JPS602758B2 - Discharge lamp lighting circuit for two lamps - Google Patents

Discharge lamp lighting circuit for two lamps

Info

Publication number
JPS602758B2
JPS602758B2 JP15941675A JP15941675A JPS602758B2 JP S602758 B2 JPS602758 B2 JP S602758B2 JP 15941675 A JP15941675 A JP 15941675A JP 15941675 A JP15941675 A JP 15941675A JP S602758 B2 JPS602758 B2 JP S602758B2
Authority
JP
Japan
Prior art keywords
voltage
discharge lamp
lamp
capacitor
lamps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15941675A
Other languages
Japanese (ja)
Other versions
JPS5284868A (en
Inventor
眞 東方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP15941675A priority Critical patent/JPS602758B2/en
Publication of JPS5284868A publication Critical patent/JPS5284868A/en
Publication of JPS602758B2 publication Critical patent/JPS602758B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Description

【発明の詳細な説明】 本発明は二灯用放電灯点灯回路に係り、小型軽量で低電
力損、安価でしかもフリッカレス点灯の点灯回路を提供
することを目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a lighting circuit for a two-lamp discharge lamp, and an object of the present invention is to provide a lighting circuit that is small and lightweight, has low power loss, is inexpensive, and is capable of flickerless lighting.

従来の放電灯点灯回路としてLC直列型のハィブリット
点灯回路があるが、その基本回路は第4図に示すもので
、電源電圧V^cがランプ電圧VIと同等程度でも通常
の変圧器その他による昇圧を介さずに直接点灯でき、小
型、軽量、低電力損、安価な点灯回路を得ることができ
る特徴がある。
There is an LC series type hybrid lighting circuit as a conventional discharge lamp lighting circuit, but its basic circuit is shown in Figure 4. Even if the power supply voltage V^c is about the same as the lamp voltage VI, it cannot be boosted by a normal transformer or other means. It is characterized by the fact that it can be lit directly without going through a circuit, making it possible to obtain a compact, lightweight, low power loss, and inexpensive lighting circuit.

例えば、ランプ電圧105V程度のけし、光灯40Wラ
ンプは、交流電源100Vより直接点灯できる。しかし
、1灯用と共に極めて多く用いられる2灯用は電力の増
大も関係し、交流100V以上に交流200V電源から
の使用が多い。この場合、第5図のように2灯直列にし
て点灯させれば本質的にはランプ電圧が2倍となったラ
ンプ1灯と異ならず、第4図と同様に設計し、点灯させ
ることができる。しかし、全体として倍の電圧となるた
め、インダクタンス素子Lの電圧、コンデンサCの電圧
、および半導体スイッチ素子Sの電圧もすべて2倍以上
の耐圧とせねばならず、2灯用とするためのコストメリ
ットが損われる。一般に、ィンダクタンス素子のコスト
はVA(VA:ィンダクタンス容量)、コンデンサのコ
ストはCV2(C:容量、V:電圧)にそれぞれ比例し
、又、半導体のコストはVn(n21)に比例するので
、交流200Vより40Wけい光灯を2灯直列接続して
点灯させると、ィンダクタンス素子は2倍になり、コン
デンサはCは1′2、Vは2倍になるため、そのコスト
は約2倍になり、半導体はn=2とすると4倍になり、
最良でも1灯用の2倍になる。本発明は以上の点を考慮
して発明したもので、コストは1灯用の2倍以下とする
と共にフリッカレス効果を得る上、4・型、軽量、低損
失の2灯用放電灯点灯回路を提供するものであり、以下
実施例により詳細に説明する。第1図は本発明の基本回
路で、交流電源1に第1のインダクタンス素子2、コン
デンサ3および第1の放電灯4の直列回路を接続し、コ
ンデンサ3に並列に第2のィンダクタンス素子5と第2
の放電灯6の直列接続したものを接続し、第1の放電灯
4に半導体スイッチ素子7を並列に接続する。
For example, a 40W poppy lamp with a lamp voltage of about 105V can be lit directly from an AC power source of 100V. However, in addition to single lamp lamps, lamps for two lamps, which are extremely commonly used, require an increase in electric power, and are often used from AC 200V power sources rather than AC 100V. In this case, if two lamps are connected in series and lit as shown in Fig. 5, it is essentially the same as a single lamp with double the lamp voltage, and it can be designed and lit in the same way as shown in Fig. 4. can. However, since the voltage as a whole is doubled, the voltage of the inductance element L, the voltage of the capacitor C, and the voltage of the semiconductor switch element S must all be made to withstand voltages that are more than twice as high. is damaged. Generally, the cost of an inductance element is proportional to VA (VA: inductance capacity), the cost of a capacitor is proportional to CV2 (C: capacitance, V: voltage), and the cost of a semiconductor is proportional to Vn (n21). If two 40W fluorescent lamps are connected in series and lit at 200V AC, the inductance element will be doubled, and the capacitor will have C of 1'2 and V of twice as much, so the cost will be approximately doubled. If n=2, the semiconductor will become 4 times as large.
At best, it will be twice as long as for one light. The present invention was devised in consideration of the above points, and is a 4-inch, lightweight, low-loss discharge lamp lighting circuit for two lamps that is less than twice the cost of a single lamp and provides a flickerless effect. This will be explained in detail below using Examples. FIG. 1 shows a basic circuit of the present invention, in which a series circuit of a first inductance element 2, a capacitor 3, and a first discharge lamp 4 is connected to an AC power supply 1, and a second inductance element 5 is connected in parallel to the capacitor 3. and second
The discharge lamps 6 connected in series are connected, and the semiconductor switch element 7 is connected in parallel to the first discharge lamp 4.

けし・光灯を例にした第2図の具体回路とその動作波形
を示す第3図により説明する。第2図で、8はトライア
ック、9は定位相点弧回路で、子熱はトライアック8の
オンにより第1のィンダクタンス素子2、コンデンサ3
およびトラィアック8のLC直列振動電流で行なわれる
This will be explained with reference to the specific circuit shown in FIG. 2 using a poppy lamp as an example, and FIG. 3 showing its operating waveforms. In Fig. 2, 8 is a triac, 9 is a constant phase ignition circuit, and when the triac 8 is turned on, the child heat is transferred to the first inductance element 2 and the capacitor 3.
and the LC series oscillating current of the triac 8.

これにより電荷がコンデンサ3に蓄積され「電源1とコ
ンデンサ3の重畳電圧で第1の放電灯4を始動させる。
一方、第2の放電灯6はコンデンサ3により直接始動さ
れる。かくて、両放電灯4,6が点灯される。ここで第
1の放電灯4は電源1の電源電圧V,がランプ電圧にほ
ぼ等しいときに得られるのとほぼ同じ動作モードを得ら
れ、そのランプ電流14(第3図bに斜線で示す)は第
3図aに示す電源電圧V,に対して進み位相となる。第
3図bにおいて1Gまトライァック8を流れる電流で、
定位相点弧回路9により所定の位相で点弧させられて導
通し、このときランプ電流14は零となる。第3図cは
第1の放電灯4のランプ電圧V4を示している。一方、
コンデンサ3の端子間電圧V3は第3図dに示すように
電源電圧V,に対して遅れ位相となり、更に第2の放電
灯6のランプ電流16は第3図eに示すようにコンデン
サ3の端子間電圧V3に対して遅れ位相となる。第3図
fは第2の放電灯6のランプ電圧V6の電圧波形を示し
ている。かくて、両放電灯4,6は互いにその電流位相
が900前後ずれるため、その点灯時における夫々光出
力は第3図gのようになり、両放電灯4,6における合
成出力は第3図hのようになる。つまり、1灯のみであ
ると商用電源で100HZ乃至120日2のフリッカを
生ずるが、本実施例によると、その点灯光出力は200
HZ乃至240日2程度となり、かつフリッカ率も低下
するので、、人間の眼によって事実上フリッカレスな点
灯となる。第4図の点灯回路は、電源電圧とランプ電圧
が3ほぼ同等の場合、ィンダクタンス素子、コンデンサ
等の限流素子が小さくなり特徴ある点灯回路であるが、
電源電圧がランプ電圧より十分高く、例えば約2倍にな
ったとすると、ィンダクタンスを2倍、コンデンサを1
′2とすれば同じランプ電3流、電力を与えるが、きわ
めて低力率になる上、限流素子、制御素子の電圧が倍加
する。ここで、力率を向上し、コンデンサ電圧を低下さ
せるために、第6図のようにコンデンサCに並列に抵抗
性インピーダンスZを挿入すれば効果的である。本4発
明はこの抵抗性インピーダンスZの部分に第2のィンダ
クタンス素子5および第2の放電灯6を接続したもので
、無駄な電力消費をすることなく、きわめて有効にラン
プ点灯に供することができる。第1図の回路と第5図の
回路の各部電圧ベクトルはそれぞれ第7図および第8図
のようになる。つまり放電灯4に流れる電流は第3図の
14にて示すように交流電源1の電圧V^c(V,)に
対夕してやや進相であり、電流14とランプ電圧V1,
(V4)は略同相であるため電源電圧V^c(V,)に
対するランプ電圧V1,(V4)のベクトル位相関係は
第7図のようになる。つまりランプ電圧V1,(V4)
は電源電圧V^c(V,)に対して進相であひる。一方
ィンダクタンス素子2を流れる電流と上記電流14とは
同相故、ィンダクタンス素子2の両端電圧VL,は電流
14より90o遅れ位相となる。(Vし,=Ldiノd
tより)従って、電圧VL,はランプ電圧V1,に対し
て900遅れとなり、第7図のよう夕に示される。また
コンデンサ3の電圧Vcは当然電圧VL,の先から電源
電圧V^c(V,)の先へのベクトル位相となり第7図
に示す如くなる。尚コンデンサ3と並列に抵抗性(ィン
ダクタンス素子5があるためやや遅れ位相)のインピー
ダンス(ィンダクタンス素子5と放電灯6)が接続され
ているので、これが無い場合の関係を示す第8図の電圧
Vcよりは若干位相が遅れ方向(しかし全体としては進
み)となる。またコンデンサ3に対するィンダクタンス
素子5と放電灯6の位相関係はィンダクタンス素子5が
90o遅れの誘導性、放電灯6が略抵抗性のため、ィン
ダクタンス素子5と放電灯6は互いに90o位相がずれ
結局、第7図のようになる。さて第5図回路ではL+C
が全体として容量性になるため入力電流(又はランプ電
流)は電流電圧V^c(V,)に対してやや進相となり
、従ってランプ電圧VIも電源電圧V^c(V,)に対
してやや進相となり、当然(Vc+VL)はn及びVI
に対して90o遅れ位相となってVIの先から電源電圧
V^c(V,)の先を結ぶベクトルとなり、第8図に示
す如くなる。結果第1図のもののVcは小さくなり、V
Lと(VL,十VL2)は余り差がない。したがって、
第1図の構成によりコスト安になり、且つ全体として小
型、軽量となる。本発明は交流電源に第1のィンダクタ
ンス素子とコンデンサと第1の放電灯との直列回路を接
続し、前記コンデンサに並列に第2のィンダクタンス素
子と第2の放電灯との直列回路を接続し、前記第1の放
電灯に並列に半導体スイッチ素子を接続するとともに、
該半導体スイッチ素子を交流電源の各半サイクルの後半
の所定位相区間導通させるから、コンデンサ、半導体ス
イッチ素子の印加電圧を低下させることができて安価に
でき、しかも、小型、軽量で、低損失である上、フリッ
カレス点灯となるという効果を奏するものである。
As a result, charge is accumulated in the capacitor 3, and the first discharge lamp 4 is started by the superimposed voltage of the power supply 1 and the capacitor 3.
On the other hand, the second discharge lamp 6 is started directly by the capacitor 3. Thus, both discharge lamps 4 and 6 are lit. The first discharge lamp 4 now obtains approximately the same operating mode as would be obtained when the supply voltage V, of the power supply 1 is approximately equal to the lamp voltage, and its lamp current 14 (shown by diagonal lines in FIG. 3b) has a leading phase with respect to the power supply voltage V shown in FIG. 3a. In Fig. 3b, with a current of 1 G flowing through the triac 8,
The lamp is ignited at a predetermined phase by the constant phase ignition circuit 9 and conductive, and at this time the lamp current 14 becomes zero. FIG. 3c shows the lamp voltage V4 of the first discharge lamp 4. on the other hand,
The voltage V3 between the terminals of the capacitor 3 has a phase lag with respect to the power supply voltage V, as shown in FIG. The phase is delayed with respect to the terminal voltage V3. FIG. 3f shows the voltage waveform of the lamp voltage V6 of the second discharge lamp 6. In this way, since the current phases of both discharge lamps 4 and 6 are shifted by about 900 degrees, their respective light outputs when lit are as shown in Figure 3g, and the combined output of both discharge lamps 4 and 6 is as shown in Figure 3. It will look like h. In other words, if there is only one light, flicker of 100Hz to 120Hz will occur with commercial power supply, but according to this embodiment, the lighting light output is 200Hz.
HZ or about 240 days, and the flicker rate is also reduced, so lighting is virtually flickerless to the human eye. The lighting circuit shown in Fig. 4 is a distinctive lighting circuit in which current-limiting elements such as inductance elements and capacitors are small when the power supply voltage and lamp voltage are approximately the same.
If the power supply voltage is sufficiently higher than the lamp voltage, for example about twice, then the inductance should be doubled and the capacitor should be 1.
'2 gives the same three lamp currents and power, but the power factor becomes extremely low and the voltage of the current limiting element and control element doubles. Here, in order to improve the power factor and lower the capacitor voltage, it is effective to insert a resistive impedance Z in parallel to the capacitor C as shown in FIG. In the fourth invention, a second inductance element 5 and a second discharge lamp 6 are connected to this resistive impedance Z, and the lamp can be lit very effectively without wasting power. can. The voltage vectors of each part of the circuit of FIG. 1 and the circuit of FIG. 5 are as shown in FIG. 7 and FIG. 8, respectively. In other words, the current flowing through the discharge lamp 4 is slightly advanced in phase with respect to the voltage V^c (V,) of the AC power supply 1, as shown by 14 in FIG. 3, and the current 14 and the lamp voltage V1,
Since (V4) are substantially in phase, the vector phase relationship of the lamp voltages V1 and (V4) with respect to the power supply voltage V^c (V,) is as shown in FIG. In other words, lamp voltage V1, (V4)
is advanced in phase with respect to the power supply voltage V^c (V,). On the other hand, since the current flowing through the inductance element 2 and the current 14 are in phase, the voltage VL across the inductance element 2 is 90 degrees behind the current 14 in phase. (V,=Ldi no d
t) Therefore, the voltage VL, lags the lamp voltage V1, by 900, and is shown in the evening as shown in FIG. Further, the voltage Vc of the capacitor 3 naturally has a vector phase from the voltage VL, to the power supply voltage V^c (V,), as shown in FIG. Note that since a resistive (inductance element 5 and discharge lamp 6) impedance (inductance element 5 and discharge lamp 6) is connected in parallel with the capacitor 3, a resistive impedance (with a slightly delayed phase due to the presence of the inductance element 5) is connected, so the relationship in the case of no such impedance is shown in Fig. 8. The phase is slightly behind the voltage Vc (but leads as a whole). Furthermore, the phase relationship between the inductance element 5 and the discharge lamp 6 with respect to the capacitor 3 is that the inductance element 5 is inductive with a lag of 90o, and the discharge lamp 6 is almost resistive. As a result, the deviation becomes as shown in Fig. 7. Now, in the circuit shown in Figure 5, L+C
is capacitive as a whole, so the input current (or lamp current) slightly advances in phase with respect to the current voltage V^c (V,), and therefore the lamp voltage VI also leads with respect to the power supply voltage V^c (V,). The phase advances a little, and naturally (Vc+VL) is n and VI
The phase is delayed by 90 degrees with respect to the current, and becomes a vector connecting the tip of VI to the tip of the power supply voltage V^c (V,), as shown in FIG. As a result, Vc in Figure 1 becomes smaller, and V
There is not much difference between L and (VL, 10VL2). therefore,
The configuration shown in FIG. 1 reduces costs and makes the entire device smaller and lighter. The present invention connects a series circuit of a first inductance element, a capacitor, and a first discharge lamp to an AC power source, and connects a series circuit of a second inductance element and a second discharge lamp in parallel to the capacitor. and connecting a semiconductor switch element in parallel to the first discharge lamp,
Since the semiconductor switching element is conductive for a predetermined phase period in the second half of each half cycle of the AC power supply, the voltage applied to the capacitor and the semiconductor switching element can be lowered and the cost can be reduced. Moreover, the device is small, lightweight, and has low loss. In addition, it has the effect of providing flickerless lighting.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明二灯用放電灯点灯回路の基本回路図、第
2図は同上の実施例の具体回路図、第3図a〜hは同上
の動作波形図、第4図は従来の放電灯点灯回路の基本回
路図、第5図は同上の二灯点灯用の基本回路図、第6図
は本発明の原理説明図、第7図は第1図の電圧ベクトル
図、第8図は第5図の電圧ベクトル図である。 1……電源、2……第1のィンダクタンス素子、3・・
・・・・コンデンサ、4・・・・・・第1の放電灯、5
・・…・第2のィンダクタンス素子、6・・・・・・第
2の放電灯、7・・・・・・半導体スイッチ素子。 第1図第2図 第4図 第5図 第3図 第6図 第7図 第8図
Fig. 1 is a basic circuit diagram of the dual discharge lamp lighting circuit of the present invention, Fig. 2 is a specific circuit diagram of the same embodiment as above, Fig. 3 a to h are operational waveform diagrams of the same as above, and Fig. 4 is a conventional circuit diagram. A basic circuit diagram of a discharge lamp lighting circuit, Fig. 5 is a basic circuit diagram for lighting the same two lamps as above, Fig. 6 is a diagram explaining the principle of the present invention, Fig. 7 is a voltage vector diagram of Fig. 1, and Fig. 8 is a basic circuit diagram of a discharge lamp lighting circuit. is the voltage vector diagram of FIG. 1... Power supply, 2... First inductance element, 3...
...Capacitor, 4...First discharge lamp, 5
. . . Second inductance element, 6 . . . Second discharge lamp, 7 . . . Semiconductor switch element. Figure 1 Figure 2 Figure 4 Figure 5 Figure 3 Figure 6 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】[Claims] 1 交流電源に第1のインダクタンス素子とコンデンサ
と第1の放電灯との直列回路を接続し、前記コンデンサ
に並列に第2のインダクタンス素子と第2の放電灯との
直列回路を接続し、前記第1の放電灯に並列に半導体ス
イツチ素子を接続するとともに、該半導体スイツチ素子
を交流電源の各半サイクルの後半の所定位相区間導通さ
せることを特徴とする二灯用放電灯点灯回路。
1. Connect a series circuit of a first inductance element, a capacitor, and a first discharge lamp to an AC power source, connect a series circuit of a second inductance element and a second discharge lamp in parallel to the capacitor, and A discharge lamp lighting circuit for two lamps, characterized in that a semiconductor switch element is connected in parallel to a first discharge lamp, and the semiconductor switch element is made conductive for a predetermined phase period in the second half of each half cycle of an AC power source.
JP15941675A 1975-12-30 1975-12-30 Discharge lamp lighting circuit for two lamps Expired JPS602758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15941675A JPS602758B2 (en) 1975-12-30 1975-12-30 Discharge lamp lighting circuit for two lamps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15941675A JPS602758B2 (en) 1975-12-30 1975-12-30 Discharge lamp lighting circuit for two lamps

Publications (2)

Publication Number Publication Date
JPS5284868A JPS5284868A (en) 1977-07-14
JPS602758B2 true JPS602758B2 (en) 1985-01-23

Family

ID=15693260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15941675A Expired JPS602758B2 (en) 1975-12-30 1975-12-30 Discharge lamp lighting circuit for two lamps

Country Status (1)

Country Link
JP (1) JPS602758B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4406976A (en) * 1981-03-30 1983-09-27 501 Advance Transformer Company Discharge lamp ballast circuit

Also Published As

Publication number Publication date
JPS5284868A (en) 1977-07-14

Similar Documents

Publication Publication Date Title
JPH03176997A (en) Circuit device for discharge lamp lighting
JPS5923350Y2 (en) discharge lamp
JPH10505458A (en) Circuit device
GB2104319A (en) Fluorescent lamp starter apparatus
JPS602758B2 (en) Discharge lamp lighting circuit for two lamps
US2695375A (en) Circuit for gas discharge lamps
JPS602759B2 (en) Discharge lamp lighting circuit for two lamps
JPH08308237A (en) Power source apparatus
US5434476A (en) Circuitry for operating fluorescent lamps with no stroboscopic effects
JP2593679B2 (en) Discharge lamp lighting device
JPS5922718Y2 (en) discharge lamp lighting device
JPS591069B2 (en) High frequency inverter power control method
JPH07230890A (en) Electric power supply device
JP2562817B2 (en) Discharge lamp lighting device
JPH076881A (en) Flickerless lighting circuit by double-spot system in ac lighting for fluorescent lamp
SU381184A1 (en) DEVICE FOR POWER SUPPLY OF GAS-DISCHARGE LAMP
SU892618A1 (en) Stabilized frequency multiplier
JPS6323920Y2 (en)
JPS6054760B2 (en) discharge lamp lighting device
RU93037531A (en) DEVICE FOR LIGHTING WITH LAMPS
JPS60757B2 (en) discharge lamp lighting device
JPS5834597A (en) Fluorescent lamp circuit
JPS6134893A (en) Device for firing discharge lamp
JPH10162987A (en) Inverter device
JPS6026279B2 (en) Fluorescent light dimmer device