ハライドは、反応性が高い
ため、これらのガスは水分及び酸素を含んでいないこと
が好ましい。
First, a predetermined amount of the filtered sample 3 containing impurities is placed inside the filter (
Two storage. Next, introduction of dry gas from which dust has been removed is started from the gas inlet 6 at the bottom of the device. Examples of the drying gas used here include hydrogen and inert gases such as alkone and methane. Incidentally, since the full-length halide has high reactivity, it is preferable that these gases do not contain moisture and oxygen.

このためτ:は、高純度カスを用いればよい。またアル
ゴン等の不活性ガスを用いると、試料中の炭素粒子が凝
集してろ過され易くなるため、導入ガスとして、不活性
ガスを用いることが好ましい。
Therefore, for τ:, a high-purity residue may be used. Furthermore, if an inert gas such as argon is used, the carbon particles in the sample will aggregate and become easier to filter, so it is preferable to use an inert gas as the introduced gas.

次C二、炉心管9内の空気を十分に乾燥ガスで置換した
後、ガス導入を継続しながら試料3をその溶融温度以上
C二加熱する。昇温速度は格別限定されないが、装置の
性能に応じ、速やかに昇温することが好ましい。ろ過は
通常、大気圧下で行なわれ、溶融した試料は自重(二よ
り、除々口ろ過されていく。ろ適時間は、通常、試料1
00 tあたり数分程度である。
Next, after the air in the furnace tube 9 has been sufficiently replaced with dry gas, the sample 3 is heated to a temperature higher than its melting temperature by C2 while continuing to introduce the gas. Although the heating rate is not particularly limited, it is preferable to raise the temperature quickly depending on the performance of the apparatus. Filtration is usually carried out under atmospheric pressure, and the molten sample is filtered under its own weight (from the second to the bottom).The appropriate filtration time is usually
It takes about several minutes per 00 t.

尚、本発明で用いる装置類は、図示したものC二限定さ
れることはなく、乾燥ガス雰囲気中で、試料を加熱溶融
し、ろ過することが可能な装置類であれば、いかなるも
のも使用可能である。
Note that the equipment used in the present invention is not limited to those shown in the figure, and any equipment can be used as long as it is capable of heating, melting, and filtering a sample in a dry gas atmosphere. It is possible.

以上のよう(二、有機物、炭素粒子等の不純物は。As mentioned above (2. Impurities such as organic substances and carbon particles.

フィルター(二よりろ取されて除去される。尚、赤外線
透過材料中のS鴫は、単なるフィルターを用いただけで
は除去することができず、石英ガラス製フィルターを用
いること(二よって初めて除去される。Sin、の除去
機構は明確ではないが、通常の機械的除去機構と共も一
、フィルターを構成する石英ガラスとの化学的なある種
の反応機構が作用しているものと考えられる。また、理
由は明らかではないが、不活性ガスを導入しながらろ過
操作を行なうと炭素粒子が凝集し、該粒子のろ過動率が
向上する。
It is removed by filtration using a filter (2). Note that the S-sulfur in the infrared transmitting material cannot be removed by simply using a filter; it is removed only by using a quartz glass filter (2). Although the removal mechanism of Sin is not clear, it is thought that in addition to the usual mechanical removal mechanism, some kind of chemical reaction mechanism with the quartz glass that constitutes the filter is at work. Although the reason is not clear, when the filtration operation is performed while introducing an inert gas, the carbon particles coagulate and the filtration rate of the particles increases.

上記のろ過操作鑞二よって、ろ過されたろ液は溶融液状
態でろ過器の下部の開口端2(b)から液滴とし落下し
、透明石英ガラス製ルツボ5の底部に衝突して飛散し、
急冷固化すること(二よって果粒状あるいはフレーク状
の粉末と力る。
According to the above filtration operation, the filtered filtrate falls in a molten state as droplets from the lower open end 2(b) of the filter, collides with the bottom of the transparent quartz glass crucible 5, and scatters.
Rapid cooling and solidification (thus forming a powder in the form of granules or flakes).

〔発明の効果〕〔Effect of the invention〕

本発明によって不純物を除去した後の赤外線透過材料は
透明石英ガラス製ルツボi;固着せず、透明石英裏ガラ
スルツボな破壊すること彦く赤外線透過材料を透明石英
ガラス製ルツボから米粒又はフレーク状で取り出すこと
ができる。また、融液が急冷されることによって原子の
微視的混合が完全Cユなるため、微量不珂物を溢刀0し
た材料や固溶体材料の均質化に極めてイ丁効な手段とな
る。
According to the present invention, the infrared transmitting material after impurities have been removed is placed in a transparent quartz glass crucible. It can be taken out. In addition, since the microscopic mixing of atoms becomes complete by rapidly cooling the melt, it becomes an extremely effective means for homogenizing materials containing a trace amount of amorphous materials or solid solution materials.

〔発明の実施例〕[Embodiments of the invention]

ろ過原料として、市販高純度CaBr試導粉末(純度9
9.59!nを予め溶融固化したインコツトを用いた。
As a filtration raw material, commercially available high-purity CaBr test powder (purity 9
9.59! Inkotsuto, in which n was melted and solidified in advance, was used.

この溶融固化は次のようじして行なった。This melting and solidification was carried out as follows.

即ち、上記した約150 fのCsBr粉末を石英ガラ
ス製ボートに充填し、これを横型電気炉中(=載置した
後、高純度1yrガス流血下(ガス流通の線速度はポー
ト部で約20儂/分)、昇温速度200〜bットを寿だ
。該インゴット中区二は、残存有機物の炭化物である炭
素微粒子が凝集した数μm程度のリン片状析出物が多数
観察された。更(二数μm程度の環状不純物も観察され
た。
That is, the CsBr powder of about 150 f described above was filled into a quartz glass boat, placed in a horizontal electric furnace, and then heated under high-purity 1 yr gas flow (the linear velocity of gas flow was about 20 m at the port). The heating rate was 200 to 200 bt (1/min).In the middle section of the ingot, many scale-like precipitates of about several μm in size were observed, which were aggregates of carbon fine particles, which were carbides of residual organic matter. Furthermore, a cyclic impurity (about a few micrometers) was also observed.

次に、rha記イフィンゴツト第5図C二示した装置を
用いてろ過した。ろ過器は直&1〜6μmの石英ガラス
ファイバを約0.3f充填したものである。該ろ過器C
二おけるロー)2(al上部の内径は44認、フィルタ
ー部の内径は10mで長さが20關、ロート下部のノズ
ル部の内径は3絽である。また、炉心管9は内径52調
の石英ガラス製である。電気炉4はカンタル線発熱体を
用いたもので、680〜700℃の範囲内(:ある等温
帯の巾は約150 mである。試料温度については、フ
ィルター上部で測定した。
Next, it was filtered using the apparatus shown in FIG. The filter was filled with about 0.3 f of straight quartz glass fibers of 1 to 6 μm. The filter C
The inner diameter of the upper part of the funnel is 44mm, the inner diameter of the filter part is 10m and the length is 20mm, and the inner diameter of the nozzle part at the bottom of the funnel is 3mm.Furthermore, the furnace tube 9 has an inner diameter of 52mm. It is made of quartz glass.The electric furnace 4 uses a Kanthal wire heating element, and is heated within the range of 680 to 700°C (the width of one isothermal zone is approximately 150 m.The sample temperature is measured at the top of the filter. did.

ろ過操作は、上記装置を用いて次のよう(二行なった。The filtration operation was carried out in two steps using the above device as follows.

まず、前記インゴットをろ過器に収納し、装置下部のガ
ス導入口6から水素ガスを流量200cC/分(ロート
部で線密度9ぼ7分)で、約1時間流した後、大気圧下
で500°0/時で昇温した。
First, the ingot was placed in a filter, and hydrogen gas was passed through the gas inlet 6 at the bottom of the device at a flow rate of 200 cC/min (linear density of 9 to 7 min at the funnel) for about 1 hour, and then heated under atmospheric pressure. The temperature was raised at 500°/hour.

インゴットは融点に達すると溶融し始め、溶融液状(=
なり順次フィルターを通過して不純物が除去される。次
いでろ過器下端の開口端2(b)から液滴として落下し
、電気炉4の下端から30c1n下部に底をもつ透明石
英ガラス製ルツボ5の底部≦二衝突して飛散し急冷固化
されることによって、未粒状あるいはフレーク状の粉末
となった。粉末は透明石英ガラス製ルツボを破壊するこ
となく容易(二取り出すことができた。
When the ingot reaches its melting point, it begins to melt and becomes a molten liquid (=
Impurities are removed by sequentially passing through filters. Then, the droplets fall from the open end 2(b) at the lower end of the filter, collide with the bottom of the transparent quartz glass crucible 5 whose bottom is 30cm below the lower end of the electric furnace 4, and are scattered and rapidly solidified. This resulted in ungranular or flaky powder. The powder could be easily taken out (2) without destroying the transparent quartz glass crucible.

こうして得られfcCsBr質材料の純度は99.9%
であった。CO2レーザーの波長10.6μm付近C二
吸収帯があるSin、不純物量は、ろ過器1:: 0.
2ppm であったものが、0.11)pIn以下(検
出限界)(二減少した。
The purity of the fcCsBr material obtained in this way is 99.9%.
Met. Sin has a C2 absorption band near the wavelength 10.6 μm of the CO2 laser, and the amount of impurities is filter 1:: 0.
What was 2 ppm decreased by 0.11) pIn or less (detection limit).

該材料の組織を光学顕微鏡で観察したが、不純物は発見
されなかった。また、該材料を用いて直径1順、長さ1
mの単結晶導光ファイバを10本作成し、これl: 1
00 WのCO,レーザー光を透過したが。
The structure of the material was observed using an optical microscope, but no impurities were found. Also, using this material, diameter 1 order, length 1 order
10 single-crystal light guide fibers of m are made, and this is l: 1
00 W CO, laser light was transmitted.

8解破損は全く認められなかった。8 No damage was observed at all.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は石英ガラス粒子焼結体フィルターを用いたろ過
器の斜視図、第2図、第3図及び第4図は石英ガラスフ
ァイバフィルターを用いたろ過器のが1視図、第5図は
ろ過装置の概略断面図である。 l・・・石英ガラス製フィルター、2(a)・・・ロー
ト、2(b)・・・ロート開口端、3・・・ろ過試料、
4・・・電気炉、 5・・・石英ガラス製ルツホ、6・
・・ガス導入口、 7・・・ガス排出口。 8・・・温度測定用熱電対、 9・・・石英ガラス製炉心管、 10・・・石英ガラス製ルツボ支持具。 11・・・石英ガラス製円板、12・・・シリコンゴム
栓。 代理人 弁理士 則近憲佑 (他1名)第 1 図 図 第3図 第4図
Figure 1 is a perspective view of a filter using a sintered silica glass particle filter, Figures 2, 3, and 4 are perspective views of a filter using a silica glass fiber filter, and Figure 5 is a perspective view of a filter using a silica glass fiber filter. is a schematic cross-sectional view of the filtration device. l: quartz glass filter, 2(a): funnel, 2(b): funnel opening end, 3: filtration sample,
4... Electric furnace, 5... Quartz glass Rutsuho, 6...
...Gas inlet, 7...Gas outlet. 8... Thermocouple for temperature measurement, 9... Quartz glass furnace core tube, 10... Quartz glass crucible support. 11... Quartz glass disc, 12... Silicone rubber stopper. Agent Patent attorney Kensuke Norichika (1 other person) Figure 1 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 赤外線透過材料の製造方法において、該赤外線透過材料
を溶融状態で不純物をろ過除去し、引き続き溶融液を滴
下急冷固化すること口よって、果粒状ないしはフレーク
状の粉末を製造することを特徴とする。赤外線透過材料
の製造方法。
The method for producing an infrared transmitting material is characterized in that impurities are removed by filtration from the infrared transmitting material in a molten state, and then the melt is dropped and rapidly solidified to produce a powder in the form of granules or flakes. A method for producing an infrared transmitting material.
JP58135909A 1983-07-27 1983-07-27 Manufacture of infrared ray transmitting material Pending JPS6028605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58135909A JPS6028605A (en) 1983-07-27 1983-07-27 Manufacture of infrared ray transmitting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58135909A JPS6028605A (en) 1983-07-27 1983-07-27 Manufacture of infrared ray transmitting material

Publications (1)

Publication Number Publication Date
JPS6028605A true JPS6028605A (en) 1985-02-13

Family

ID=15162664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58135909A Pending JPS6028605A (en) 1983-07-27 1983-07-27 Manufacture of infrared ray transmitting material

Country Status (1)

Country Link
JP (1) JPS6028605A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007313435A (en) * 2006-05-26 2007-12-06 Tokyo Electric Power Co Inc:The Quartz glass filter
US10308541B2 (en) 2014-11-13 2019-06-04 Gerresheimer Glas Gmbh Glass forming machine particle filter, a plunger unit, a blow head, a blow head support and a glass forming machine adapted to or comprising said filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007313435A (en) * 2006-05-26 2007-12-06 Tokyo Electric Power Co Inc:The Quartz glass filter
US10308541B2 (en) 2014-11-13 2019-06-04 Gerresheimer Glas Gmbh Glass forming machine particle filter, a plunger unit, a blow head, a blow head support and a glass forming machine adapted to or comprising said filter

Similar Documents

Publication Publication Date Title
EP1076043B1 (en) Process for producing dense quartz glass granules
US4490287A (en) Treatment of substances
GB2129418A (en) Manufacture of elongate glass elements having refractive index distribution
RU2016118813A (en) MIXTURES OF FORMING MATERIALS CONTAINING AN OXIDE BORN COMPOUND AND METHOD FOR PRODUCING FORMS AND ROD
CN104570199B (en) A kind of selen-tellurjum monocrystalline composite fiber and preparation method thereof
CN103502787A (en) Ceramic pressure sensor and method for producing same
TW576823B (en) The method of preparing a fluoride
US20180282196A1 (en) Method for producing a component of rare earth metal-doped quartz glass
JPS6028605A (en) Manufacture of infrared ray transmitting material
TW202304811A (en) Silica powder and production method therefor
US4251250A (en) Process and apparatus for the production of light conducting fibers
JPS59123529A (en) Production of infrared transmittable material
Inoue et al. Laser patterning of non-linear optical Bi2ZnB2O7 crystal lines in glass
JP2005505486A (en) Preparation of alkaline earth and alkali metal fluoride feedstocks
DE1134518B (en) Process for the granulation and simultaneous doping of fusible semiconductor material
US3468638A (en) Method of producing crystalline rods from semiconductor compounds
CN107764622B (en) Method for filtering decomposition liquid of continuous casting covering slag
JP2005035825A (en) Crucible and method for manufacturing fluoride crystal
JP5097427B2 (en) Method for producing metal silicon powder, method for producing spherical silica powder, and method for producing resin composition
JPH0624771A (en) High-purity opaque quartz glass and its production
Ursu et al. Growth of large ultratransparent KCl single crystals
RU2080308C1 (en) Method of manufacturing isotropic optically transparent benzhydroxyl quartz sand
JP3317338B2 (en) Wavelength conversion crystal, method of manufacturing the same, and laser device using the same
JPH01115897A (en) Production of magnesium fluoride single crystal
Zorin et al. Microinhomogeneities in tellurite glasses