JPS6026816A - Straight operating bearing and its manufacturing method - Google Patents

Straight operating bearing and its manufacturing method

Info

Publication number
JPS6026816A
JPS6026816A JP13351183A JP13351183A JPS6026816A JP S6026816 A JPS6026816 A JP S6026816A JP 13351183 A JP13351183 A JP 13351183A JP 13351183 A JP13351183 A JP 13351183A JP S6026816 A JPS6026816 A JP S6026816A
Authority
JP
Japan
Prior art keywords
rolling
rolling groove
sliding body
raceway
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13351183A
Other languages
Japanese (ja)
Inventor
Kenichiro Ito
健一郎 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Toyo Bearing Co Ltd filed Critical NTN Toyo Bearing Co Ltd
Priority to JP13351183A priority Critical patent/JPS6026816A/en
Publication of JPS6026816A publication Critical patent/JPS6026816A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/0633Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides
    • F16C29/0635Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end
    • F16C29/0638Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with balls
    • F16C29/064Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with balls with two rows of balls, one on each side of the rail
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/0602Details of the bearing body or carriage or parts thereof, e.g. methods for manufacturing or assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Bearings For Parts Moving Linearly (AREA)
  • Rolling Contact Bearings (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PURPOSE:To reduce a total cost of a straight operating bearing wherein a sliding element is slidably put over a raceway track base via balls by constituting the rolling groove on the sliding element of an arciform rolling face which bears a downward load and a linear rolling face which bears an upward load. CONSTITUTION:An arcilform rolling groove 3 on which balls 2 roll in symmetrical relation on the opposed sides is formed on a raceway track base 1 through its full length in the longitudinal direction. A U-shaped sliding element 4 which spans on the raceway track base 1 has bearing's raceway parts 5 projected at both sides thereof and an arciform rolling groove 6 is also formed on the inner face of parts 5 as opposed to the other rolling groove 3. The rolling face 6b of the rolling groove 6 bearing an upward load is formed to have a linear section. For making the rolling groove 6, a grinding wheel 9 having both an external face 9a having the same curvature as that of the rolling face 6a of the rolling groove 6 and a peripheral flat end face 9b is positioned obliquely. The grinding wheel 9 having a large diameter may be used for grinding and the total cost be reduced.

Description

【発明の詳細な説明】 イ、産業上の利用分野 この発明は、上下左右の四方向荷重を負荷することので
きる直動輪受及びその加工方法に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a linear drive wheel bridge that can bear loads in four directions, up, down, right and left, and a method for processing the same.

口、従来技術 一般に、工作機械等のテーブルやその他側定器、プレス
機のスライド部の如き直線運動を行う機械装置に於いて
ば、摺動ストロークを無限に取ることのできる転動体循
環形式の直動軸受を使用することが多い。この直動軸受
は、転走面を形成した軌道台と装置に取付けられる摺動
体との間に転動体を介在させて循環させるようになした
ものであり、転動体として従来よりボール及びコロを用
いておる。
2. Prior Art In general, in mechanical devices that perform linear motion such as tables of machine tools, other side fixtures, and sliding parts of press machines, rolling element circulation type that can take an infinite sliding stroke is used. Linear bearings are often used. This linear motion bearing circulates by interposing rolling elements between a wayway with a rolling surface and a sliding element attached to the device. Conventionally, balls and rollers are used as rolling elements. I am using it.

第1図は転動体にボールを用いるボール循環形直動軸受
の従来例であって、(1)は長尺な断面矩形形状の軌道
台で、その両側面の所定の対称位置にボール(2)(2
)が転動する円弧状の転走溝(3)(3)を長手方向全
長に亘って形成している。(4)は前記軌道台(1)上
に跨架したコ字形状の摺動体で、これはその両側部に長
手方向に沿って一体に突出形成した軸受軌道部(5)(
5)を有しており、この軸受11σ【退部(5)(5)
の内側面の対称所定部位に前記軌道台(1)の転走溝(
3)(3)と対応させて円弧状の転走溝(6)(6)を
長平方向に亘って形成すると共に、この転走溝(6)(
6)と所定の間を隔てた隣接部位置に該転走溝(6)(
6)と平行させてボール返還孔(7)く7)を穿設し、
このホール返還孔(7) (7)の両端をU字形に湾曲
させてその開口端部を転走/Vj(6)((i)に開D
 I、て該転走溝(6)(6)の周囲にボール(2)(
2)の循環路力く構成されている。そして、この摺動体
(4)kl、各転走溝(3)(3)、(6)(6)及o
: ン15−ル返還孔(7)(7)に循環配列した;j
ζ−ル(2)(2)を介してすし重台(1)上Gこ摺動
自在に跨架されている。
Fig. 1 shows a conventional example of a ball circulation type linear motion bearing that uses balls as rolling elements. (1) is a long track with a rectangular cross section, and balls (2) are placed at predetermined symmetrical positions on both sides of the track. )(2
) are formed over the entire length in the longitudinal direction. (4) is a U-shaped sliding body that straddles the above-mentioned track base (1), and this is a bearing raceway part (5) (
5), and this bearing 11σ [recessed part (5) (5)
A rolling groove (
3) Corresponding to (3), arc-shaped rolling grooves (6) (6) are formed extending in the longitudinal direction, and these rolling grooves (6) (
The rolling groove (6) (
Drill a ball return hole (7) in parallel with 6),
Both ends of this hole return hole (7) (7) are curved into a U-shape and the open end is rolled/Vj (6) (opened in (i)
I, the ball (2) (
2) The circulation path is well constructed. And this sliding body (4) kl, each rolling groove (3) (3), (6) (6) and o
: 15-ring return hole (7) (7) in a circular arrangement; j
It is slidably straddled over the sushi table (1) via the ζ-rules (2) (2).

そして、前記軌道台(1)士の慴動体(4)を適当な手
段で移動させると、ボール(2)&J:各転走國(3)
(3)、((i) (6)及びンドール返逼孔(7)(
7)を循環転動し、摺動体(4)は軌道台(1)に沿っ
て所定の方向への直線運動を行う。
Then, when the moving body (4) of the track platform (1) is moved by an appropriate means, the ball (2) & J: each rolling country (3)
(3), ((i) (6) and Ndor return hole (7) (
7), and the sliding body (4) performs linear motion in a predetermined direction along the track (1).

ところで、上記直動!□iiJ受に於いて、摺動体(4
)に作用する」二下左右の四方向荷重を負荷するには、
慴動体(4)の転走l?η(G)(6)がボール(2)
(2)に夫々2点合計4点−C1妾触を行う必要がある
。そこで、従来番よ摺動体(4)の転走溝(6)を第2
図に示すように、2つの曲率中心を有する転走面(Ga
) (6b)を上下対称に形成している。イ乃って、四
方向に荷重を等しく負荷することができる。ところが、
摺動体(4)の転走溝(6)を2つの曲率中心を有する
転走面(6a) (6b)を」二下対称にして形成した
のでは、実際の加工に於いて転走溝(G)の研削加工は
第3図に示すように、研削m力の小さい小径の砥石(8
)で非能率的な研削加工を強いられ、研削加工に多くの
時間を要し7てトータル製造コストを高(する要因にな
っていた。
By the way, the above direct motion! □ii In the J receiver, the sliding body (4
) to apply a four-directional load on the bottom left and right,
Rolling motion of moving body (4)? η(G)(6) is the ball(2)
(2) requires 2 points for each, total of 4 points - C1 concubinage. Therefore, compared to the conventional model, we changed the rolling groove (6) of the sliding body (4) to the second
As shown in the figure, the rolling surface (Ga
) (6b) are formed vertically symmetrically. Therefore, the load can be applied equally in all four directions. However,
If the rolling groove (6) of the sliding body (4) is formed with the rolling surfaces (6a) and (6b) having two centers of curvature symmetrically, the rolling groove (6) will not be formed in the actual machining. As shown in Figure 3, the grinding process G) is carried out using a small-diameter grindstone (8) with a small grinding force.
), the grinding process was forced to be inefficient, and the grinding process took a lot of time, which resulted in a high total manufacturing cost.

ハ0発明の目的 この発明は、摺動体の転走溝を研削能力の大きい大径の
砥石で研削加工することによって、研削加工能率を大幅
に向上させて加工時間を大幅に短縮し、トータル製造フ
ストを低くできるようになした直動軸受及びその加工方
法を提供するものである。
Purpose of the Invention This invention significantly improves grinding efficiency and shortens machining time by grinding the rolling grooves of a sliding body with a large-diameter grindstone that has a large grinding capacity. The present invention provides a linear motion bearing and a method for machining the same, which allows the bearing to be lowered.

二1発明の構成 この発明は、両側面に転走溝を全長に亘って形成した軌
道台と、両側部に一体形成した軸受軌道部の夫々の内側
面に前記軌道台の転走lDと対応させて転走溝を形成し
、かつ、該転走溝の周囲にボール循環路を形成した摺動
体と、前記摺動体の転走溝及びボール循環路に配列保持
されたボールとよりなり、前記軌道台上に前記ボールを
介して前記摺動体をIn動自在に跨架した直動軸受に於
いて、前記摺動体の転走溝を、下方向荷重を負荷する円
弧状の転走面と上方向荷重を負荷する直線状及び隙、直
線状の転走面とで(h成して」−丁卯対称に形成すると
共に、上記両中五走面を砥石の外周面及び周縁(F、1
1 、Mj3面で同時に研削するようになしたちのであ
る。
21 Structure of the Invention This invention provides a wayway in which rolling grooves are formed over the entire length on both side surfaces, and a bearing raceway integrally formed on both sides, each of which has inner surfaces corresponding to the rolling grooves ID of the wayway. The sliding body has a rolling groove formed therein and a ball circulation path around the rolling groove, and balls arranged and held in the rolling groove and the ball circulation path of the sliding body, In a linear motion bearing in which the sliding body is movably straddled over the way via the balls, the rolling groove of the sliding body is connected to the arc-shaped rolling surface that applies a downward load and the upper The linear rolling surface that applies a directional load, the gap, and the linear rolling surface are formed symmetrically (H, 1), and the above-mentioned both middle and 5 running surfaces are formed on the outer peripheral surface and the peripheral edge (F, 1) of the grinding wheel.
1. The three Mj surfaces are ground at the same time.

ポ、実施例 5S4図及び第5図はこの発明の直動軸受の実施例で、
第1図の従来例との相異点は、摺動体(4)の転走溝(
6)の上方向荷重を負荷する転走面(6b)の断面形状
を直線に形成したことにあり、これにより摺動体(4)
の転走溝(6)の!i7F削加工が大径の砥石で可能で
ある。
Embodiment 5S4 and 5 are examples of the linear motion bearing of this invention.
The difference from the conventional example shown in Fig. 1 is that the rolling groove (
6) The cross-sectional shape of the rolling surface (6b) that applies an upward load is formed into a straight line, which allows the sliding body (4) to
of the rolling groove (6)! i7F machining is possible with a large diameter grindstone.

ところで、この発明の直動軸受に於いては、上方向荷重
に対しボール(2)は平面状の転走面(6b)との転が
り接触となり転走面(6b)の負荷容量は低下するが、
下記の理由により大力の場合は下方向荷重の負荷容量の
低下は問題とならない。即ち、この種の直動軸受を使用
される条件から検討するならば、その大部分はベットと
テーブル間の直線摺動運動に使用され、その場合の荷重
大1向としては80〜90%が下方向及び左右方向であ
り、上方向に荷重は殆ど作用してない。また、上方向荷
重が作用した場合でも、テーブル重量で相殺される程度
であって下方向荷重に比べてはるかに小さい。
By the way, in the linear motion bearing of the present invention, the balls (2) come into rolling contact with the planar raceway surface (6b) in response to an upward load, and the load capacity of the raceway surface (6b) decreases. ,
For the following reasons, in the case of large forces, a decrease in the load capacity of downward loads is not a problem. In other words, if we consider the conditions under which this type of linear motion bearing is used, most of them are used for linear sliding motion between the bed and the table, and in that case, 80 to 90% of the load is in one direction. The load is downward and left and right, and almost no load is applied upward. Further, even if an upward load is applied, it is offset by the weight of the table and is much smaller than a downward load.

第6図はこの発明の加工方法にて摺動体(4)の転走溝
(6)を加工する時の伏慾を示す略図で、転走溝(6)
の転走面(6a)と同一曲率の外周面(9a)並びに平
面状の周縁側端面(9b)を有する砥石(9)と傾斜状
に配置し、該砥石(9)の外周面(9a)及び周縁側端
面(9b)で転走溝(6)の転走面(6a)及び(6b
)を同時研削する。
FIG. 6 is a schematic diagram showing the process of machining the rolling groove (6) of the sliding body (4) using the machining method of the present invention.
A grindstone (9) having an outer circumferential surface (9a) having the same curvature as the rolling surface (6a) of the grindstone (9) and a planar peripheral end surface (9b) is arranged in an inclined manner, and the outer circumferential surface (9a) of the grindstone (9) is arranged in an inclined manner. and the rolling surfaces (6a) and (6b) of the rolling groove (6) on the peripheral edge side end surface (9b).
) are simultaneously ground.

このように、砥石(9)を傾斜状に配置してその外周面
(9a)及び周縁側端面(9h)で転走溝(6)の転走
面(6a)及び(6b)を同時研削するようにすると、
砥石(9)を大径にすることができ、(iH削加工fi
L率を大幅に向上させて加工時間を大幅に短t1?1で
きる。第7図はこの発明の他の実施例で、摺動体(4)
の転走溝(6b)を、下方向荷重を負荷する転走R(C
+a)の曲率半径よりけるかに大きな曲率半径を有する
直線に近い円弧状に形成したもので、該転走面(6b)
を砥石(9)の側面外周縁に形成された曲率半径が太き
(略直線状の円弧錐面部(9c)で研削するようにした
ものである。
In this way, the grinding wheel (9) is arranged in an inclined manner, and the rolling surfaces (6a) and (6b) of the rolling groove (6) are simultaneously ground with its outer circumferential surface (9a) and peripheral end surface (9h). If you do this,
The grindstone (9) can be made larger in diameter, (iH machining fi
The L rate can be greatly improved and the machining time can be significantly shortened by t1?1. FIG. 7 shows another embodiment of the invention, in which the sliding body (4)
The rolling groove (6b) of the rolling groove (6b) is connected to the rolling groove R (C
The rolling surface (6b) is formed in an arc shape close to a straight line and has a radius of curvature much larger than the radius of curvature of +a).
The grinding wheel (9) is ground by a substantially linear arcuate conical surface (9c) with a large radius of curvature formed on the outer peripheral edge of the side surface of the grindstone (9).

へ1発明の効果 この発明は、両側面に転走溝を全長に亘って形成したi
!(t >n台と、両側部に一体形成した軸受軌道部に
夫々の内側面に前記軌道台の転走溝と対応さて転走溝を
形成し、かつ、該転走溝の周囲にボール循環路を形成し
た摺動体と、前記摺動体の転走溝及びボール循環路に配
列保持されたボールとよりなり、前記軌道台上に前記ボ
ールを介して前記摺動体を摺動自在に跨架した直動軸受
に於いて、前記摺動体の転走溝を、下方向荷重を負荷す
る円弧状の転走面と上方向荷重を負荷する直線状及び略
直線状の転走面とで構成すると共に、上記両転土面を砥
石の外周面及び周縁側端面で同時に研削するようにした
から、研削能力の大きい大径の砥石で研削加工すること
が可能となり、研削加工能力を大幅に向上させて加工時
間を大幅に短縮し、1ヘータル製造コストを低くするこ
とができる。
1. Effects of the Invention This invention provides a rolling groove formed on both side surfaces over the entire length.
! (T > n units, and a bearing raceway integrally formed on both sides has a rolling groove formed on each inner surface corresponding to the rolling groove of the way, and ball circulation around the rolling groove. It consists of a sliding body with a path formed therein, and balls arranged and held in rolling grooves and ball circulation paths of the sliding body, and the sliding body is slidably straddled over the track via the balls. In the linear motion bearing, the raceway groove of the sliding body is composed of an arcuate raceway surface that applies a downward load and a linear or substantially linear raceway surface that applies an upward load; Since the above-mentioned two rolling surfaces are simultaneously ground by the outer circumferential surface and the peripheral end surface of the grindstone, it is possible to perform the grinding process using a large diameter grindstone with a large grinding capacity, and the grinding process capacity is greatly improved. It is possible to significantly shorten processing time and lower the cost of manufacturing 1 hectal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の直シJ軸受を示す断面図、第2図はその
要部拡大図、第3図は従来の加工方法にて摺動体の転走
溝を加工する時の状態を示す概略図、第4図はこの発明
の直動軸受の実施例を示す断面図、第5図はその要部拡
大図、第6図はこの発明の加工方法にて摺動体の転走溝
を加工するn4の状態を示す概略図、第7図番Jこの発
明の他の実施例を示す要部概略図である。 (1) −軌道台、(2)−ボール、(3)−転走溝、
(4,)−慴動体、(5)−軸受→すし辺部、(6L−
転走溝、(6a> (13b) −転走面、(7L−−
一ボール返還孔、(9) −砥石、(9a)−外円面、
(911)−周縁側端面。
Figure 1 is a sectional view showing a conventional straight J bearing, Figure 2 is an enlarged view of its main parts, and Figure 3 is a schematic diagram showing the state when the rolling groove of a sliding body is machined using the conventional machining method. Fig. 4 is a sectional view showing an embodiment of the linear motion bearing of the present invention, Fig. 5 is an enlarged view of the main part thereof, and Fig. 6 is a machining of rolling grooves of a sliding body by the processing method of the present invention. FIG. 7 is a schematic diagram showing the state of n4, and FIG. 7 is a schematic diagram showing main parts of another embodiment of the present invention. (1) - track base, (2) - ball, (3) - rolling groove,
(4,)-moving body, (5)-bearing → sushi side, (6L-
Rolling groove, (6a> (13b) - Rolling surface, (7L--
One ball return hole, (9) - grindstone, (9a) - outer circular surface,
(911) - Peripheral side end surface.

Claims (1)

【特許請求の範囲】 (11両側面に転走溝を全長に亘って形成したgt道台
と、両側部に一体形成した軸受軌道部の夫々の内側面に
前記軌道台の転走溝と対応させて転走溝を形成し、かつ
、該転走溝の周囲にボール循環路を形成した摺動体と、
前記摺動体の転走溝及びボール循環路に配列保持された
ボールとよりなり、前記軌道台上に前記ボールを介して
前記摺動体を摺動自在に跨架した直動軸受に於いて、前
記摺動体の転走溝を、下方向荷重を負荷する円弧状の転
走面と上方向荷重を負荷する直線状及び略直線状の転走
面とで構成し゛ζ上下非対称に形成したことを特徴とす
る直動軸受。 (2) 両側面に転走面を全長に亘って形成した軌道台
と、両側部に一体形成した軸受軌道部の夫々の内側面に
前記軌道台の転走溝と対応させて転走溝を形成し、かつ
、該転走溝の周囲にンドール循環路を形成した摺動体と
、前記摺動体の転走溝及びボール循環路に配列保持され
たボールとよりなり、前記軌道台上に前記ボールを介し
て前記摺動体を摺動自在に跨架した直動軸受の加工方法
に於いて、前記摺動体の転走溝の下方向荷重を負荷する
転走面及び上方向荷車を負荷する転走面を砥石の外周面
及び周縁側端面で同時に研削するようにしたことを特徴
とする直動軸受の加工方法。
[Scope of Claims] (11) A GT track having rolling grooves formed over the entire length on both sides, and a bearing raceway integrally formed on both sides, each having inner surfaces corresponding to the rolling grooves of the way. a sliding body in which a rolling groove is formed and a ball circulation path is formed around the rolling groove;
In the linear motion bearing, which comprises balls arranged and held in a rolling groove and a ball circulation path of the sliding body, and in which the sliding body is slidably straddled on the track base via the balls, the above-mentioned The rolling groove of the sliding body is configured with an arcuate raceway surface that applies a downward load and a linear or substantially linear raceway surface that applies an upward load, and is formed vertically asymmetrically. Direct-acting bearing. (2) A wayway with raceway surfaces formed over the entire length on both sides, and a bearing raceway integrally formed on both sides, with raceway grooves corresponding to the raceway grooves of the wayway on each inner side. and a ball circulation path formed around the rolling groove, and balls arranged and held in the rolling groove and the ball circulation path of the sliding body. In the processing method of a linear motion bearing in which the sliding body is slidably straddled through the sliding body, the rolling surface of the rolling groove of the sliding body applies a downward load, and the rolling surface applies an upward load to a cart. A method for processing a linear motion bearing, characterized in that the surface is simultaneously ground on the outer circumferential surface and the peripheral end surface of a grindstone.
JP13351183A 1983-07-20 1983-07-20 Straight operating bearing and its manufacturing method Pending JPS6026816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13351183A JPS6026816A (en) 1983-07-20 1983-07-20 Straight operating bearing and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13351183A JPS6026816A (en) 1983-07-20 1983-07-20 Straight operating bearing and its manufacturing method

Publications (1)

Publication Number Publication Date
JPS6026816A true JPS6026816A (en) 1985-02-09

Family

ID=15106485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13351183A Pending JPS6026816A (en) 1983-07-20 1983-07-20 Straight operating bearing and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS6026816A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242722A (en) * 1988-03-25 1989-09-27 Sumitomo Metal Ind Ltd Heat treatment of band steel
JPH01246326A (en) * 1988-03-25 1989-10-02 Sumitomo Metal Ind Ltd Steel strip and heat treatment thereof
US5516324A (en) * 1993-02-03 1996-05-14 Honda Giken Kogyo Kabushiki Kaisha Method and apparatus for grinding ball grooves
EP1296074A3 (en) * 2001-09-25 2004-05-26 Harmonic Drive Systems Inc. 4-Point contact ball bearing
EP1124067A3 (en) * 2000-02-09 2004-11-03 INA-Schaeffler KG Linear roller bearing
KR100652167B1 (en) * 2002-12-03 2006-11-30 제이비옵틱스 주식회사 apparatus for V-shape grinding winded guide rail of a gonie

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149620A (en) * 1981-03-12 1982-09-16 Nippon Thompson Co Ltd Rectilinear motion ball bearing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149620A (en) * 1981-03-12 1982-09-16 Nippon Thompson Co Ltd Rectilinear motion ball bearing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242722A (en) * 1988-03-25 1989-09-27 Sumitomo Metal Ind Ltd Heat treatment of band steel
JPH01246326A (en) * 1988-03-25 1989-10-02 Sumitomo Metal Ind Ltd Steel strip and heat treatment thereof
US5516324A (en) * 1993-02-03 1996-05-14 Honda Giken Kogyo Kabushiki Kaisha Method and apparatus for grinding ball grooves
EP1124067A3 (en) * 2000-02-09 2004-11-03 INA-Schaeffler KG Linear roller bearing
EP1296074A3 (en) * 2001-09-25 2004-05-26 Harmonic Drive Systems Inc. 4-Point contact ball bearing
US6837623B2 (en) 2001-09-25 2005-01-04 Harmonic Drive Systems Inc. 4-point contact ball bearing
KR100652167B1 (en) * 2002-12-03 2006-11-30 제이비옵틱스 주식회사 apparatus for V-shape grinding winded guide rail of a gonie

Similar Documents

Publication Publication Date Title
JPS6026816A (en) Straight operating bearing and its manufacturing method
JPH0425618A (en) Linear guiding device
JPS628427Y2 (en)
JPS59222619A (en) Adjustment of gap of bearings for linear sliding
JPS58180833A (en) Twin linear bearing
JPS59125616U (en) Direction changing path for roller bearings for infinite linear motion
JPS6173829U (en)
JPS62204013A (en) Roller bearing for infinite line motion
US4631382A (en) Bed for electrical discharge machining apparatus
JPS60139912A (en) Roller type bearing for linear motion
JPH0230186Y2 (en)
JPS61105307A (en) Straight sliding roller bearing
JPS626983Y2 (en)
JPH0552214A (en) Linear sliding bearing
CN218312417U (en) Grinding device is used in processing of aligning roller bearing
CN109048516A (en) The precise positioning structure of roller rack
JP2000097233A (en) Curvelinear guide device
CN214742775U (en) Linear guide rail with high bearing rigidity
JPH0710096Y2 (en) Roller linear guide device
JPH0624571Y2 (en) Cross roller bearing for linear sliding
JPS6324257Y2 (en)
CN207696394U (en) A kind of guiding support device for the bearing with movable block
JPS62200015A (en) Ball bearing for rectilinear motion
JPH05231426A (en) Linear slide unit
JPS5954814A (en) Linearly operating ball bearing