JPS602669A - Device and method for controlling electroless plating liquid - Google Patents
Device and method for controlling electroless plating liquidInfo
- Publication number
- JPS602669A JPS602669A JP10971183A JP10971183A JPS602669A JP S602669 A JPS602669 A JP S602669A JP 10971183 A JP10971183 A JP 10971183A JP 10971183 A JP10971183 A JP 10971183A JP S602669 A JPS602669 A JP S602669A
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- electroless plating
- plating
- exchange membrane
- plating solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1655—Process features
- C23C18/1664—Process features with additional means during the plating process
- C23C18/1671—Electric field
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1619—Apparatus for electroless plating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1675—Process conditions
- C23C18/1683—Control of electrolyte composition, e.g. measurement, adjustment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/38—Coating with copper
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- Chemically Coating (AREA)
Abstract
Description
【発明の詳細な説明】
〔技術分野〕
本発明は無電解めっき液の組成を常に一定に訂を持する
ための管l!!装置及びその管理方法に関するものであ
る。[Detailed Description of the Invention] [Technical Field] The present invention provides a tube for keeping the composition of an electroless plating solution constant at all times. ! It relates to devices and methods of managing them.
一般に、無電解めっき液は金属陽イオン、金属陽イオン
の錯化剤、金属陽イオンの還元剤、PH調整剤等を主成
分として含有してなるものであり、特に汎用度の高い無
電解銅めっき液を例にとって示せば次の組成を有するめ
っき液が代表的なものである。In general, electroless plating solutions contain metal cations, complexing agents for metal cations, reducing agents for metal cations, pH adjusters, etc. as main components, and electroless copper, which is particularly versatile, Taking a plating solution as an example, a typical plating solution has the following composition.
Cu so4 + 5)−120(銅イオン供給剤)E
DTA−4Na ・4H20(銅イオン供給剤)トIC
l−10(遷元剤)
Na OH(PI−1調整剤)
α−α′ジピリジル(安定剤)
ポリエチレングリコール(界面活性剤)かかる組成を有
する無電解銅めっき液においては、めっきに伴ない次の
主反応及び副反応が起こっているものと考えられる。Cu so4 + 5)-120 (copper ion supply agent) E
DTA-4Na 4H20 (copper ion supply agent) IC
l-10 (transition agent) Na OH (PI-1 regulator) α-α' dipyridyl (stabilizer) Polyethylene glycol (surfactant) In an electroless copper plating solution with such a composition, the following occurs during plating. It is thought that main and side reactions are occurring.
主反応
Cu Y +2HCHO+40H−→Ct+ ’ 十Y
’−+2HCOO−+2H20+H2
副反応
2 HCHO+Ol−1−→CH301−1十FI C
O0−2CU”+HCHO+508−)Cu20−1−
HCOO−+3820
CIJ20+H20→Cu ’ +Cu”+208−C
u y2−+1−1coo−+301−1−→Cu ’
+Y’−+ G o、−+ 2820
ここに、YはEDTΔ〈エチレンジアミン四酢酸〉、C
u6は吸着銅原子を表わす。Main reaction Cu Y +2HCHO+40H-→Ct+ ' 10Y
'-+2HCOO-+2H20+H2 Side reaction 2 HCHO+Ol-1-→CH301-10FI C
O0-2CU”+HCHO+508-)Cu20-1-
HCOO-+3820 CIJ20+H20→Cu'+Cu"+208-C
u y2-+1-1coo-+301-1-→Cu'
+Y'-+ Go, -+ 2820 Here, Y is EDTΔ<ethylenediaminetetraacetic acid>, C
u6 represents an adsorbed copper atom.
前記めっぎ反応を安定した状態で継続的に維持するには
、めっき液を構成する全ての成分が常に一定であること
が望ましい。しかしながら、前記めっき反応を進行させ
つつめっき液の組成を常に一定に保持するのは非常に難
かしい。即ち、前記めっき反応において、反応消耗成分
であるCu。In order to continuously maintain the plating reaction in a stable state, it is desirable that all components constituting the plating solution remain constant. However, it is very difficult to keep the composition of the plating solution constant while allowing the plating reaction to proceed. That is, in the plating reaction, Cu is a reaction consumable component.
HcHo、01−1−は夫々Cll5○4・5+−12
0゜HCHO,Na 0f−1として補充すればよいが
、反応で消耗せず反応とともに増加してい<SO2゜N
a“ 、及びl−I CHOの酸化生成物であるHCO
O、l−IC0O−の酸化生成物であるco¥(空気中
のC02ガスの溶解にもよる)はめっき反応の進行に伴
ない蓄積イオンとして蓄積されていき、また、かかる蓄
積イオンの増加はめっき品質に悪影響を与えることが一
般に知られている。従って、めっき液の組成はめつき反
応の進行に伴なってその建浴当初から刻々と変化してい
き、ぞの結果、比較的短期間でめっき液のめつき能の低
下を来たし、これに伴ないめっき品質も低下していくと
いう欠点があった。HcHo, 01-1- are Cll5○4 and 5+-12, respectively
0°HCHO,Na can be replenished as 0f-1, but it is not consumed by the reaction and increases with the reaction <SO2°N
a”, and HCO which is the oxidation product of l-I CHO
O, l-IC0O- oxidation product co\ (depending on the dissolution of CO2 gas in the air) is accumulated as accumulated ions as the plating reaction progresses, and the increase in accumulated ions is It is generally known that it adversely affects plating quality. Therefore, as the plating reaction progresses, the composition of the plating solution changes from the beginning of its preparation, and as a result, the plating ability of the plating solution decreases in a relatively short period of time. The disadvantage was that the plating quality also deteriorated.
3−
かかる欠点に対し従来では、めっき液を一定期間使用し
た後廃棄し再建浴する方法、または、めっき液中の前記
蓄積イオン量を一定以上に増加させないようにめっき液
の比重を管理しながら相当量の新液補充を行なう方法に
よっていた。しかし、前者の方法ではめっき液建浴当初
の液組成を維持するためにめっき液の再建浴を頻繁に行
なう必要があり、コスト高をIC来するとともに作業性
も悪く、また、後者の方法によっても補充される新液ニ
ハ反応消耗成分子あるcu” 、f−(CHO,0f−
1−と当量のS O’+−1l−I CO0−1N a
+ が含まれているからこれらの組成をめっき液建浴
当初と同じに維持するためには極めて多量の新液を補充
しなければならず、結局この方法によってもコスト面、
作業性において実用的ではなかった。3- To address this drawback, conventional methods have been to use the plating solution for a certain period of time and then discard it and rebuild it, or to control the specific gravity of the plating solution so as not to increase the amount of accumulated ions in the plating solution beyond a certain level. The method involved replenishing a considerable amount of new fluid. However, the former method requires frequent reconstitution of the plating solution in order to maintain the original composition of the plating solution, leading to high costs and poor workability; The new liquid is also replenished with the reactive consumable component cu”, f-(CHO, 0f-
1- and equivalent SO'+-1l-I CO0-1N a
In order to maintain these compositions as they were when the plating solution was initially prepared, an extremely large amount of new solution must be replenished, and in the end, even with this method, costs and
It was not practical in terms of workability.
(発明の目的)
本発明の目的は前記従来の欠点を改良し、無電解めっき
液の組成をめっき反応の進行にかかわらず常に、そのめ
っき液の建浴当初の組成と同じに紺持し、ちって長期に
わたりめっき品質の良好な4−
無電解めっき液を供給し得る管理装置及びその管理方法
を提供するにある。(Object of the Invention) The object of the present invention is to improve the above-mentioned conventional drawbacks, and to maintain the composition of an electroless plating solution always the same as the composition at the time of preparation of the plating solution, regardless of the progress of the plating reaction. In other words, it is an object of the present invention to provide a management device and a management method that can supply an electroless plating solution with good plating quality over a long period of time.
以下、本発明を図面に基づいて詳細に説明する。 Hereinafter, the present invention will be explained in detail based on the drawings.
第1図は電解槽1の断面図を示し、電解槽1は陽イオン
交換膜2と陰イオン交換膜3とにより3室A、B、Cに
区画されている。室へにはめっきに使用される金属陽イ
オン、例えば、銅イオン、コバルトイオン、ニッケルイ
オン、パラジウムイオン、白金イオン、銀イオン、金イ
オン等を解離せしめる金属塩溶液が満たされている。ま
た、室Bには前記金属塩、その金属塩からの金属陽イオ
ンの錯化剤、金属陽イオンの)9元剤、PI−1調整剤
としてのアルカリ金属水酸化物、めっき液の安定性の向
」込めつき皮膜の機械的性質の向上、めっぎ速度の向上
等のために用いられる添加剤を含有する無電解めっき液
が満たされており、錯化剤としてはエチレンジアミン、
ジエチレントリアミン、トリエチレンテトラアミン、エ
チレンジアミンテトラ酢酸、N、N、 N−N−テトラ
キス−2−(2−ヒドロキシプロピル)エチレンジアミ
ン、クエン酸、酒石L1.3−プロパンジアミン、アン
モニア、ロッシェル塩酸、N−ヒドロキシエチルエチレ
ンジアミントリ酢酸のナトリウム塩類(モノ−、ジー、
及びトリーナトリウム塩類)、ニトリロトリ酢酸及びそ
のアルカリ塩類、グリコン酸、グルコン酸塩、トリエタ
ノールアミン等が適する。また、還元剤としては、ホル
ムアルデヒド及びその早期硬化剤あるいは誘導体、例え
ば、グリコールアルデヒド、パラホルムアルデヒド、ト
リオキサン、ジメチルヒダントイン、グリオキザール及
びその類似物、その他アルカリ金属のボロハイドライド
類、ボラン類が適用できる。PH調整剤としては水酸化
ナトリウム、水酸化カリウム、水酸化リチウム等のアル
カリ金属の水酸化物が使用される。更に、添加剤として
はα−α′ジピリジル、ポリエチレングリコール、その
伯のシアン化物、エトキシ界面活性剤、イオウ化合物、
希土類元素等が挙げられる。また、室Cには室Bに満た
された無電解めっき液のPHを調整するため前記アルカ
リ金属水酸化物溶液が満たされている。FIG. 1 shows a sectional view of an electrolytic cell 1, which is divided into three chambers A, B, and C by a cation exchange membrane 2 and an anion exchange membrane 3. The chamber is filled with a metal salt solution that dissociates metal cations used in plating, such as copper ions, cobalt ions, nickel ions, palladium ions, platinum ions, silver ions, and gold ions. In addition, in chamber B, the metal salt, a complexing agent for metal cations from the metal salt, a 9-element agent for metal cations, an alkali metal hydroxide as a PI-1 regulator, and the stability of the plating solution. It is filled with an electroless plating solution containing additives used to improve the mechanical properties of the packed film and increase the plating speed, etc. The complexing agent is ethylenediamine,
Diethylenetriamine, triethylenetetraamine, ethylenediaminetetraacetic acid, N,N, N-N-tetrakis-2-(2-hydroxypropyl)ethylenediamine, citric acid, tartaric L1.3-propanediamine, ammonia, Rochelle hydrochloric acid, N- Sodium salts of hydroxyethylethylenediaminetriacetic acid (mono-, di-,
and trichlorotriacetic acid salts), nitrilotriacetic acid and its alkali salts, glyconic acid, gluconate, triethanolamine, and the like. As the reducing agent, formaldehyde and its early curing agents or derivatives, such as glycolaldehyde, paraformaldehyde, trioxane, dimethylhydantoin, glyoxal and their analogs, other alkali metal borohydrides, and borane can be used. As the pH adjuster, alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, and lithium hydroxide are used. Furthermore, additives include α-α′ dipyridyl, polyethylene glycol, cyanide, ethoxy surfactant, sulfur compound,
Examples include rare earth elements. Further, chamber C is filled with the alkali metal hydroxide solution to adjust the pH of the electroless plating solution filled in chamber B.
室へと室Cの各溶液中には、夫々電極4,5が浸漬され
ており、各電極4,5間には第2図に示すような定電流
の方形波交流パルスが印加きれる。Electrodes 4 and 5 are immersed in each of the solutions in the chambers C and C, respectively, and a constant current square wave alternating current pulse as shown in FIG. 2 can be applied between the electrodes 4 and 5.
この波形のデユーティは後述のようにめっき条件により
定められる。The duty of this waveform is determined by the plating conditions as described below.
(実施例)
続いて、本発明の一実施例を無電解銅めっき液を例にと
って詳細に説明する。(Example) Next, an example of the present invention will be described in detail by taking an electroless copper plating solution as an example.
本実施例では電解槽1の各室△、B、Cには夫々次の組
成を右する溶液が満たされる。In this embodiment, each chamber Δ, B, and C of the electrolytic cell 1 is filled with a solution having the following composition.
室A
CuSO+・51−120 1.0tvl/ノ1−12
sO40,1M/J
Na2SO40,5M/J2
室B
CuSO+ ・5H200,04M//7!EDTA・
4.Na ・4H200,10M/、/1−I CH0
5m12/!
NaOHPI−1が12.3となるm
7−
α−α′ジピリジル 20mg/2
ポリエチレングリコール 5(1/J
室C
Na01−I IM/、g
このように構成された電解槽1の室へと室Cに浸漬され
た銅板電極4.白金板電極5に交流定電流パルスがか(
プられ、各溶液中のイオンは陰イオン交換膜2及び陰イ
オン交換膜3を介して移動する。かかる各イオンの移動
状態を第3図、第4図を参照し、(1)銅板電極4がプ
ラス、白金板電極5がマイナスになった時、(2)銅板
電極4がマイナス、白金板電極5がプラスになった時の
2つの場合に分けて説明する。Room A CuSO+・51-120 1.0tvl/ノ1-12
sO40,1M/J Na2SO40,5M/J2 Chamber B CuSO+ ・5H200,04M//7! EDTA・
4. Na ・4H200,10M/,/1-I CH0
5m12/! m where NaOHPI-1 is 12.3 7- α-α' dipyridyl 20 mg/2 polyethylene glycol 5 (1/J Chamber C Na01-I IM/, g A constant current pulse is applied to the copper plate electrode 4 and platinum plate electrode 5 immersed in C (
The ions in each solution move through the anion exchange membranes 2 and 3. Referring to FIGS. 3 and 4, the movement state of each ion is as follows: (1) When the copper plate electrode 4 is positive and the platinum plate electrode 5 is negative, (2) When the copper plate electrode 4 is negative and the platinum plate electrode We will explain two cases when 5 becomes positive.
(1)銅板電極4がプラス、白金板N極5がマイナスに
なったとき。(1) When the copper plate electrode 4 becomes positive and the platinum plate N pole 5 becomes negative.
第3図に′示す如く、室△におけるCu、H1Na+は
銅板電極4がプラスになっているため陽イオン交換膜2
を介して室Bに移動する。また、室Cに、etするOH
,so、、 、HCO○、COJ、8−
CIJ Y”’、Y’−は電極5がマイナスになってい
るので陰イオン交換膜3を介して室Bに移動するが、室
Cにおける01−1の濃度は他のイオンSO4、Hco
o−、coユニーCIJ Y’−1臂−のcJ度に比べ
て格段に高いので陰イオン交換膜2を介して室Bに移動
するのはほとんどOH−のみである。このとき室B内で
は、CII t+が無電解銅めっき液中に当初から含有
されていたEDTΔからのY と反応して錯体を形成し
、CIIY 錯イオンとして捕捉される。また、01」
−とH+とは互いに反応して消費される。As shown in FIG.
Move to room B via. Also, in room C, et OH
, so, , , HCO○, COJ, 8- CIJ Y"', Y'- moves to chamber B via the anion exchange membrane 3 because the electrode 5 is negative, but 01- in chamber C The concentration of 1 is higher than other ions SO4, Hco
Since the cJ degree is much higher than that of o-, couni CIJ Y'-1 arm, almost only OH- moves to chamber B via the anion exchange membrane 2. At this time, in chamber B, CII t+ reacts with Y from EDTΔ originally contained in the electroless copper plating solution to form a complex, and is captured as a CIIY complex ion. Also, 01”
- and H+ react with each other and are consumed.
(2)銅板電極4がマイナス、白金板電極5がプラスに
なったとき。(2) When the copper plate electrode 4 becomes negative and the platinum plate electrode 5 becomes positive.
このとき、室BからNa+が陽イオン交換膜2を介して
室Aに移動されるが、室B内における陽イオンはNa+
しか存在せず、従ってNa”は非常に透過し易いので前
記した(1)の場合において室△から室Bに陽イオン交
換膜2を介して移動するNa +の移!’JI RJ:
りも大きくなり、この結果Na“は室Bから室Δに選択
的に除去されることになる。これにより銅板電極4と白
金板電極5間に交流定電流パルスをか(プている間にわ
たり室BにおけるN a ” tQ度はFEDT△−4
Nf1 ・旧−120からNa十が過剰に生じてもほぼ
一定に保持される。また、イオン交換膜に対するイオン
の透過性は一般的にイオンの価数が大きい程、また、イ
オンが嵩高い稈小さくなることから、室B内における陰
イオンのうちCuY、Y はSoヰ、HCoo”−、C
O3に比べて格段に陰イオン交換膜を透過しにくいもの
であり、更に、室Bから室Cへ移動するso算−1I」
COO−、CO’3−の移動用は前記(1)の場合にお
いて室Cから室Bへ移動するときの移動用よりも大きく
、従って、SO+、1−HCoo−1COニーは両電極
4.5間に交流定電流パルスを流すことにより陰イオン
交換膜3を介して室Bから選択的に除去されることにな
る。一方、室B内において0f−1−は前記の如くめっ
き反応やH+との反応の消費されるので、室B内におけ
る01−ドの濃度はso4’−1HCO〇−1coニー
の濃度よりもかなり低く、従ってOH−は室Bから室C
にほとんど律動されることはない。At this time, Na+ is transferred from chamber B to chamber A via the cation exchange membrane 2, but the cations in chamber B are Na+
Therefore, in the case of (1) described above, Na + moves from chamber △ to chamber B via the cation exchange membrane 2!'JI RJ:
As a result, Na'' is selectively removed from chamber B to chamber Δ.As a result, while an AC constant current pulse is being applied between the copper plate electrode 4 and the platinum plate electrode 5, The degree of N a ” tQ in chamber B is FEDT△-4
Nf1 ・Even if Na0 is generated in excess from old-120, it is kept almost constant. In addition, the permeability of ions to the ion exchange membrane generally increases as the valence of the ion increases, and as ions become bulkier and smaller, CuY and Y among the anions in chamber B are ”-,C
It is much more difficult to permeate the anion exchange membrane than O3, and furthermore, it moves from chamber B to chamber C.
The movement of COO-, CO'3- is larger than the movement when moving from chamber C to chamber B in the case (1) above, so SO+, 1-HCoo-1CO knee is 4.5 By passing an alternating current constant pulse between them, it is selectively removed from chamber B via the anion exchange membrane 3. On the other hand, in chamber B, 0f-1- is consumed in the plating reaction and reaction with H+ as described above, so the concentration of 01-de in chamber B is much higher than the concentration of so4'-1HCO〇-1cony. low, therefore OH- is from chamber B to chamber C.
It is rarely rhythmic.
以上2つの場合に分けて説明したように、本実施例によ
れば銅板電極4と白金板電極5間に交流定電流パルスを
かけることにより陽イオン交換膜2及び陰イオン交換膜
3を介して、めっき反応に必要なCu、Ol」 を選択
的に室Bに補充せしめ1!7るとともに、めっき反応の
進行に伴なって増加するめつき反応に不要なl’4a
、SO+ 、HCOO−1CO副−を室Bから選択的に
除去し1qるものである。これより、めっき反応ととも
に消費される1−1cHoどEDTA−4Na −4l
−1sO,![必要量だけ補充すれば、室Bにおける無
電解銅めっき液の組成をめっき反応の進行にかかわらず
めっき液の建浴当初の組成と同じに紐持することができ
る。なお、交流定電流パルスのデユーティは各成分の濃
度に基づいて設定する。As explained above in two cases, according to this embodiment, by applying an AC constant current pulse between the copper plate electrode 4 and the platinum plate electrode 5, the , Cu, Ol'' necessary for the plating reaction are selectively replenished into chamber B1!7, and l'4a, which is unnecessary for the plating reaction, increases as the plating reaction progresses.
, SO+ , HCOO-1CO sub- are selectively removed from chamber B. From this, 1-1cHo and EDTA-4Na-4l are consumed along with the plating reaction.
-1sO,! [By replenishing the required amount, the composition of the electroless copper plating solution in chamber B can be kept the same as the initial composition of the plating solution regardless of the progress of the plating reaction. Note that the duty of the AC constant current pulse is set based on the concentration of each component.
かかる電解槽1より構成される無電解銅めっき液の管理
装置は第5図に示すようなめつき装置に組み込まれて使
用される。同図において、室B内で一定の組成に制御さ
れためつき液は循環パイプ11−
6により無電解鋼めっき浴7に送入される。めっき浴7
内でめっきが行なわれた後、めっき液はポンプ8により
一担貯蔵槽9に移送され、貯蔵槽9から再び室B内に送
られて一定の組成に制御される。また、室A内の液は循
環パイプ10により貯蔵槽11からポンプ12を介して
貯蔵槽13に移送された後再び室へに戻るJ:うに循環
されている。An electroless copper plating solution management device constituted by the electrolytic cell 1 is used by being incorporated into a plating device as shown in FIG. In the figure, a pampering liquid whose composition is controlled to be constant in chamber B is sent to an electroless steel plating bath 7 through a circulation pipe 11-6. Plating bath 7
After plating is performed inside, the plating solution is transferred to a storage tank 9 by a pump 8, and from the storage tank 9 is sent again into the chamber B, where the composition is controlled to be constant. Further, the liquid in the chamber A is transferred from the storage tank 11 to the storage tank 13 via the pump 12 by the circulation pipe 10, and then returned to the chamber again.
このように循環されモいる間に、室A内の液は攪拌され
るとともに室Bから陽イオン交換膜2を介して移動して
くるNa”の濃度が希釈され、低濃度に抑えられる。同
様に、室C内の液も循環パイプ14により貯蔵槽15か
らポンプ16を介して貯蔵槽17に移送され、その後室
C内に戻るように循環されている。このとき室C内の液
は攪拌されるとともに室Bから陰イオン交換膜3を介し
て移動してくる5oS−1HC00−、C03の濃度が
希釈されて低濃度に抑えられる。While being circulated in this way, the liquid in chamber A is stirred and the concentration of Na'' moving from chamber B through the cation exchange membrane 2 is diluted and suppressed to a low concentration. In addition, the liquid in the chamber C is also transferred from the storage tank 15 to the storage tank 17 via the pump 16 by the circulation pipe 14, and is then circulated back to the chamber C. At this time, the liquid in the chamber C is stirred. At the same time, the concentration of 5oS-1HC00- and C03 moving from chamber B via the anion exchange membrane 3 is diluted and suppressed to a low concentration.
かかるように構成されためつき装置を使用し、次の条件
でめっきを行なったところ、表に示すにうな結果が得ら
れた。When plating was carried out under the following conditions using a plating apparatus constructed as described above, the results shown in the table were obtained.
12− くめつき条件〉 めっき浴操業時間 1時間 めっき欲負荷 1lm2/f めっき速度 2μ/hr。12- Kumetsuki conditions〉 Plating bath operating time: 1 hour Plating load 1lm2/f Plating speed: 2μ/hr.
めっき浴容積 501
有効膜面積 8.24dm2
めっき浴温度 75°C
室Bの温度 500C
表によれば、従来のめっき装置ではめっきに不要とされ
る5OW−1zcoo−、coS−1N a +濃度は
1週間のめっき操業後においては全体に極めて高い濃度
になることがわかる。一方、本実施例のめっき装置によ
ればso′□−1l−ICOO−、C0E−1Na+
濃度は1週間後においても全く変化がなく、めっき開始
時の濃度に維持される。また、従来のめっき装置におい
ては1週間の操業後に、CLI804 ・51−120
とNa01−1を夫々28.56mol 、150.
OOmolだけ補充する必要があるが、本実施例のめっ
き装置においては1週間の操業ItlJr7Mにわたり
C’l 804 ・5 H20z Na 01−1は補
充する必要がない。更に、めっきされた銅箔の機械的強
度を比較すると、従来のめっき装置では1週間の操業期
間に前記の如<5OS−1HC00、CO3、Na濃度
が極めて高くなるので銅箔の引っ張り強度、銅箔の延び
率がともに低下してしまう。これに対し本実施例のめつ
き装置では804 、HCOO,Cow 、Na 濃度
をめっき開始時の濃度に維持し得るので、銅箔の引張り
強度、15−
銅箔の伸び率がともに低下することなく、めっき開始時
の品質を保持することができる。Plating bath volume 501 Effective membrane area 8.24 dm2 Plating bath temperature 75°C Room B temperature 500C According to the table, the 5OW-1zcoo-, coS-1N a + concentration, which is unnecessary for plating in conventional plating equipment, is 1 It can be seen that after weeks of plating operation, the overall concentration is extremely high. On the other hand, according to the plating apparatus of this embodiment, so'□-1l-ICOO-, C0E-1Na+
The concentration does not change at all even after one week, and is maintained at the concentration at the start of plating. In addition, in conventional plating equipment, after one week of operation, CLI804・51-120
and Na01-1 at 28.56 mol and 150.
Although it is necessary to replenish only OOmol, there is no need to replenish C'l 804 .5 H20z Na 01-1 over one week of operation ItlJr7M in the plating apparatus of this example. Furthermore, when comparing the mechanical strength of plated copper foil, the tensile strength of the copper foil and the copper The elongation rate of the foil also decreases. On the other hand, in the plating apparatus of this example, the concentrations of 804, HCOO, Cow, and Na can be maintained at the concentrations at the start of plating, so that the tensile strength of the copper foil and the elongation rate of the copper foil do not decrease. , the quality at the start of plating can be maintained.
なお、本実施例のめっき装置に使用される管理装置にお
ける銅板電極4と白金板電極5間にかけられる交流定電
流パルスは第6図に示す如くパルス巾比a/bは1.8
13のパルス電流を使用した。Note that the AC constant current pulse applied between the copper plate electrode 4 and the platinum plate electrode 5 in the control device used in the plating apparatus of this embodiment has a pulse width ratio a/b of 1.8 as shown in FIG.
Thirteen pulse currents were used.
以上詳細に説明した通り本実施例の管理装置は電解槽1
を陽イオン交換膜2と陰イオン交換膜3とによりA、B
、Cの3室に分割し、各室には前記所定の液を満たし、
室Aと室Cの夫々に配備された銅板電極4と白金板電極
5間に交流定電流パルスを流すことにより、両イオン交
換膜2,3を介してめっきに必要なCU2+とOH−を
選択的に室Bに補充するとともにめっきに不要なs o
:”、HCOO−、co−1Na+を室Bから選択的
に除去するようにしたので、所定量のHCHOとEDT
A・4Na ・4H20を補充するのみで室B内の無電
解銅めっき液の各成分組成を常に一定に維持し得るもの
である。従って、かかる管理装置−16=
を使用すれば、常に一定品質のめつき被膜を得ることが
でき、また、従来のものに比してめっきコストを格段に
低くすることができる。As explained in detail above, the management device of this embodiment is the electrolytic cell 1.
A, B by cation exchange membrane 2 and anion exchange membrane 3
, C, and each chamber is filled with the predetermined liquid,
By passing an AC constant current pulse between the copper plate electrode 4 and the platinum plate electrode 5 arranged in each of chambers A and C, CU2+ and OH- necessary for plating are selected via both ion exchange membranes 2 and 3. In addition to replenishing chamber B from time to time, remove unnecessary SO for plating.
:”, HCOO-, co-1Na+ were selectively removed from chamber B, so a predetermined amount of HCHO and EDT
The composition of each component of the electroless copper plating solution in chamber B can be kept constant by simply replenishing A.4Na.4H20. Therefore, if such a control device-16= is used, a plating film of constant quality can always be obtained, and the plating cost can be significantly lowered compared to the conventional method.
本発明は以上説明した通り、無電解めっき液の組成を常
に一定に維持し得、もって長期にわたり良好なめつき被
膜が得られる無電解めっき液を調整しうる管理装置を提
供しlり、その奏する効果は大である。As explained above, the present invention provides a management device that can maintain the composition of the electroless plating solution constant at all times and adjust the electroless plating solution so that a good plated film can be obtained over a long period of time. The effect is great.
図面は本発明の一実施例を示すものであり、第1図は電
解槽の断面図、第2図は交流定電流パルスの波形図、第
3図及び第4図は電極間に交流定電流パルスをかけたと
きの各イオンの移動状態を示す説明図、第5図は本実施
例の管理装置を使用しためつき装置の模式図、第6図は
本実施例に使用される交流定電流パルスの波形図である
。
図中、1は電解槽、2は陽イオン交換膜、3は陰イオン
交換膜、4は銅板電極、5は白金板電極である。
第1図
第2図
第6図
第3図
第4図The drawings show one embodiment of the present invention, and FIG. 1 is a cross-sectional view of an electrolytic cell, FIG. 2 is a waveform diagram of an AC constant current pulse, and FIGS. 3 and 4 are AC constant current pulses between electrodes. An explanatory diagram showing the movement state of each ion when a pulse is applied. Figure 5 is a schematic diagram of a tampering device using the control device of this example. Figure 6 is an AC constant current used in this example. It is a waveform diagram of a pulse. In the figure, 1 is an electrolytic cell, 2 is a cation exchange membrane, 3 is an anion exchange membrane, 4 is a copper plate electrode, and 5 is a platinum plate electrode. Figure 1 Figure 2 Figure 6 Figure 3 Figure 4
Claims (1)
イオン、金属陽イオンの錯化剤、金属陽イオンの還元剤
、P)−1調整剤としてのアルカリ金属の水酸化物を主
成分とする無電解めっき液が満たされた電F+7槽を備
え、 前記電極に交流電流を流すことにより前記イオン交換膜
を介して前記無電解めっき液の成分のうち主として金属
陽イオン、水酸イオン、金属陽イオンの対陰イオン、還
元剤の酸化生成物イオンを選択的に透過せしめるように
したことを特徴とする無電解めっき液の管理装置。 2、電極間にイオン交換膜を配備した電解槽内に金属陽
イオン、金属陽イオンの錯化剤、金属陽イオンの還元剤
、PH調整剤としてのアルカリ金属の水酸化物を主成分
とする無電解めっき液を満た前記電極に交流電流を流ず
ことにより前記イオン交換膜を介して前記無電解めっき
液の成分のうち主として金属陽イオン、水酸イオン、金
属陽イオンの対陰イオン、還元剤の酸化生成物イオンを
選択的に透過せしめるようにしたことを特徴とする無電
解めっき液の管理方法。[Claims] 1. An ion exchange membrane is provided between the electrodes, and a metal cation, a complexing agent for the metal cation, a reducing agent for the metal cation, and P)-1 alkali metal water as a regulator. Equipped with an electroless F+7 bath filled with an electroless plating solution containing oxides as a main component, by passing an alternating current through the electrode, metal cations are mainly removed from the components of the electroless plating solution through the ion exchange membrane. An electroless plating solution management device characterized in that it selectively allows hydroxide ions, counteranions of metal cations, and oxidation product ions of a reducing agent to permeate therethrough. 2. In an electrolytic cell equipped with an ion exchange membrane between the electrodes, the main components are metal cations, a complexing agent for metal cations, a reducing agent for metal cations, and an alkali metal hydroxide as a pH adjuster. By filling an electroless plating solution and passing an alternating current through the electrode, the components of the electroless plating solution, mainly metal cations, hydroxide ions, and counteranions of metal cations, are reduced through the ion exchange membrane. 1. A method for managing an electroless plating solution, characterized by selectively allowing ions of oxidation products of the agent to pass therethrough.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10971183A JPS602669A (en) | 1983-06-17 | 1983-06-17 | Device and method for controlling electroless plating liquid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10971183A JPS602669A (en) | 1983-06-17 | 1983-06-17 | Device and method for controlling electroless plating liquid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS602669A true JPS602669A (en) | 1985-01-08 |
JPH0359143B2 JPH0359143B2 (en) | 1991-09-09 |
Family
ID=14517276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10971183A Granted JPS602669A (en) | 1983-06-17 | 1983-06-17 | Device and method for controlling electroless plating liquid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS602669A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63303078A (en) * | 1987-06-01 | 1988-12-09 | Tokuyama Soda Co Ltd | Treatment of chemical nickel plating solution |
FR2721309A1 (en) * | 1994-06-21 | 1995-12-22 | Centre Nat Rech Scient | Treatment of sea water with copper ions to destroy algae |
CN104411644A (en) * | 2012-06-27 | 2015-03-11 | 皇家飞利浦有限公司 | Apparatus and method of preparing a solution containing cations and anions |
EP2867173A1 (en) * | 2012-06-27 | 2015-05-06 | Koninklijke Philips N.V. | Apparatus and method of preparing a solution containing cations and anions |
CN104591351A (en) * | 2015-02-13 | 2015-05-06 | 中新环科(天津)科技有限公司 | Ionic exchange membrane electrolytic cell device for treating chemical production wastewater |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4289597A (en) * | 1979-03-05 | 1981-09-15 | Electrochem International, Inc. | Process for electrodialytically regenerating an electroless plating bath by removing at least a portion of the reacted products |
JPS58109710A (en) * | 1981-12-24 | 1983-06-30 | 有限会社新城製作所 | Piercing nut |
-
1983
- 1983-06-17 JP JP10971183A patent/JPS602669A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4289597A (en) * | 1979-03-05 | 1981-09-15 | Electrochem International, Inc. | Process for electrodialytically regenerating an electroless plating bath by removing at least a portion of the reacted products |
JPS58109710A (en) * | 1981-12-24 | 1983-06-30 | 有限会社新城製作所 | Piercing nut |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63303078A (en) * | 1987-06-01 | 1988-12-09 | Tokuyama Soda Co Ltd | Treatment of chemical nickel plating solution |
JPH0583635B2 (en) * | 1987-06-01 | 1993-11-26 | Tokuyama Sooda Kk | |
FR2721309A1 (en) * | 1994-06-21 | 1995-12-22 | Centre Nat Rech Scient | Treatment of sea water with copper ions to destroy algae |
CN104411644A (en) * | 2012-06-27 | 2015-03-11 | 皇家飞利浦有限公司 | Apparatus and method of preparing a solution containing cations and anions |
EP2867173A1 (en) * | 2012-06-27 | 2015-05-06 | Koninklijke Philips N.V. | Apparatus and method of preparing a solution containing cations and anions |
CN104591351A (en) * | 2015-02-13 | 2015-05-06 | 中新环科(天津)科技有限公司 | Ionic exchange membrane electrolytic cell device for treating chemical production wastewater |
CN104591351B (en) * | 2015-02-13 | 2016-05-18 | 中新环科(天津)科技有限公司 | A kind of electrolysis with ion-exchange film slot device of processing chemical production wastewater |
Also Published As
Publication number | Publication date |
---|---|
JPH0359143B2 (en) | 1991-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3455709B2 (en) | Plating method and plating solution precursor used for it | |
US3303111A (en) | Electro-electroless plating method | |
CA1081406A (en) | Electroless metal plating | |
JP7352515B2 (en) | Electrolytic gold alloy plating bath and electrolytic gold alloy plating method | |
US4780342A (en) | Electroless nickel plating composition and method for its preparation and use | |
EP0221265B1 (en) | Process for determining the plating activity of an electroless plating bath | |
JPS602669A (en) | Device and method for controlling electroless plating liquid | |
CN111235609A (en) | Cyanide-free silver plating solution, silver plating layer and preparation method thereof | |
US4762601A (en) | Copper bath for electroless plating having excess counter-cation and process using same | |
JP2009525404A (en) | Method and apparatus for coating a substrate surface | |
JPS5854200B2 (en) | Method of supplying metal ions in electroplating bath | |
JPS602668A (en) | Electroless plating device | |
JP2001049448A (en) | Electroless nickel plating method | |
JPS6120629B2 (en) | ||
JP2787992B2 (en) | Ni-W alloy plating method | |
JPS60135593A (en) | Continuous ni-w alloy plating | |
JP2960439B2 (en) | Replenisher for gold plating | |
JP2833393B2 (en) | Electroless copper plating method | |
US4512963A (en) | Palladium compound synthesis procedure | |
WO2022129916A1 (en) | Electroplating solutions | |
JPS5893888A (en) | Supplying method for metallic ion in electroplating | |
JPS6296692A (en) | Nickel-boron alloy plating method | |
JP3135699B2 (en) | Concentrated storage solution for electroless gold plating solution | |
JP3339386B2 (en) | Treatment method of electroless plating bath | |
US4340451A (en) | Method of replenishing gold/in plating baths |