JPS60271A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS60271A
JPS60271A JP10702283A JP10702283A JPS60271A JP S60271 A JPS60271 A JP S60271A JP 10702283 A JP10702283 A JP 10702283A JP 10702283 A JP10702283 A JP 10702283A JP S60271 A JPS60271 A JP S60271A
Authority
JP
Japan
Prior art keywords
food
container
temperature
refrigerator
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10702283A
Other languages
Japanese (ja)
Other versions
JPS6363835B2 (en
Inventor
安藤 栄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10702283A priority Critical patent/JPS60271A/en
Publication of JPS60271A publication Critical patent/JPS60271A/en
Publication of JPS6363835B2 publication Critical patent/JPS6363835B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は食品を急速に冷却する装置をもった冷蔵庫に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a refrigerator having a device for rapidly cooling food.

従来例の構成とその問題点 従来の冷蔵庫は一般に冷凍室と冷蔵室に区分され、冷却
器で冷やされた空気(単に冷気と呼ぶ)を冷凍室や冷蔵
室へ送り、各室を最適な規定温度に保っている(従来例
1とする)。しかしながら、この方法は空気の対流熱伝
達で食品を冷却するために、固体の熱伝導による直接冷
却と比べて熱伝導が悪く、食品の冷却に多くの時間を必
要とし、急速に冷却することは困難であった。また、流
入する冷気の風量を増やしたり、冷気の温度を下げたり
すると、食品に着霜したり、冷凍室や冷蔵室が規定温度
の設定からずれたりして、急速に冷却すべき食品以外の
食品に悪い作用を与えるという欠点があった。
Conventional structure and problems Conventional refrigerators are generally divided into a freezer compartment and a refrigerator compartment, and air cooled by a cooler (simply referred to as cold air) is sent to the freezer compartment and refrigerator compartment, and each compartment is divided into optimal conditions. The temperature is maintained at a certain temperature (this is referred to as conventional example 1). However, since this method cools food by convective heat transfer in the air, the heat conduction is poorer than direct cooling by solid heat conduction, and it takes a lot of time to cool the food, making it difficult to cool the food quickly. It was difficult. In addition, increasing the amount of cold air flowing in or lowering the temperature of the cold air may cause frost to form on the food or cause the freezer or refrigerator compartment to deviate from the specified temperature setting, causing food other than those that should be rapidly cooled to cool down. The drawback was that it had a negative effect on food.

一方、フロロカーボンを封入したヒートパイプを用いて
、ヒートパイプの一方を冷蔵ノ111の冷勾j器に接触
させ、他方を食品に接触させ、食品を急速にかつ限定的
に冷却する装置が考えられる(従来例2とする)。しか
しながら、通常冷蔵庫の冷却器の温度は冷凍室や冷蔵室
の温度よりもかなり低いために、食品と接触しているヒ
ートパイプの表面が冷却器温度近くまで冷却されてしま
う。そのために、食品が最適な温度以下に冷却されてし
まったり、食品やヒートパイプに着霜したり、さらには
冷凍室や冷蔵室の規定温度を維持できなくなってしまう
という欠点を除去できなかった。もちろん、この場合に
他のフロロカーボンを用いて、着霜現象を避けようとす
ると、本来の目的である食品を急速に冷却する機能を具
備しなくなってしまうことはよく知られている。
On the other hand, a device that uses a heat pipe filled with fluorocarbon and brings one side of the heat pipe into contact with the cooling gradient device of the refrigeration unit and the other side into contact with the food is considered to cool the food rapidly and to a limited extent. (This is referred to as conventional example 2). However, since the temperature of the cooler of a refrigerator is usually much lower than the temperature of the freezer or refrigerator compartment, the surface of the heat pipe that is in contact with the food is cooled to near the temperature of the cooler. For this reason, it has not been possible to eliminate the disadvantages of food being cooled below the optimum temperature, frost forming on the food and heat pipes, and furthermore, the specified temperature of the freezer or refrigerator compartment being unable to be maintained. Of course, it is well known that if another fluorocarbon is used to avoid frost formation in this case, it will no longer have the function of rapidly cooling food, which is the original purpose.

発明の目的 本発明の目的は食品を急速に冷却する機能を有し、しか
も冷凍室や冷蔵室の規定温度以下に冷却するとともなく
かつ着霜することもない冷蔵庫を提供することである。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a refrigerator that has the function of rapidly cooling food, does not cool food below the specified temperature of the freezer or refrigerator compartment, and does not cause frost formation.

発明の構成 内部に少なくとも二種類の互いに溶解混合する作動流体
を封入した密閉容器の一部を冷却する手段を有し、他の
一部を食品と接触させて食品を急速に冷却するようにし
た冷蔵庫である。具体的には前記密閉容器の一部を冷蔵
庫の冷却器に接触させるかあるいは冷却器室内に突出さ
せるかして冷却し、他の一部を冷凍突へ突出させるか、
あるいは冷蔵室へ突出させるかもしくは独立した室を設
け、その中へ突出させ、食品をおく空間を冷却するか食
品と直接接触して食品を急速に冷却するようにした冷蔵
庫である。
The structure of the invention has a means for cooling a part of the closed container in which at least two types of working fluids that dissolve and mix with each other are sealed inside, and the other part is brought into contact with the food to rapidly cool the food. It's a refrigerator. Specifically, a part of the airtight container is cooled by being brought into contact with the cooler of the refrigerator or by being made to protrude into the cooler chamber, and the other part is made to protrude into the freezing chamber, or
Alternatively, it is a refrigerator that protrudes into the refrigerating room or has an independent chamber and protrudes into the refrigerating room to cool the space in which food is stored, or to cool the food rapidly by coming into direct contact with the food.

実施例の説明 本発明の基本原理を実施例によって説明する。Description of examples The basic principle of the present invention will be explained by way of examples.

第1図において、1は二種類の混合流体を入れた容器で
ある。4は加熱部、5は冷却部である。混合流体は沸点
の異なる少なくとも二種類のより高沸点物とより低沸点
物の成分から構成され、それらはお互いに溶解、混合す
るものであり、容器1内で液相部2と気相部3を構成し
ている。混合流体は動作温度ならびに混合流体の飽和蒸
気圧によって定まる適当な組成および圧力の下で容器1
内命 に封入されている。分何らかの加熱源によって加熱部4
の温度を上昇させると、液相部2の液面から蒸気が発生
して容器1内の蒸気圧が増加するが、冷却部5の温度で
決捷る凝縮圧力よりも低い時は、気相部3の冷却部5で
の凝縮は起こらない。
In FIG. 1, 1 is a container containing two types of mixed fluids. 4 is a heating section, and 5 is a cooling section. The mixed fluid is composed of at least two components with different boiling points, a higher boiling point substance and a lower boiling point substance, which dissolve and mix with each other. It consists of The mixed fluid is placed in a container 1 under an appropriate composition and pressure determined by the operating temperature and the saturated vapor pressure of the mixed fluid.
It is enclosed within the secret life. heating section 4 by some heating source
When the temperature of the cooling section 5 is increased, steam is generated from the liquid surface of the liquid phase section 2 and the vapor pressure inside the container 1 increases. No condensation occurs in the cooling section 5 of section 3.

従ってこの時は加熱部4から冷却部6へ熱の伝達は生じ
ない。さらに加熱されて加熱部4と冷却部5とがある温
度差Δt℃以上に壕でなると、容器1内の蒸気圧がさら
に増加して、しかも冷却部6で決まる凝縮圧力よりも高
くなり、気相部3は冷却部5で凝縮が起こる。従って、
この時は加熱部から冷却部へ熱の伝達が始まる。ここに
本発明の特徴がある。すなわち、冷却部と加熱部がある
一定温度差Δt℃以内の時は熱の伝達がおこな噌りれず
、71℃以上になった時始めて熱の伝達を起こさせ、多
量の熱を搬送することができる。力l熱音iで凝縮が起
こって液体となり、再び冷却部へ戻ることはよく知られ
ている。また混合液体の組成や沸点、粘度などの性質お
よび容器や容器内部の構造や種類によって動作温度およ
び凝縮圧力を選択することができる。
Therefore, at this time, no heat is transferred from the heating section 4 to the cooling section 6. When the temperature difference between the heating section 4 and the cooling section 5 exceeds a certain temperature difference Δt°C due to further heating, the vapor pressure inside the container 1 further increases and becomes higher than the condensation pressure determined by the cooling section 6. Condensation occurs in the phase section 3 in the cooling section 5. Therefore,
At this time, heat begins to be transferred from the heating section to the cooling section. This is a feature of the present invention. In other words, when the temperature difference between the cooling part and the heating part is within a certain temperature difference Δt°C, heat transfer does not occur, and only when the temperature reaches 71°C or higher does heat transfer occur, and a large amount of heat is transferred. I can do it. It is well known that the force l and the heat sound i cause condensation to become a liquid and return to the cooling section. Further, the operating temperature and condensing pressure can be selected depending on the composition, boiling point, viscosity, and other properties of the mixed liquid, and the structure and type of the container and inside of the container.

具体的には、容器1の内部にウィック等を設置してもよ
く、マた混合液体の組成分離を生せしめて、容器1の冷
却部6にも液体が滞留するような構造にして、容器1の
加熱部と冷却部に組成の異なる液体が存在するようにし
てもよい。
Specifically, a wick or the like may be installed inside the container 1, so that the composition of the mixed liquid is separated, and the liquid is retained in the cooling part 6 of the container 1. Liquids having different compositions may be present in one heating section and one cooling section.

−例として内径1cm 、長さ25cmの容器に、フロ
ロカーボンと有機溶剤の混合流体を用いて実験をおこな
った。温度を横軸にとり熱搬送量を縦軸にとってその関
係をめると第2図に示すような結果が得られ、目的とす
る性能が得られた。なお第2図には同じフロロカーボン
を用いた従来例2について破線で示した。
- As an example, an experiment was conducted using a mixed fluid of fluorocarbon and an organic solvent in a container with an inner diameter of 1 cm and a length of 25 cm. By setting the temperature on the horizontal axis and the amount of heat transfer on the vertical axis and examining the relationship, the results shown in FIG. 2 were obtained, and the desired performance was obtained. In FIG. 2, conventional example 2 using the same fluorocarbon is shown with a broken line.

以上、熱伝達装置自体の原理と一例について詳述したが
、次に上記装置を適用した冷蔵庫について説明する。
The principle and example of the heat transfer device itself have been described above in detail. Next, a refrigerator to which the above device is applied will be explained.

第3図は本発明を用いた冷蔵庫の原理を示す実施例であ
る。前述した容器1の冷却部5を冷蔵庫の冷却器7に接
触し、加熱部4は冷凍室内にある食品6に接している。
FIG. 3 is an embodiment showing the principle of a refrigerator using the present invention. The cooling section 5 of the container 1 mentioned above is in contact with the cooler 7 of the refrigerator, and the heating section 4 is in contact with the food 6 in the freezer compartment.

これにより食品6と冷却器7は容器1を介して熱的に接
触しており、食品6は冷気ではなく容器1により冷却さ
れる。今、室温にある食品6を冷凍室の中へ入れだ場合
、冷却冊子の温度よりもはるかに高いだめ、前述の動作
原理に基いて容器1により、食品6から冷却器7へ熱が
搬送されて食品6が冷却される。このようにして食品6
が冷凍室の規定温度にまで冷却されると、冷却器7との
温度差が小さくなり、前述の41℃以内になって容器1
による熱の伝達は起こらない。
As a result, the food 6 and the cooler 7 are in thermal contact via the container 1, and the food 6 is cooled by the container 1 rather than by cold air. Now, when food 6 at room temperature is put into the freezer, the temperature is much higher than the temperature of the cooling booklet, so heat is transferred from food 6 to cooler 7 by container 1 based on the operating principle described above. The food 6 is cooled down. In this way food 6
When the container 1 is cooled down to the specified temperature of the freezer compartment, the temperature difference with the cooler 7 becomes smaller and becomes within the above-mentioned 41°C.
No heat transfer occurs.

この様子を食品の温度を縦軸にとり、時間を横軸にとっ
た実験結果をめたものが第4図である。
Figure 4 shows the experimental results of this situation, with food temperature plotted on the vertical axis and time plotted on the horizontal axis.

第4図には、従来例として冷気だけによる冷却(従来例
1)および容器1に70ロカーボンのみを用いる冷却(
従来例2)をあわせて示した。これによれば、従来例1
にくらべて食品6は急速に冷却され、従来例2のように
食品6が冷凍室の規定温度以下に冷却されることはない
。従って食品6や冷凍室内にある容器1は着霜すること
もない。
FIG. 4 shows conventional examples of cooling using only cold air (conventional example 1) and cooling using only 70 carbon in the container 1 (conventional example 1).
Conventional example 2) is also shown. According to this, conventional example 1
Compared to this, the food 6 is cooled rapidly, and unlike the conventional example 2, the food 6 is not cooled below the specified temperature of the freezer compartment. Therefore, the food 6 and the container 1 in the freezer are not frosted.

しかも急速に冷却すべき食品のみを限定的に冷却し、冷
凍室および冷蔵室の規定温度を最適に維持し、他の食品
に悪い影響を与えることがない。
In addition, only the foods that need to be cooled quickly are cooled in a limited manner, and the prescribed temperatures in the freezer and refrigerator compartments are optimally maintained without adversely affecting other foods.

第3図の実施例では容器1の大きさ、形状および設置さ
れる場所には特に制限されるものではない。容器1の加
熱部を冷凍室へ突出させても冷蔵室へ突出させてもある
いは独立の室を設けて突出させてもかまわない。もちろ
ん、加熱部の突出される場所の規定温度に応じてΔt℃
の温度差と熱搬送量を選ぶように混合流体の組合せと組
成を選択すればよい。一方、容器1の冷却部は冷却器7
に接触している場合の説明をしたが、これは熱伝造をと
る必要はなく、冷却器室内に突出するだけでもよい。こ
の場合は取付けが容易だが熱伝達をよくするだめのフィ
ンが必要となろう。また容器1の冷却部を冷凍室に加熱
部を冷蔵室に設置しでもかまわない。また第3図では容
器1を1本の管として例示しであるが、1本の管でなく
とも良く、平板状のものでもまた多数本の管を並列にさ
せてもよい。
In the embodiment shown in FIG. 3, the size and shape of the container 1 and the location where it is installed are not particularly limited. The heating part of the container 1 may protrude into the freezing compartment, into the refrigerating compartment, or by providing an independent chamber. Of course, depending on the specified temperature of the place where the heating part is projected, Δt℃
The combination and composition of the mixed fluids can be selected to select the temperature difference and heat transfer amount. On the other hand, the cooling part of the container 1 is a cooler 7.
Although we have explained the case where it is in contact with the cooler, it is not necessary to provide heat transfer, and it is sufficient to just protrude into the cooler chamber. In this case, installation would be easy, but additional fins would be needed to improve heat transfer. Further, the cooling section of the container 1 may be installed in the freezing room, and the heating section may be installed in the refrigerator room. Further, in FIG. 3, the container 1 is illustrated as a single tube, but it does not need to be a single tube, and may be in the form of a flat plate or a large number of tubes arranged in parallel.

第6図は本発明の他の実施例を示す。なお第3図と共通
する素子には同一番号を付す。容器1を平板状にし、冷
却すべき食品6の周囲を囲む」;うになっており、冷凍
室や冷蔵室とは独立した急速冷凍室を設けている。この
ようにすると食品6と容器1の接触面積が増え、冷却時
間の短縮に効果的である。
FIG. 6 shows another embodiment of the invention. Note that elements common to those in FIG. 3 are given the same numbers. The container 1 is shaped like a flat plate and surrounds the food 6 to be cooled, and a quick-freezing room is provided which is independent of the freezer and refrigerator compartments. This increases the contact area between the food 6 and the container 1, which is effective in shortening the cooling time.

以上、混合流体としてフロロカーボンと有機溶剤を用い
た場合について説明しだが、他にアルコール類、グリコ
ール類などを用いてもよく、まだ沸点の異なる70ロカ
ーボン同志やアルコール同志でもよく、それらの中で少
なくとも二種類以上で構成しても良く、動作温度範囲内
で凝固しないものでお互い溶解、混合する流体であれば
何でも良い。
Above, we have explained the case where fluorocarbon and organic solvent are used as a mixed fluid, but alcohols, glycols, etc. may also be used, and 70 carbons and alcohols with different boiling points may also be used, and among them, at least It may be composed of two or more types, and any fluid may be used as long as it does not solidify within the operating temperature range and dissolves and mixes with each other.

また、冷蔵庫を通常に動作させた場合について説明した
が、食品を急速に冷却する場合に、冷凍室や冷蔵室を規
定温度に維持する場合とは別に、冷却器7の温度を変え
て設定しても良い。この場合にd2、冷却器7の温度を
通常より低く設定しても容器1の動作は原理的に変わら
ず、食品の冷却時間をより一層短縮し、冷却が終って通
常の冷却器7の温度へ戻しても、容器1の動作は原理的
に変わらない。
In addition, although we have explained the case where the refrigerator operates normally, when rapidly cooling food, it is necessary to change the temperature of the cooler 7 and set it separately from maintaining the freezer compartment and refrigerator compartment at the specified temperature. It's okay. In this case, d2, even if the temperature of the cooler 7 is set lower than normal, the operation of the container 1 will not change in principle, and the cooling time of the food will be further shortened, and the temperature of the cooler 7 will be the same after cooling is finished. Even if the container 1 is returned to the original position, the operation of the container 1 remains unchanged in principle.

発明の効果 第4図に示すように、冷却器温度近くまで冷却されてし
捷うこともなく規定温度に達するとその温度を維持する
ために、食品を必要以上に冷却したり、食品や熱伝達装
置が着霜することもなく、しかも食品を急速に冷却する
効果を有している。
Effects of the Invention As shown in Figure 4, in order to maintain the temperature when the food reaches the specified temperature without being cooled to near the temperature of the cooler, food is There is no frost formation on the transmission device, and it has the effect of rapidly cooling food.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いた伝達装置の原理を示す図、第2
図は本発明に用いた伝達装置の動作特性を示す図、第3
図は本発明の原理一実施例の冷蔵庫の概略構成図、第4
図は本発明における動作特性を示す図、第5図は本発明
の他の実施例の冷蔵庫の概略構成図である。 1・・・・・・容器、2・・・・混合流体の液相部、3
・混合流体の気相部、4・・・・・・加熱部、5・・・
・・冷却部、6・・・・・・食品、7・・・・・冷却器
、8・・・・・冷凍室、9・・・・冷蔵室、10・・・
・・・冷蔵庫。
Figure 1 is a diagram showing the principle of the transmission device used in the present invention, Figure 2 is a diagram showing the principle of the transmission device used in the present invention.
Figure 3 shows the operating characteristics of the transmission device used in the present invention.
The figure is a schematic configuration diagram of a refrigerator according to an embodiment of the principle of the present invention.
The figure shows the operating characteristics of the present invention, and FIG. 5 is a schematic diagram of a refrigerator according to another embodiment of the present invention. 1... Container, 2... Liquid phase part of mixed fluid, 3
・Gas phase part of mixed fluid, 4... Heating part, 5...
... Cooling section, 6 ... Food, 7 ... Cooler, 8 ... Freezer room, 9 ... Refrigerator room, 10 ...
···refrigerator.

Claims (1)

【特許請求の範囲】[Claims] 内部に少くとも二種類の互いに溶解混合する流体を封入
した密閉容器の一部を冷却する手段を有し、他の一部を
冷却すべき物体をおく空間に配したことを4、+i徴と
する冷蔵庫。
4.+i indicates that a sealed container containing at least two types of fluids that dissolve and mix with each other has a means for cooling a part of the container, and the other part is placed in a space in which an object to be cooled is placed. Refrigerator.
JP10702283A 1983-06-15 1983-06-15 Refrigerator Granted JPS60271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10702283A JPS60271A (en) 1983-06-15 1983-06-15 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10702283A JPS60271A (en) 1983-06-15 1983-06-15 Refrigerator

Publications (2)

Publication Number Publication Date
JPS60271A true JPS60271A (en) 1985-01-05
JPS6363835B2 JPS6363835B2 (en) 1988-12-08

Family

ID=14448525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10702283A Granted JPS60271A (en) 1983-06-15 1983-06-15 Refrigerator

Country Status (1)

Country Link
JP (1) JPS60271A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4915518A (en) * 1987-10-19 1990-04-10 Bull Hn Information Systems Italia S.P.A. Printer and related multifunctional stand
US4960581A (en) * 1988-03-16 1990-10-02 Mitsui Toatsu Chemicals, Inc. Method for preparing gaseous metallic fluoride
JPH0642591U (en) * 1992-11-20 1994-06-07 豊産業株式会社 Bottom protection device
JPH08170859A (en) * 1994-12-15 1996-07-02 Toshiba Corp Freezer refrigerator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4894060U (en) * 1972-02-09 1973-11-10

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4894060U (en) * 1972-02-09 1973-11-10

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4915518A (en) * 1987-10-19 1990-04-10 Bull Hn Information Systems Italia S.P.A. Printer and related multifunctional stand
US4960581A (en) * 1988-03-16 1990-10-02 Mitsui Toatsu Chemicals, Inc. Method for preparing gaseous metallic fluoride
JPH0642591U (en) * 1992-11-20 1994-06-07 豊産業株式会社 Bottom protection device
JPH08170859A (en) * 1994-12-15 1996-07-02 Toshiba Corp Freezer refrigerator

Also Published As

Publication number Publication date
JPS6363835B2 (en) 1988-12-08

Similar Documents

Publication Publication Date Title
JP4033699B2 (en) Loop thermosyphon and Stirling refrigerator
WO2005008160A1 (en) Loop type thermo syphone, heat radiation system, heat exchange system, and stirling cooling chamber
US5083607A (en) Devices for producing cold and/or heat by solid-gas reaction managed by gravitational heat pipes
JPS60271A (en) Refrigerator
JP3826998B2 (en) Stirling refrigeration system and Stirling refrigerator
TW514716B (en) Stirling cooling apparatus, cooler, and refrigerator
US20050016184A1 (en) Stirling cooling device, cooling chamber, and refrigerator
JP3751613B2 (en) Heat exchange system and Stirling refrigerator
JP2006084135A (en) Heat radiating system and stirling refrigerator
US2610479A (en) Two-temperature refrigerator
TWM572443U (en) Refrigerator device for cooling fruit and vegetable room by using heat pipe
JPS6017675A (en) Refrigerator
US1959994A (en) Refrigerating system
US1900674A (en) Two-temperature evaporator
US2530338A (en) Temperature control apparatus
KR930000941B1 (en) Stirling cycle type refrigerator
JPS63318495A (en) Regenerative heat exchanger
US1910528A (en) Water cooler
KR0184229B1 (en) An instantly freezing room in a refrigerator
JPS5810664B2 (en) Reizoko
JP2006349233A (en) Cooling storage
JP2002107075A (en) Heat exchanger and refrigerator provided with the same
JPH0754214B2 (en) Double-effect absorption refrigerator
KR940002221B1 (en) Refrigerator
JPH01155150A (en) Refrigerator