JPS6028417A - Styrene-based heat-resistant and impact-resistant resin - Google Patents

Styrene-based heat-resistant and impact-resistant resin

Info

Publication number
JPS6028417A
JPS6028417A JP13673683A JP13673683A JPS6028417A JP S6028417 A JPS6028417 A JP S6028417A JP 13673683 A JP13673683 A JP 13673683A JP 13673683 A JP13673683 A JP 13673683A JP S6028417 A JPS6028417 A JP S6028417A
Authority
JP
Japan
Prior art keywords
polymerization
unsaturated dicarboxylic
styrene
maleic anhydride
graft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13673683A
Other languages
Japanese (ja)
Inventor
Kazunobu Tanaka
田中 一伸
Hirotaka Miyata
宮田 浩隆
Tokuji Tanaka
田中 得治
Naoya Yabuuchi
尚哉 薮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP13673683A priority Critical patent/JPS6028417A/en
Publication of JPS6028417A publication Critical patent/JPS6028417A/en
Pending legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)

Abstract

PURPOSE:To obtain the titled resin having unsaturated dicarboxylic acid anhydride group distributed non-uniformly on the graft-copolymerized side chain, by polymerizing an aromatic vinyl compound and an unsaturated dicarboxylic acid anhydride in the presence of a graft-polymerizable elastomer according to a specific method. CONSTITUTION:(A) 100pts.wt. of a monomer mixture composed mainly of (a) 55-98(wt)% aromatic vinyl compound (e.g. styrene) and (b) 2-45% unsaturated dicarboxylic acid anhydride (e.g. maleic anhydride) is graft-copolymerized in the presence of (B) 5-30pts.wt. of a graft-polymerizable elastomer (e.g. polybutadiene) by the following method. The component B is dissolved in a part of the necessary amount of the component A, the polymerization is started, the component (b) is added continuously in the former half period of the polymerization, the supply of the component (b) is stopped at the latter half stage of the polymerization to consume the component (b) in the system completely, and the polymerization reaction is continued.

Description

【発明の詳細な説明】 本発明は、エラストマーにグラフトしたビニル芳香族化
合物と不飽和ジカルボン酸無水物を主成分とする共重合
体より成るスチレン系耐熱・#衝撃性樹脂の製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a styrenic heat-resistant/impact-resistant resin comprising a copolymer whose main components are a vinyl aromatic compound grafted onto an elastomer and an unsaturated dicarboxylic acid anhydride. be.

即ち、本発明は、ビニル芳香族化合物55乃至98重量
%及び不飽和ジカルボン酸無水物2乃至45重量%を主
成分とする単量体混合物100重量部に対し、グラフト
共重合性エテヌトマー5乃至30重量部の共存下にグラ
フト共重合せしめて耐熱・耐衝撃性樹脂を製造する方法
において、重合時期の前半には重合系に不飽和ジカルボ
ン酸無水物を連続的に添加し、重合時期の後半には、不
飽和ジカルボン酸無水物の添加を完全に停止し、不飽和
ジカルボン酸無水物単量体を完全に消費せしめてなお重
合反応を継続せしめる事により、グラフト共重合体側鎖
部分の共重合連鎖において不飽和ジカルボン酸無水物の
分布疎密性を有せしめる事により、従来技術に比し、よ
り耐熱性に優れ、1つ、極性高分子との相溶性に富む等
の特徴を有するスチレン系耐熱性、耐衝撃性樹脂の製造
方法に関する。
That is, in the present invention, 5 to 30 parts by weight of a graft copolymerizable ethene to 100 parts by weight of a monomer mixture whose main components are 55 to 98 weight % of a vinyl aromatic compound and 2 to 45 weight % of an unsaturated dicarboxylic acid anhydride. In the method of producing a heat-resistant and impact-resistant resin by graft copolymerizing in the coexistence of parts by weight, an unsaturated dicarboxylic acid anhydride is continuously added to the polymerization system in the first half of the polymerization period, and in the second half of the polymerization period. By completely stopping the addition of the unsaturated dicarboxylic anhydride and allowing the polymerization reaction to continue even after completely consuming the unsaturated dicarboxylic anhydride monomer, the copolymerization chain of the side chain portion of the graft copolymer can be reduced. Styrenic heat resistant material has superior heat resistance compared to conventional technology by having unsaturated dicarboxylic acid anhydride distribution density in , relates to a method for producing impact-resistant resin.

一般Vこスチレン系樹脂は、安価で、強靭、軽量その他
便利な性質を有するのでプラスチックス製品として多用
されている。しかしその欠点である耐熱性の低さを改良
する為に無水マレイン酸等の不飽和ジカルボン酸無水物
を共重合して、耐熱性を向上ぜしめる技術が従来より知
られている。例えば特公昭47−31118号及び特公
昭54−19914号等がその例である。
General V styrene resins are widely used as plastic products because they are inexpensive, strong, lightweight, and have other convenient properties. However, in order to improve the low heat resistance, which is a drawback, a technique has been known in which the heat resistance is improved by copolymerizing an unsaturated dicarboxylic acid anhydride such as maleic anhydride. For example, Japanese Patent Publication No. 47-31118 and Japanese Patent Publication No. 54-19914 are examples.

更にスチレン・無水マレイン酸共重合樹脂の脆性を改良
する為にゴム成分にグラフト共重合して耐熱・耐衝撃性
樹脂を得る方法が特公昭55−7849号において知ら
れている。この方法は、スチレン・無水マレイン酸共重
合体の製造において無水マレイン酸が比較的少量の状態
に於ても、交互共重合性を示し、共重合反応性が高いた
め、反応の全期間無水マレイン酸を連光に反応系に添加
して反応を均一化ならしめる方法と従来の高衝撃スチレ
ン樹脂(ゴムグラフト化ポリスチレン)やABS樹脂に
おいて知られているゴムグラフト化の方法を組み合せた
ものである。
Furthermore, in order to improve the brittleness of a styrene/maleic anhydride copolymer resin, a method of graft copolymerizing a rubber component to obtain a heat-resistant and impact-resistant resin is known from Japanese Patent Publication No. 7849/1983. This method shows alternating copolymerization even in a relatively small amount of maleic anhydride in the production of styrene/maleic anhydride copolymer, and has high copolymerization reactivity. This is a combination of the method of adding acid to the reaction system in continuous light to make the reaction uniform, and the rubber grafting method known for conventional high-impact styrene resins (rubber-grafted polystyrene) and ABS resins. .

しかしながら、この方法では、本発明者らの検討の結果
によれば、耐衝撃性賦与の為にゴム成分が添加されるの
で、無水マレイン酸共重合量がスチレンとの比率で10
重量%以下では無水マレイン酸共重合により得られた耐
熱性向上効果が相当程度減殺されてしまうのである。又
無水マレイン酸共重合量が10重爪形を超える場合には
、添加するゴム成分による耐衡撃性向上効果が減殺され
る。この事実は当業者にとっても至極当然の帰結と考え
られている。又、重合時期全期にわたって微量の無水マ
レイン酸を添加する従来技術は繁雑で、殊に重合時期の
後半において高粘度の重合系に低粘度の無水マレイン酸
系単量体を添加する事は混合等の工学的問題を残されて
いた。本発明者らは、この現象を更に詳細に検討した結
果、遂に新規な本発明に到達したのである。
However, according to the results of studies conducted by the present inventors, in this method, since a rubber component is added to impart impact resistance, the amount of maleic anhydride copolymerized is 10% in proportion to styrene.
If the amount is less than % by weight, the effect of improving heat resistance obtained by maleic anhydride copolymerization is considerably reduced. Furthermore, if the amount of copolymerized maleic anhydride exceeds 10 folds, the effect of improving the impact resistance due to the added rubber component is diminished. This fact is considered to be a natural conclusion even for those skilled in the art. Furthermore, the conventional technique of adding a small amount of maleic anhydride throughout the entire polymerization period is complicated, and adding a low-viscosity maleic anhydride monomer to a high-viscosity polymerization system in the latter half of the polymerization period is especially difficult for mixing. Other engineering problems remained. The present inventors studied this phenomenon in more detail and finally arrived at the novel invention.

本発明によればグラフト共重合体側鎖部分の共重合連鎖
tこおいて不飽和ジカルボン酸無水物の分布疎密性を有
せしめる事により、従来技術では得られなかったところ
の耐熱性に秀れた耐衝撃性樹脂を得る事が出来るのであ
る。
According to the present invention, excellent heat resistance, which could not be obtained with conventional techniques, is achieved by providing a dense and dense distribution of unsaturated dicarboxylic acid anhydride in the copolymerization chain t of the side chain portion of the graft copolymer. This makes it possible to obtain impact-resistant resin.

本発明の効果が得られる技術的理由は、未だ充分詳らか
にされていないが、スチレン・無水マレイン酸共重合体
を例にとった場合、該共重合体が耐熱性を与える理由が
、■高分子主鎖に閉環構造を有する無水マレイン酸が組
み込まれ、主鎖が剛直となり主鎖まわりの自由回転がが
なり束縛される事及び■スチレン骨格と無水マレイン酸
骨格の極性効果により、相当の分子間引力により分子の
自由運動が束縛される事等による熱運動の制限である事
に鑑みて、本発明の方法へにより無水マレイン酸が部分
的に稠密に配列された主鎖構造を有せしめる事により前
記■及び■の要因が更に相当に助長されるのではないか
と考えられる。
Although the technical reasons for the effects of the present invention have not yet been fully clarified, taking the styrene/maleic anhydride copolymer as an example, the reason why the copolymer provides heat resistance is: Maleic anhydride with a closed ring structure is incorporated into the main chain of the molecule, and the main chain becomes rigid and free rotation around the main chain is loosened and restrained. Also, due to the polar effect of the styrene skeleton and maleic anhydride skeleton, a considerable amount of the molecule In view of the fact that thermal movement is restricted due to the free movement of molecules being constrained by gravity, the method of the present invention allows maleic anhydride to have a main chain structure in which it is partially arranged densely. It is thought that the above-mentioned factors (1) and (2) are further amplified by this.

本発明によればグラフトノv÷;) 當r 讐誓殴無水
マレイン酸の偏在したTapered な(無水マレイ
ン酸濃度の除々に変化する)構造を有するブロック状の
(無水マレイン酸共重合部分と非共重合部分が化学結合
で結合された)主鎖構造を有する主体部分と無水マレイ
ン酸が稠密に結合した主鎖構造及び無水マレイン酸が非
常に過疎に結合した(ポリスチレンホモポリマーモ含め
た)主鎖構造部分が少量的に独立して混在する。これら
を相溶化せしめて稠密な無水マレイン酸を有する主鎖の
耐熱性向上効果を相剰的に発揮せしめるのは、Tape
red な構造部分の役目であ゛る。
According to the present invention, a block-like (non-cooperative with the maleic anhydride copolymerized portion) having a tapered (gradually changing maleic anhydride concentration) structure in which maleic anhydride is unevenly distributed. A main chain structure in which the main part and maleic anhydride are densely bonded (polymerized portions are bonded by chemical bonds) and a main chain in which maleic anhydride is bonded very sparsely (including polystyrene homopolymer) Structural parts are mixed independently in small amounts. Tape compatibilizes these and mutually exhibits the effect of improving the heat resistance of the main chain having dense maleic anhydride.
This is the role of the red structural part.

一般に性質の異なる2種以上の高分子を機械的にブレン
ドした場合、微細に相溶化して、重合系の性質が相剰的
に向上するケースは極めて稀で、僅かにポリ塩化ビニル
/二l−IJルゴムやポリフェニレンオキシド/ゴムグ
ラフト化ポリスチレン等のケースが知られているのみで
ある。
Generally, when two or more polymers with different properties are mechanically blended, it is extremely rare that they become finely compatibilized and the properties of the polymerized system are mutually improved; -IJ rubber and polyphenylene oxide/rubber grafted polystyrene are the only known cases.

しかし同一の系で同時に重合反応せしめる事により、本
来、相異なる2種以上の性質の示すべき組合せが相溶化
して相剰効果を示す例が近年いくつか知られる様になり
、例えば1.nterpenet−もその端的な一例で
ある。
However, in recent years, several examples have come to light in which combinations of two or more different properties that should originally exhibit compatibilization and exhibit a compatibilizing effect are caused by simultaneous polymerization reactions in the same system, such as 1. nterpenet- is also a simple example.

事実、スチレン・無水マレイン酸共重合体においても、
機械的ブレンドtこおいては、本発明者らの検討結果に
よれば、無水マレイン酸共重合平均組成が5重量%前後
製上異なるスチレン・無水マレイン酸共重合体同志の組
合せては、充分な相溶性を示さない。
In fact, even in styrene/maleic anhydride copolymer,
In mechanical blending, according to the study results of the present inventors, a combination of different styrene/maleic anhydride copolymers with an average maleic anhydride copolymer composition of around 5% by weight is sufficient. Shows no compatibility.

従がって本発明の効果の要因は、同一の系で同時に重合
反応せしめてTaperedな構造要素を有せしめ得た
事等にも拠ると考えられる。
Therefore, it is thought that the effect of the present invention is due to the fact that tapered structural elements can be obtained by simultaneous polymerization reactions in the same system.

従がって、又反応の前半に不飽和ジカルボン酸を全く添
加せず、反応の後半に不飽和ジカルボン酸を反応系に添
加する方法では、相互しこ相溶性のない混合マトリック
ス樹脂を生成せしめる事となり耐熱性等の性質が著るし
く劣った樹脂となるので本発明の範囲には含まれない。
Therefore, in a method in which unsaturated dicarboxylic acid is not added at all in the first half of the reaction and unsaturated dicarboxylic acid is added to the reaction system in the second half of the reaction, a mixed matrix resin that is not compatible with each other is produced. This results in a resin with significantly inferior properties such as heat resistance, and is therefore not within the scope of the present invention.

本発明の実施に際しては、重合プロセスが回分操作の場
合は、重合反応期間中、所要不飽和ジカルボン酸無水物
を重合反応の前半のみ連続的に添加するとか時間的に断
続的に何回かに分割して汐加する方法とかが採用される
。この場合重合反応の後半′における不飽和ジカルボン
酸無水物の添加停止時期では、重合系中に不飽和ジカル
ボン酸無水物七ツマ−が全く欠在して、他の少なくとも
ビニル芳香族化合物モノマーを含む1種以上のモノマー
が存在して重合反応が進行する事が必要である。又連続
操作の場合は、プロセス後段の重合槽には不飽和ジカル
ボン酸無水物を連続的に添加しプロセス後段の重合槽に
は不飽和ジカルボン酸無水物を全く添加しない様にして
連続操作を行なう事によっても本発明方法は達成し得る
。勿論、本発明方法はこれらの例示に限定されるもので
はない。
When carrying out the present invention, if the polymerization process is a batch operation, the required unsaturated dicarboxylic acid anhydride may be added continuously during the polymerization reaction only in the first half of the polymerization reaction, or may be added intermittently several times during the polymerization reaction period. A method such as dividing and adding water is adopted. In this case, when the addition of the unsaturated dicarboxylic anhydride is stopped in the latter half of the polymerization reaction, the unsaturated dicarboxylic anhydride monomer is completely absent from the polymerization system, and at least other vinyl aromatic compound monomers are present. It is necessary that one or more monomers be present in order for the polymerization reaction to proceed. In the case of continuous operation, the unsaturated dicarboxylic acid anhydride is continuously added to the polymerization tank at the latter stage of the process, and the unsaturated dicarboxylic acid anhydride is not added at all to the polymerization tank at the latter stage of the process. The method of the present invention can also be achieved depending on the situation. Of course, the method of the present invention is not limited to these examples.

更に連続操作において特に反応槽がピストンフロー的な
場合には、重合液の滞溜時間(重合液流れ速度)、共重
合反応速度を勘案して反応槽中への不飽和ジカルボン酸
無水物の1個又は複数個の添加位置を調節する事により
本発明方法の達成する事が可能である。
Furthermore, in continuous operation, especially when the reaction tank is a piston-flow type, the amount of unsaturated dicarboxylic anhydride added to the reaction tank should be adjusted in consideration of the residence time of the polymerization solution (polymerization solution flow rate) and the copolymerization reaction rate. The method of the present invention can be achieved by adjusting one or more addition positions.

この場合には、反応槽中の不飽和ジカルボン酸無水物か
添加されない箇所の少なくとも一部の帯域では、不飽和
ジカルボン酸無水物が全く欠在して、他の少なくともビ
ニル芳香族七ツマ−を含む1種製上の化ツマ−が存在し
て重合反応が進行する事が必要である。
In this case, at least some zones in the reactor where unsaturated dicarboxylic anhydride is not added are completely devoid of unsaturated dicarboxylic anhydride and at least other vinyl aromatic heptamers are present. It is necessary for the polymerization reaction to proceed in the presence of one of the above polymers.

斯様に本発明は、関連の従来技術では解決し得なかった
技術課題を緻密に検討した結果、達成し得た新規技術で
ある。
In this way, the present invention is a new technology that has been achieved as a result of careful study of technical problems that could not be solved with related prior art.

本発明に於てビニル芳香族単量体としては、スチレン、
α−メチルスチレン、ビニルトルエン、ハロースチレン
類(例、t +f o−クロルスチレン、P−クロルス
チレン等)などおよびそれらの混合物があげられる。
In the present invention, the vinyl aromatic monomer includes styrene,
Examples include α-methylstyrene, vinyltoluene, halostyrenes (eg, t+f o-chlorostyrene, P-chlorostyrene, etc.), and mixtures thereof.

不飽和ジカルボン酸無水物としては無水マレイン酸、ク
ロロマレイン酸無水物、ジクロロマレイン酸無水物、シ
トラコン酸無水物、イタコン酸無水物、フェニルマレイ
ン酸無水物、アコニット酸無水物などおよびそれらの混
合物があげられる。
Examples of unsaturated dicarboxylic anhydrides include maleic anhydride, chloromaleic anhydride, dichloromaleic anhydride, citraconic anhydride, itaconic anhydride, phenylmaleic anhydride, aconitic anhydride, and mixtures thereof. can give.

本発明においてビニル芳香族単量体と不飽和ジカルボン
酸無水物の量比は、前者が55〜98重量%に対し、後
者が2〜45重量%の範囲に限定される。不飽和ジカル
ボン酸無水物が2重量%より少ない場合は充分な#熱性
向上の効果が望めない。又45重量%より多い場合は生
成する共重合体が重合系に不溶解のため析出して均一重
合が行なえなくなること、分子量が低くなること、耐水
性が相当低下すること、溶融流動性が悪くなること等プ
ラヌチノクス製品としての欠点が多くなり、不都合であ
る。
In the present invention, the quantitative ratio of the vinyl aromatic monomer to the unsaturated dicarboxylic acid anhydride is limited to a range of 55 to 98% by weight of the former and 2 to 45% by weight of the latter. If the amount of unsaturated dicarboxylic anhydride is less than 2% by weight, a sufficient effect of improving thermal properties cannot be expected. If the amount exceeds 45% by weight, the resulting copolymer will be insoluble in the polymerization system and will precipitate, making it impossible to carry out homogeneous polymerization, lowering the molecular weight, significantly lowering water resistance, and poor melt fluidity. This is inconvenient because it has many drawbacks as a Planutinox product.

本発明にいうグラフト重合性エラヌトマーは、単量体混
合物100重量部に対し、5〜30重量部用いられる。
The graft polymerizable elanuttomer according to the present invention is used in an amount of 5 to 30 parts by weight based on 100 parts by weight of the monomer mixture.

5重量部より少ない場合は、充分な耐衝撃性の向上効果
が望めないし、30重量部より多い場合は、得られる樹
脂が柔軟になりすぎて充分な耐熱性向上効果が期待出来
なくなると同時に重合系が高粘度になり過ぎて適度な混
合性を示さなくなるので好ましくない。
If it is less than 5 parts by weight, a sufficient effect of improving impact resistance cannot be expected, and if it is more than 30 parts by weight, the resulting resin becomes too flexible and a sufficient effect of improving heat resistance cannot be expected, and at the same time polymerization This is not preferable because the system becomes too viscous and does not exhibit adequate miscibility.

グラフト重合性エラストマーの種類としては、ビニルグ
ラフト重合し得る、アIJ l基水素、不飽和結合等を
有するエラストマーがすべて含まれ、実例としてはポリ
ブタジェン(シス−1,4結合が主体)、シンジオタク
チック−1,2−ポリゲタジエン、スチレン−ブタジェ
ンランダムコポリマー、SBS又はSB型スチレンープ
クジエンブロツクコポリマー又はその部分水素添加物、
ニトリルゴム、マレイン化ゴム、ポリイソプレン、ポリ
クロロプレン、両末端官能性液状ポリゲタジエン、不飽
和基含有アクリルゴム、ノルボルナジェン又はンクロペ
ンタシエン等ヲ共重合したEPDM等のエラストマーや
、ABS、MBS、高衝撃性スチレン樹脂等のゴムグラ
フト樹脂等があげられる。
Types of graft-polymerizable elastomers include all elastomers that can be graft-polymerized with vinyl and have hydrogen, unsaturated bonds, etc. Examples include polybutadiene (mainly composed of cis-1,4 bonds), syndiotactic Chic-1,2-polygetadiene, styrene-butadiene random copolymer, SBS or SB type styrene-butadiene block copolymer or partially hydrogenated product thereof,
Elastomers such as EPDM copolymerized with nitrile rubber, maleated rubber, polyisoprene, polychloroprene, liquid polygetadiene with functional terminals, acrylic rubber containing unsaturated groups, norbornadiene or cyclopentadiene, ABS, MBS, and high impact properties. Examples include rubber graft resins such as styrene resins.

又、必要やこ応じて、抗酸化剤、紫外線吸収剤、滑剤、
可塑剤及び着色剤等の添加剤を重合前、重合中又は重合
後に適宜添加することが出来る。
In addition, antioxidants, ultraviolet absorbers, lubricants,
Additives such as plasticizers and colorants can be added as appropriate before, during or after polymerization.

本発明の方法により得られる樹脂材料は、耐衝撃性、#
熱性に優れ、成形性その他実用上要求される諸性質を兼
備しているので、射出成形、押出成形その他の加熱賦形
方法によりプラスチック成形品を製造する為の利料とし
てその用途に有利に供され得る。
The resin material obtained by the method of the present invention has impact resistance, #
Because it has excellent heat resistance, moldability, and other properties required for practical use, it can be advantageously used as a material for producing plastic molded products by injection molding, extrusion molding, and other heat shaping methods. can be done.

以下に実施例にて本発明を説明する。The present invention will be explained below with reference to Examples.

実施例 1 ダブルへリカルリボン翼を持つ攪拌装置、冷却管2ケの
原料仕込口、重合温度検出装置、加熱シャケ、ト及び底
部にサンプリングバルブ等を付した5US304製の4
OL堅型重合装置に室温にてスチレンモノマー10.6
 A9を仕込み、顆粒状の無水マレイン酸1802を攪
拌下に加えて溶解した。その後、細片状に切ったシス−
1,4−ポリゲタジエン(旭化成■製ジエンNF35A
S、数平均分子量107.500) 1.2 kyを攪
拌しながら徐々に加え、充分時間をかけて完全に溶解し
た。
Example 1 4 made of 5US304 equipped with a stirring device with double helical ribbon blades, a raw material inlet with two cooling tubes, a polymerization temperature detection device, a heating rack, a sampling valve, etc. on the top and bottom.
Styrene monomer 10.6 at room temperature in OL rigid polymerization apparatus
A9 was charged, and granular maleic anhydride 1802 was added and dissolved under stirring. Then, cut into strips
1,4-polygetadiene (Diene NF35A manufactured by Asahi Kasei)
S, number average molecular weight 107.500) 1.2 ky was gradually added with stirring and completely dissolved over a sufficient period of time.

その後重合装置を窒素置換して120Cに昇温し、グラ
フト重合反応を開始した。10分後より無水マレイン酸
5ooyをスチレンL 4 Ayに溶解した溶液を70
分かけて定量的に重合系に添加した。無水マレイン酸添
加終了後さらに約6時間重合を続け、サンプリン禽り重
合混合物を採取し分析したところ固形分率564%、従
って見捌は重合率520%であった。未グラフトスチレ
ンー無水マレイン酸共重合体のη?6Sて無水マレイン
酸含有率は95%であった。重合混合物はその後240
℃でフラッシュ型真空薄膜蒸発機に約20分かけて送り
込まれてモノマー脱気処理を行った。得られたベレット
にはスチレンモノマーが約790 ppm含まれ、無水
マレイン酸モノマーは検出されなかった。得られたベレ
ットを溶媒分別しゲル分を取り出すと254%であった
。透過型電子顕微鏡写真をとったところ安定したサラミ
構造を有する分散ゴム粒子が観測された。
Thereafter, the polymerization apparatus was purged with nitrogen and the temperature was raised to 120C to start the graft polymerization reaction. After 10 minutes, a solution of 5ooy maleic anhydride dissolved in styrene L4Ay was added to 70%
It was added quantitatively to the polymerization system over several minutes. After the addition of maleic anhydride was completed, polymerization was continued for about 6 hours, and a sample of the polymerization mixture was taken and analyzed to find that the solid content was 564%, and therefore the polymerization rate was 520%. η of ungrafted styrene-maleic anhydride copolymer? The maleic anhydride content in 6S was 95%. The polymerization mixture is then heated to 240
The monomer was degassed by feeding it into a flash type vacuum thin film evaporator for about 20 minutes at ℃. The resulting pellet contained about 790 ppm of styrene monomer and no maleic anhydride monomer was detected. The obtained pellet was subjected to solvent fractionation and the gel fraction was taken out and found to be 254%. When a transmission electron micrograph was taken, dispersed rubber particles having a stable salami structure were observed.

又、ぺVツトから物性評価試料を調整し、測定したとこ
ろ熱゛変形温度107 ’c、アイゾツト衝撃強度9.
5 kq・(1)/(7):破断強度340/、qfi
d、破断伸度26%であった。
In addition, a physical property evaluation sample was prepared from the PVC and measured, and the thermal deformation temperature was 107'C and the Izot impact strength was 9.
5 kq・(1)/(7): Breaking strength 340/, qfi
d, elongation at break was 26%.

比較例 1 実施例1と同じ装置にスチレン10.2 kq、ポリゲ
タジエンL 2 # 、無水マレイン酸721を仕込み
120℃に昇温した。昇温10分チ 後無水マレイン酸624−をスチレン1.8 kqに溶
解させた溶液を重合反応終了まで約6時間定量的に連続
添加した。真空モノマー脱気して得られた試料は見掛け
の重合率482%、未グラフトスチレンー無水マレイン
酸共重合体のη811/C= 0.88 、無水マレイ
ン酸含有率は8.4%でゲル分率は263%であった。
Comparative Example 1 In the same apparatus as in Example 1, 10.2 kq of styrene, polygetadiene L 2 #, and 721 units of maleic anhydride were charged and the temperature was raised to 120°C. After raising the temperature for 10 minutes, a solution of 624-maleic anhydride dissolved in 1.8 kq of styrene was continuously added quantitatively for about 6 hours until the polymerization reaction was completed. The sample obtained by vacuum monomer degassing had an apparent polymerization rate of 482%, an ungrafted styrene-maleic anhydride copolymer η811/C = 0.88, a maleic anhydride content of 8.4%, and a gel content. The rate was 263%.

物性は実施例1より低く、熱変形温度か98 ’Cノツ
チ付アイゾツト術衝撃度は8. OkQ−an/am、
破断強度3201g/c4 、破断伸度25%であづた
The physical properties are lower than those of Example 1, with a heat distortion temperature of 98'C notched Izotization impact strength of 8. OkQ-an/am,
It has a breaking strength of 3201g/c4 and a breaking elongation of 25%.

比較例 2 実施例1と同じ装置にスチレン841g、ボリブクシ乎
ン0.’84Apを仕込み、90’Cに昇温後、ラウロ
イルパーオギサイド56.42 ヲスチレン11 kr
iに溶解した溶液を約25時間定量的に連続添加した。
Comparative Example 2 In the same equipment as in Example 1, 841 g of styrene and 0.0 g of borosilicate were added. After charging '84Ap and raising the temperature to 90'C, lauroyl peroxide 56.42 styrene 11 kr
The solution dissolved in i was continuously added quantitatively for about 25 hours.

ラウロイルパーオキサイド添加終了後120℃に昇温し
、昇温直後より無水マレイン酸6802をスチレン2、
5 kqに溶解させた溶液を定量的に約15時間定量的
に連続添加した。真空モノマー脱気して得られた試料の
見掛重合率495%、未グラフトスチレンー無水マレイ
ン酸共重合体のηs p/C−0,60、無水マレイン
酸含有率9.4%ゲル分率24.8%であった。物性は
熱変形温度は90 Icと実施例1に比べてかなり低く
、ノツチ付アイゾ、ト衝撃強度8. Oky・−/−、
破断強度200 h/cd 、破断伸度25%てあった
After the addition of lauroyl peroxide, the temperature was raised to 120°C, and immediately after the temperature was raised, maleic anhydride 6802 was added to styrene 2,
A solution dissolved in 5 kq was continuously added quantitatively for about 15 hours. Apparent polymerization rate of sample obtained by vacuum monomer degassing 495%, ηs p/C-0.60 of ungrafted styrene-maleic anhydride copolymer, maleic anhydride content 9.4% gel fraction It was 24.8%. As for the physical properties, the heat distortion temperature is 90 Ic, which is considerably lower than that of Example 1, and the notched IZO impact strength is 8. Oky・−/−,
It had a breaking strength of 200 h/cd and a breaking elongation of 25%.

実施例 2 第1図に於て第1槽として5Lの三段パド)v翼攪拌装
置を有する予備重合槽1、第2槽として5Lのダブルヘ
リカルリボン翼混合装置を有する重合槽2につい〜で、
0.2m’の伝熱面積を有する真空型薄膜蒸発機3が夫
々ギヤポンプを介したポリマー輸送管で連結されている
。A1、へ及びへ、B、は第1槽及び第2槽への各成分
注入箇所、C,、C,、C,は夫々のポリマー輸送管の
ポリマー流れ、4は回収モノマー取出口、5は製品取出
口である。第1図に示した如きプロセスフローにもとづ
いて、表1の物質収支による連続重合を行なった。
Example 2 In Fig. 1, prepolymerization tank 1 has a 5L three-stage V-blade stirring device as the first tank, and polymerization tank 2 has a 5L double helical ribbon blade mixing device as the second tank. ,
Vacuum thin film evaporators 3 having a heat transfer area of 0.2 m' are connected to each other by polymer transport pipes via gear pumps. A1, B, the injection point of each component into the first tank and the second tank, C, C,, C, the polymer flow of each polymer transport pipe, 4 the recovered monomer outlet, 5 the This is the product outlet. Based on the process flow shown in FIG. 1, continuous polymerization was carried out according to the material balance shown in Table 1.

即ち、第1槽は120℃に設定され、八として無水マレ
イン酸のスチレン溶79.B、としてポリブタジェンの
スチレン溶液の所定量が連続的に注入された。ポリマー
の流れC1は流i 14.58 # 7時間にギャポン
プにより設定されて、第1槽のホールド量は87.7 
kvて平均滞溜時間は602時間、重合収率325%無
水マレイン酸共重合率は130%てあ一〕だ。
That is, the first tank was set at 120°C, and maleic anhydride was dissolved in styrene as 79. As B, a predetermined amount of a styrene solution of polybutadiene was continuously injected. The polymer flow C1 is set by the gap pump at flow i 14.58 # 7 hours, and the hold amount of the first tank is 87.7
kv, the average residence time was 602 hours, the polymerization yield was 325%, and the maleic anhydride copolymerization rate was 130%.

第2槽は120℃に設定さり、、へ、B2は使用せず無
添加のまま重合反応を継続した。第2槽のホールド量は
137 kq、平均滞溜時間9.38時間、ポリマー流
れC7は14.58峠/時間、重合収率626%であっ
た。モノマー脱揮装置3の運転条件は240 ℃、真空
度2t 01vであり、得られたグラフト共重合体中の
スチレン残存モノマーは490 ppmであった。
The second tank was set at 120° C., and the polymerization reaction was continued without using B2. The holding amount of the second tank was 137 kq, the average residence time was 9.38 hours, the polymer flow C7 was 14.58 passes/hour, and the polymerization yield was 626%. The operating conditions of the monomer devolatilization device 3 were 240° C. and a degree of vacuum of 2t 01v, and the residual styrene monomer in the obtained graft copolymer was 490 ppm.

得られた試料はゴム分を10.0重量部含み、無水マレ
イン酸含有率8.0%、ノツチ付アイゾツト衝撃強度9
.8#・(7)7ム、熱変形温度105°C1破断強度
405んg/ci 、破断伸度95%であった。
The obtained sample contained 10.0 parts by weight of rubber, had a maleic anhydride content of 8.0%, and had a notched Izot impact strength of 9.
.. 8#.(7)7mm, heat deformation temperature: 105°C, breaking strength: 405 ng/ci, and breaking elongation: 95%.

比較例 3 実施例2においてへの無水マレイン酸/スチレン溶液の
注入をへとへに分割して注入した以外は実施例と同様の
実験を試みた。得られたグラフト共重合体のゴム分la
o重tr%無水マレイン酸含有率80%、ノツチ付アイ
ゾツト衝撃強度6.5 jp・ψでやや実施例2より低
く、熱変形温度99 ’(、破断強度4101;9/c
d 、破断伸度75%であった。
Comparative Example 3 An experiment similar to that in Example 2 was attempted, except that the maleic anhydride/styrene solution was injected in several parts. Rubber content la of the obtained graft copolymer
o weight tr% maleic anhydride content 80%, notched Izot impact strength 6.5 jp・ψ, slightly lower than Example 2, heat distortion temperature 99' (, breaking strength 4101; 9/c
d, elongation at break was 75%.

表1 連続グラフト重合の物質収支 ある。Table 1 Material balance of continuous graft polymerization be.

1.2 ・・ 重合槽 3− モノマー脱揮装置1.2...Polymerization tank 3- Monomer devolatilization equipment

Claims (1)

【特許請求の範囲】[Claims] ビニル芳香族化合物55乃至98重量%及び不飽和ジカ
ルボン酵無水物2乃至45重量%を主成分とする単量体
混合物100重量部に対し、グラフ!・重合性エラスト
マー5乃至30重量部の共存下にグラフト共重合せしめ
て、耐熱・耐衝撃性樹脂を製造する方法において重合時
期の前半には、重合系に不飽和ジカルボン酸無水物を連
続的に添加し、重合時期の後半には、不飽和ジカルボン
酸無水物の添加を完全に停止し、不飽和ジカルボン酸無
水物単量体を完全に消費せしめてなお重合反応を継続せ
しめる事により、グラフト共重合体側鎖部分の共重合連
鎖において、不飽和ジカルボン酸無水物の分布疎密性を
有せしめる事を特徴とするスチレン系耐熱耐衝撃性樹脂
の製造方法。
Graph!・In the method of producing a heat-resistant and impact-resistant resin by graft copolymerizing in the coexistence of 5 to 30 parts by weight of a polymerizable elastomer, in the first half of the polymerization period, an unsaturated dicarboxylic anhydride is continuously added to the polymerization system. In the latter half of the polymerization period, the addition of the unsaturated dicarboxylic anhydride is completely stopped and the polymerization reaction is continued even after the unsaturated dicarboxylic anhydride monomer is completely consumed. A method for producing a styrene-based heat-resistant and impact-resistant resin, which is characterized in that the copolymerization chain of the side chain portion of the polymer has a dense and dense distribution of unsaturated dicarboxylic acid anhydride.
JP13673683A 1983-07-28 1983-07-28 Styrene-based heat-resistant and impact-resistant resin Pending JPS6028417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13673683A JPS6028417A (en) 1983-07-28 1983-07-28 Styrene-based heat-resistant and impact-resistant resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13673683A JPS6028417A (en) 1983-07-28 1983-07-28 Styrene-based heat-resistant and impact-resistant resin

Publications (1)

Publication Number Publication Date
JPS6028417A true JPS6028417A (en) 1985-02-13

Family

ID=15182300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13673683A Pending JPS6028417A (en) 1983-07-28 1983-07-28 Styrene-based heat-resistant and impact-resistant resin

Country Status (1)

Country Link
JP (1) JPS6028417A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6257410A (en) * 1985-09-07 1987-03-13 Idemitsu Petrochem Co Ltd Production of vinyl aromatic resin composition
JPS62112614A (en) * 1985-11-12 1987-05-23 Sumitomo Chem Co Ltd Modification of copolymer rubber
JPS63258914A (en) * 1987-04-16 1988-10-26 Sumitomo Naugatuck Co Ltd Production of copolymer
JPS63268712A (en) * 1987-04-27 1988-11-07 Sumitomo Naugatuck Co Ltd Production of copolymer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6257410A (en) * 1985-09-07 1987-03-13 Idemitsu Petrochem Co Ltd Production of vinyl aromatic resin composition
JPS62112614A (en) * 1985-11-12 1987-05-23 Sumitomo Chem Co Ltd Modification of copolymer rubber
JPH0545603B2 (en) * 1985-11-12 1993-07-09 Sumitomo Chemical Co
JPS63258914A (en) * 1987-04-16 1988-10-26 Sumitomo Naugatuck Co Ltd Production of copolymer
JPS63268712A (en) * 1987-04-27 1988-11-07 Sumitomo Naugatuck Co Ltd Production of copolymer

Similar Documents

Publication Publication Date Title
US4097556A (en) PPO-Graft copolymer and process for producing the same
JPS63118346A (en) Continuous production of impact resistant polystyrene
JPH03210311A (en) Continuous volume production of high impact resisting vinyl aromatic (co) polymer
US6515072B2 (en) Transparent rubber-modified styrenic resin composition
JPS60141756A (en) Polymer composition
US4167543A (en) Thermoplastic molding compositions
JPS6330948B2 (en)
EP0418042A1 (en) Monovinylidene aromatic polymers with improved properties and process for their preparation
JP4416190B2 (en) Rubber-modified copolymer resin composition and process for producing the same
JPS6028417A (en) Styrene-based heat-resistant and impact-resistant resin
JPH0714990B2 (en) Method for producing rubber-modified styrenic resin
KR940000412B1 (en) Rubber-modified thermoplastic resin composition
JPH07165844A (en) Rubber-modified polystyrene resin composition, its production, and injection-molded product
CA1109582A (en) Thermoplastic moulding compositions
US3719731A (en) High-impact moulding compositions and process for preparing same
JP3472308B2 (en) Impact resistant methacrylic resin
US5264492A (en) Monovinylidene aromatic polymers with improved properties
JP3236056B2 (en) Method for producing rubber-modified styrenic resin
JP3349859B2 (en) Thermoplastic resin composition and method for producing the same
JP3342808B2 (en) Thermoplastic resin composition with excellent heat resistance and impact resistance
JPS61271345A (en) Polymer composition
JPH04255705A (en) Highly glossy abs produced by continuous process
JPH0141648B2 (en)
JPS59193950A (en) Delustered polycarbonate based resin composition
JPH0613635B2 (en) Method for producing polycarbonate resin composition