JPS6027938B2 - Rotor acting force measuring device - Google Patents

Rotor acting force measuring device

Info

Publication number
JPS6027938B2
JPS6027938B2 JP51019625A JP1962576A JPS6027938B2 JP S6027938 B2 JPS6027938 B2 JP S6027938B2 JP 51019625 A JP51019625 A JP 51019625A JP 1962576 A JP1962576 A JP 1962576A JP S6027938 B2 JPS6027938 B2 JP S6027938B2
Authority
JP
Japan
Prior art keywords
strain gauge
rotor
load cell
stator
side member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51019625A
Other languages
Japanese (ja)
Other versions
JPS52102779A (en
Inventor
茂一 阪部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP51019625A priority Critical patent/JPS6027938B2/en
Publication of JPS52102779A publication Critical patent/JPS52102779A/en
Publication of JPS6027938B2 publication Critical patent/JPS6027938B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

【発明の詳細な説明】 この発明は回転機(リニア電機を含む。[Detailed description of the invention] This invention relates to rotating machines (including linear electric machines).

以下同じ)の固定子に二次元的に発生する磁気応力の水
平および垂直成分を検出することにより、回転子の半径
方向および円周方向に働く作用力を同時に測定可能にし
た回転子の作用力測定装置に関するものである。なお、
この明細書において「回転子」とはリニア電機における
移動体をも含むものである。
By detecting the horizontal and vertical components of the magnetic stress that occurs two-dimensionally on the stator of the rotor (the same applies hereinafter), it is possible to simultaneously measure the acting force acting in the radial and circumferential directions of the rotor. This relates to a measuring device. In addition,
In this specification, the term "rotor" includes a moving body in a linear electric machine.

従釆の磁気応力測定装置においては、回転子に作用する
力の円周方向および半径方向の両方向成分を各々別個の
測定装置、例えば回転子の円周方向に作用する力は回転
子軸端にとりつけられたトルクメータで、又、回転子の
半径方向に作用する力は固定子と接触するように設置さ
れたロードセルで検出している。そのために従来の測定
装置は上記ロードセルに検出しようとする作用方向の力
以外の力が作用しないように支持構造を必要とし、測定
装置が大規模になる可能性があった。
In a secondary magnetic stress measuring device, both the circumferential and radial components of the force acting on the rotor are measured using separate measuring devices, for example, the force acting in the circumferential direction of the rotor is measured at the rotor shaft end. An attached torque meter detects the force acting in the radial direction of the rotor, and a load cell installed in contact with the stator detects the force acting in the radial direction of the rotor. For this reason, conventional measuring devices require a support structure to prevent forces from acting on the load cell in a direction other than the force to be detected, which may result in the measuring device becoming large-scale.

また上記のような支持構造ではロードセル検出機構上測
定時に固定子が変位することはさげられない。通常、固
定子は電磁力による振動を行ないその振動数は200H
Zにも達するため慣性力が検出電磁応力に比して無視で
きない程度になる可能性がある。そして固定子が上記支
持構造に接触しているために、接触部における摩擦力の
影響も考慮する必要が生じる。以上、述べたように従来
の磁気応力測定装置においては、装置として大規模にな
るにもかかわらず十分な精度をもって測定することが困
難である等の欠点を有していた。この発明は上記従釆装
置の欠点を解消することを目的として成されたもので、
回定子とこれを支持する支持台の間にロードセルを介在
させ、固定子を。
Further, in the above-mentioned support structure, it is inevitable that the stator will be displaced during measurement due to the load cell detection mechanism. Normally, the stator vibrates due to electromagnetic force, and the frequency is 200H.
Since it also reaches Z, there is a possibility that the inertial force becomes non-negligible compared to the detected electromagnetic stress. Since the stator is in contact with the support structure, it is also necessary to consider the influence of frictional force at the contact portion. As described above, conventional magnetic stress measuring devices have had drawbacks such as difficulty in measuring with sufficient accuracy despite the large scale of the device. This invention was made for the purpose of eliminating the drawbacks of the above-mentioned follower device.
A load cell is interposed between the rotator and the support base that supports it, and the stator is mounted.

ードセルにより支持する構造とし、ロードセルの形状、
ひずみゲージの貼付位置およびひずみゲージの結線方法
を選定することにより、電磁応力によりロードセル上に
生じるひずみを回転子円周方向と半径方向の成分に分離
且つ高精度に検出し得るようにしたものである。以下、
この発明の回転子の作用力測定装置の一実施例における
リニアモータ試験装置を図に基づいて詳細に説明する。
The structure is supported by a load cell, and the shape of the load cell,
By selecting the strain gauge attachment position and strain gauge connection method, the strain generated on the load cell due to electromagnetic stress can be separated into components in the rotor circumferential direction and radial direction and detected with high accuracy. be. below,
DESCRIPTION OF THE PREFERRED EMBODIMENTS A linear motor testing device as an embodiment of the rotor acting force measuring device of the present invention will be described in detail with reference to the drawings.

第1図はこの発明の回転子の作用力測定装置の一実施例
におけるリニアモータ試験装置の構成を示す分解斜視図
、第2図は第1図におけるリニアモー夕試験装置に使用
されるロードセルの形状を示す正面図である。
FIG. 1 is an exploded perspective view showing the configuration of a linear motor testing device in an embodiment of the rotor acting force measuring device of the present invention, and FIG. 2 is a shape of a load cell used in the linear motor testing device shown in FIG. 1. FIG.

第1図および第2図において、1は回転子、2は固定子
、3はバネ定数の小さい例えばクロムモリブデン等の金
属材よりなり、回転子1の中心を通る水平面に対し対称
に配置され、かつ第1〜第8の辺部材を有し、外形が8
角形の筒形に形成されたロードセルで、上記第7の辺部
材が固定子2に固定され、第3の辺部材が支持台12に
固定されている。
In FIGS. 1 and 2, 1 is a rotor, 2 is a stator, 3 is made of a metal material with a small spring constant, such as chromium molybdenum, and is arranged symmetrically with respect to a horizontal plane passing through the center of the rotor 1. and has first to eighth side members, and has an outer diameter of 8.
The load cell is formed into a rectangular cylindrical shape, and the seventh side member is fixed to the stator 2, and the third side member is fixed to the support base 12.

4〜11はひずみゲージであり、ひずみゲージ4,5は
第1の辺部材に、ひずみゲージ10は第4の辺部材に、
ひずみゲージ6,7は第5の辺部材に、ひずみゲージ1
1は第6の辺部村に、ひずみゲージ8は第8の辺部材に
各々取り付けられている。
4 to 11 are strain gauges, strain gauges 4 and 5 are on the first side member, strain gauge 10 is on the fourth side member,
Strain gauges 6 and 7 are attached to the fifth side member, and strain gauge 1 is attached to the fifth side member.
1 is attached to the sixth side member, and strain gauge 8 is attached to the eighth side member.

これらのひずみゲージ4〜7は垂直方向、ひずみゲージ
8〜11は水平方向の応力を各々検出し得るロードセル
3上の対応位置として、中心線D−Eに対して00およ
び450の位置に各々貼付されている。12はロ−ドセ
ル3を介して固定子2を支持する支持台、13は共振防
止用止メネジで支持台12の一部に付設され、リニアモ
ータの起動、停止時に固定子2を固定し得るようになっ
ている。
These strain gauges 4 to 7 are attached at positions 00 and 450 with respect to the center line D-E, respectively, as corresponding positions on the load cell 3 that can detect stress in the vertical direction and strain gauges 8 to 11 in the horizontal direction. has been done. 12 is a support base that supports the stator 2 via the load cell 3, and 13 is a set screw for preventing resonance, which is attached to a part of the support base 12 and can fix the stator 2 when the linear motor is started or stopped. It looks like this.

14は固定子2とロードセル3を固着するボルト、15
はロードセル3と支持台12を固着するボルトである。
14 is a bolt that fixes the stator 2 and the load cell 3, 15
is a bolt that fixes the load cell 3 and the support base 12.

次に、以上のように構成されたりニアモータ試験装置の
作用を図に基づいて説明する。回転子の回転に伴ない固
定子に発生する電磁応力は、ロードセル3が固定子2に
固定されているため、ロードセル3の固定子2との接合
面に集中する。
Next, the operation of the near motor testing apparatus constructed as above will be explained based on the drawings. Since the load cell 3 is fixed to the stator 2, the electromagnetic stress generated in the stator as the rotor rotates is concentrated on the joint surface of the load cell 3 with the stator 2.

接合面に集中する電磁応力の水平成分(分力)、垂直成
分(分力)を検出することにより、回転子1の半径方向
、周方向に働く作用力を同時に検出し得る。ここで、上
記水平分力Fは中心線DE方向に、垂直分力Gは中心線
DEと直交方向でかつ紙面を含む方向にそれぞれ働く場
合、ひずみゲージが取付けられたロードセルの表面に働
く応力は、C,C′,d,d′を応力に対するひずみの
量を示す比例定数として次のように表わすことができる
By detecting the horizontal component (component force) and the vertical component (component force) of the electromagnetic stress concentrated on the joint surface, the acting forces acting in the radial direction and circumferential direction of the rotor 1 can be detected simultaneously. Here, if the above horizontal component force F acts in the direction of the center line DE, and the vertical component G acts in a direction perpendicular to the center line DE and in a direction that includes the plane of the paper, then the stress acting on the surface of the load cell to which the strain gauge is attached is , C, C', d, d' can be expressed as proportionality constants indicating the amount of strain with respect to stress as follows.

すなわち、ひずみゲージ4の取付面にはC′F+d′G
,ひずみゲージ5の取付面にはC′F−d′G,ひずみ
ゲージ6の取付面にはC′F+d′G,ひずみゲージ7
の取付面にはC′F−がG,ひずみゲ−ジ8の取付面に
はCF一dG,ひずみゲージ9の取付面にはCF十dG
,ひずみゲージ10の取付面にはCF一dG,ひずみゲ
ージ1 1の取付面にはCF+dGの各応力が作用する
。このことは、水平分力によって、ひずみゲージ8,9
,10,11が伸長し、垂直分力によってひずみゲージ
9,11が伸長すると共にひずみゲージ8,10が収縮
することを意味する。ここでロードセルが中心線D−E
に対し対称でかつ8角形であることから各ひずみゲージ
に生じる伸長又は収縮の各値は等しいと考えられ、ひず
みゲージ8〜11の出力信号の総和は水平分力F‘こ対
応した信号を表わすことになる。かかる水平分力Fを求
めるには、周知のブリッジ回路方式を利用すればよい。
In other words, the mounting surface of the strain gauge 4 has C'F+d'G.
, C'F-d'G on the mounting surface of strain gauge 5, C'F+d'G on the mounting surface of strain gauge 6, strain gauge 7
C'F- is G on the mounting surface of strain gauge 8, CF1 dG is on the mounting surface of strain gauge 8, and CF10 dG is on the mounting surface of strain gauge 9.
, a stress of CF-dG acts on the mounting surface of the strain gauge 10, and a stress of CF+dG acts on the mounting surface of the strain gauge 11. This means that the strain gauges 8 and 9 can be
, 10, 11 are expanded, and the strain gauges 9, 11 are expanded due to the vertical component force, and the strain gauges 8, 10 are contracted. Here, the load cell is on the center line D-E
Since the strain gauges are symmetrical and octagonal, each value of expansion or contraction occurring in each strain gauge is considered to be equal, and the sum of the output signals of strain gauges 8 to 11 represents the signal corresponding to the horizontal component force F'. It turns out. In order to obtain such horizontal component force F, a well-known bridge circuit method may be used.

例えば第3図で、各ひずみゲージ8〜11を直列接続し
た状態を抵抗G,とし、検出用抵抗(T2〜G4と共に
ブリッジ回路を構成する。
For example, in FIG. 3, the strain gauges 8 to 11 connected in series are referred to as a resistor G, and together with the detection resistors (T2 to G4) constitute a bridge circuit.

ejは電源電圧、△Cはブリッジ電圧であり、上記水平
分力を示す信号となる。なお、かかるブリッジ回路は第
1の手段の1例である。更に、水平分力Fによってひず
みゲージ4〜7は伸長し、垂直分力Gによってひずみゲ
ージ4,6は伸長すると共にひずみゲージ5,7は収縮
する。従ってひずみゲージ4,6の出力信号の和とひず
みゲージ5,7の出力信号の和との差は垂直分力Gに対
応した信号を表わす。かかる垂直分力Gは水平分力Fと
同様に周知のブリッジ回路を用いて求めることができる
。第3図において、抵抗G,〜G4がひずみゲージ4〜
7に対応するように、ひずみゲージ4〜7をブリッジ接
続すればよい。
ej is a power supply voltage, and ΔC is a bridge voltage, which is a signal indicating the horizontal component force. Note that such a bridge circuit is an example of the first means. Furthermore, the strain gauges 4 to 7 are expanded by the horizontal component force F, and the strain gauges 4 and 6 are expanded by the vertical component G, and the strain gauges 5 and 7 are contracted. Therefore, the difference between the sum of the output signals of the strain gauges 4 and 6 and the sum of the output signals of the strain gauges 5 and 7 represents a signal corresponding to the vertical component G. This vertical force component G can be determined similarly to the horizontal force component F using a well-known bridge circuit. In Fig. 3, resistance G, ~G4 is connected to strain gauge 4~
7, the strain gauges 4 to 7 may be connected in a bridge manner.

△Cはブリッジ電圧として上記垂直分力を示す信号であ
る。このブリッジ回路は第2の手段の一例である。以上
で述べたように、この発明では、回転機の回転子を付勢
する固定子とこの固定子を支持する支持台との間に、ひ
ずみゲージが各々水平および垂直方向の応力を検出し得
る位置に取付けられた8角形筒形のロードセルを備え、
ひずみゲージの結線方式を選定したことにより、回転子
の半径方向と円周方向の電磁応力の成分を、高精度かつ
簡単に独立して同時に検出することを可能にしたもので
ある。
ΔC is a signal indicating the vertical component force as a bridge voltage. This bridge circuit is an example of the second means. As described above, in this invention, strain gauges can detect stress in the horizontal and vertical directions between the stator that urges the rotor of a rotating machine and the support base that supports this stator. Equipped with an octagonal cylindrical load cell installed at the
By selecting the strain gauge connection method, it is possible to simultaneously detect the electromagnetic stress components in the radial and circumferential directions of the rotor independently and simultaneously with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の回転子の作用力測定装置の一実施例
におけるリニアモータ試験装置の構成を示す斜視図、第
2図は第1図におけるリニアモータ試験装置に用いられ
るロ−ドセルの形状を示す正面図、第3図はブリッジ回
路を示す藤続図である。 図において、1は回転子、2は固定子、3はロードセル
、4〜11はひずみゲージ、12は支持台、13は共振
防止用止メネジ、14,15はボルト、G,〜G4は抵
抗、ejは電源電圧、4eはブリッジ電圧である。 尚、各図中同一符号は同一又は相当部分を示すものであ
る。第1図第2図 第3図
FIG. 1 is a perspective view showing the configuration of a linear motor testing device in an embodiment of the rotor acting force measuring device of the present invention, and FIG. 2 is a shape of a load cell used in the linear motor testing device shown in FIG. 1. FIG. 3 is a Fujitsugi diagram showing the bridge circuit. In the figure, 1 is a rotor, 2 is a stator, 3 is a load cell, 4 to 11 are strain gauges, 12 is a support base, 13 is a resonance prevention set screw, 14 and 15 are bolts, G and ~G4 are resistors, ej is a power supply voltage, and 4e is a bridge voltage. Note that the same reference numerals in each figure indicate the same or corresponding parts. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 回転子の回転中心を通る水平面に対し対称に配置さ
れると共に固定子と支持台との間に固定され、かつ第1
ないし第8の辺部材より8角形をなす筒形のロードセル
を備え、上記第3又は第7の辺部材は上記回転子に対し
固定され、上記第1及び第5の辺部材は上記水平面に平
行に、かつ上記第3及び第7辺部材は上記水平面に垂直
に、かつ上記第2,第4,第6,及び第8の辺部材は上
記水平面に傾斜して各々配置され、上記第1又は第5の
辺部材で上記水平面と対向する第1の面に取り付けられ
た第1のひずみゲージと、上記第1の面に対向する第2
の面に取り付けられた第2のひずみゲージと、上記第2
及び第8,第4及び第6,第2及び第4,第6及び第8
より成る4対のうち少なくとも一対の辺部材で上記水平
面と対向しない外側面に取り付けられた第3及び第4の
ひずみゲージと、上記第1のひずみゲージの出力と第2
のひずみゲージとの出力との差を検出する第1の手段と
、上記第3のひずみゲージの出力と第4のひずみゲージ
の出力との和を検出する第2の手段とを有して成る回転
子の作用力測定装置。
1 The first rotor is arranged symmetrically with respect to a horizontal plane passing through the rotation center of the rotor, and is fixed between the stator and the support base, and
or a cylindrical load cell forming an octagon from an eighth side member, the third or seventh side member is fixed to the rotor, and the first and fifth side members are parallel to the horizontal plane. and the third and seventh side members are arranged perpendicularly to the horizontal plane, and the second, fourth, sixth, and eighth side members are arranged inclined to the horizontal plane, and the first or seventh side members are arranged perpendicularly to the horizontal plane. a first strain gauge attached to a first surface of the fifth side member that faces the horizontal surface; and a second strain gauge that faces the first surface of the fifth side member;
a second strain gauge attached to the surface of the second strain gauge;
and 8th, 4th and 6th, 2nd and 4th, 6th and 8th
third and fourth strain gauges attached to the outer surfaces of at least one pair of side members not facing the horizontal surface out of the four pairs consisting of the output of the first strain gauge and the second strain gauge;
and a second means for detecting the sum of the output of the third strain gauge and the output of the fourth strain gauge. Rotor acting force measuring device.
JP51019625A 1976-02-25 1976-02-25 Rotor acting force measuring device Expired JPS6027938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51019625A JPS6027938B2 (en) 1976-02-25 1976-02-25 Rotor acting force measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51019625A JPS6027938B2 (en) 1976-02-25 1976-02-25 Rotor acting force measuring device

Publications (2)

Publication Number Publication Date
JPS52102779A JPS52102779A (en) 1977-08-29
JPS6027938B2 true JPS6027938B2 (en) 1985-07-02

Family

ID=12004367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51019625A Expired JPS6027938B2 (en) 1976-02-25 1976-02-25 Rotor acting force measuring device

Country Status (1)

Country Link
JP (1) JPS6027938B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629816B2 (en) * 1985-05-31 1994-04-20 洋太郎 畑村 Multi-axis force sensor
JP2668302B2 (en) * 1991-12-19 1997-10-27 山九株式会社 Method and apparatus for measuring non-contact stress of moving metal strip

Also Published As

Publication number Publication date
JPS52102779A (en) 1977-08-29

Similar Documents

Publication Publication Date Title
US4601195A (en) Apparatus and method for measuring viscoelastic properties of materials
EP0133229B2 (en) Wheel balancer two plane calibration method
US5450761A (en) Torque meter
US3729991A (en) Capacitive displacement transducer
JP2002502962A (en) Torque sensor for rotating shaft
JPH02112701A (en) Measuring detector of length of space change
JPS6027938B2 (en) Rotor acting force measuring device
JPS588459B2 (en) Cleanliness balance measuring device
US4802364A (en) Angular rate sensor
US3279244A (en) Torque transducer
JPS62112023A (en) Torque detecting device
US3585840A (en) Force generator
JPH11264779A (en) Torque and thrust detecting device
US3742758A (en) Torque reaction table
CN114144646A (en) Apparatus and method for monitoring health and performance of a mechanical system
US5307279A (en) Self diagnostic wheel balancer
SU913085A1 (en) Cutting force component dynamometer graduation method
JPH0116374B2 (en)
GB2289947A (en) Position and force measuring apparatus
RU219078U1 (en) torque sensor
JPH0714844Y2 (en) Dynamic balance tester
US3720110A (en) Method and apparatus for detecting angular position and amount of dynamic unbalance of rotating body
JPH0743207A (en) Vibration meter
JPH0830716B2 (en) Semiconductor acceleration detector
US20230258517A1 (en) System for Sensing Torque