JPS6026609A - Production of cv graphite cast iron - Google Patents
Production of cv graphite cast ironInfo
- Publication number
- JPS6026609A JPS6026609A JP58134353A JP13435383A JPS6026609A JP S6026609 A JPS6026609 A JP S6026609A JP 58134353 A JP58134353 A JP 58134353A JP 13435383 A JP13435383 A JP 13435383A JP S6026609 A JPS6026609 A JP S6026609A
- Authority
- JP
- Japan
- Prior art keywords
- cast iron
- alloy
- graphite cast
- amount
- molten metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C1/00—Refining of pig-iron; Cast iron
- C21C1/10—Making spheroidal graphite cast-iron
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はコンパクテド・バーミキュラー黒鉛1j鉄(以
下C−■・黒鉛鋳鉄という)の製造方法、詳しくは低周
波誘導炉溶解の脱値処理された溶湯組成、溶湯温度、処
理邦の変動の小さい球状黒鉛鋳鉄用溶湯を用いて、li
’e−8i−Mg合金処理によシ容易にC■黒鉛鋳鉄を
製造する方法に関するものである。[Detailed Description of the Invention] The present invention relates to a method for producing compacted vermicular graphite 1J iron (hereinafter referred to as C-■ graphite cast iron), in particular, the composition, temperature, and treatment of devalued molten metal in low-frequency induction furnace melting. Using Japanese molten metal for spheroidal graphite cast iron with small fluctuations,
The present invention relates to a method for easily producing C■ graphite cast iron by processing the 'e-8i-Mg alloy.
一般に黒鉛を球状化するのに不純物の少ない鋳鉄溶湯で
は0.04%の残留Mgがあれば十分であるが、不純物
の多いものでは0.06 %の残留Mgを必要とする。Generally, 0.04% residual Mg is sufficient for molten cast iron with few impurities to spheroidize graphite, but 0.06% residual Mg is required in molten cast iron with many impurities.
Mgでの球状化処理溶湯が鋳型に注湯されず保持される
と、時間とともにMgは溶湯から逸出し、所謂フエイデ
イング現象を起し残留Mgtは急減する。溶湯の保持時
間が長くなると、黒鉛は球状化しなくなる。しかし微量
のMgの影響で、先端が丸味をもったいも去状の黒鉛が
現れる。この鋳鉄をコンパクテド・バーミキュラ黒鉛鋳
鉄(C。If the molten metal subjected to spheroidization treatment with Mg is held without being poured into a mold, Mg escapes from the molten metal over time, causing a so-called fading phenomenon, and the residual Mgt rapidly decreases. The longer the molten metal is held, the less the graphite becomes spheroidized. However, due to the influence of a small amount of Mg, graphite with a rounded tip appears. This cast iron is compacted vermicular graphite cast iron (C.
■・黒鉛鋳鉄)と呼んでいる。このC1■黒鉛鋳鉄は、
引張強さや伸びの点で球状黒鉛鋳鉄に劣るが、片状黒鉛
鋳鉄よシもずっとよく、振動減衰能、熱伝導度などの点
で片状黒鉛鋳鉄に劣るが球状黒鉛鋳鉄よりも優れている
ものである。■・Graphite cast iron). This C1■ graphite cast iron is
Although it is inferior to spheroidal graphite cast iron in terms of tensile strength and elongation, it is much better than flake graphite cast iron.It is inferior to flake graphite cast iron in terms of vibration damping ability and thermal conductivity, but is superior to spheroidal graphite cast iron. It is something.
従来上述のCV黒鉛鋳鉄をFe−8t二Mg合金の少量
添加による処理方法で現場的に製造する場合、他の合金
例゛えばF e −S i −M g−T iまたはR
EM−Mg系合金を溶湯処理剤として使用する場合よシ
も、元湯中に存在するSiに対しての残留Mgtの許容
範囲は狭くコントロールしなければならないとされてお
シ、通常この範囲は残留Mg重量%(以下チは凡て重量
%を示す。)で0.005%とされている。Conventionally, when the above-mentioned CV graphite cast iron is produced on-site by a treatment method with the addition of a small amount of Fe-8t-Mg alloy, other alloys such as Fe-Si-Mg-Ti or R
When using EM-Mg alloys as molten metal processing agents, it is said that the tolerance range for residual Mgt relative to Si present in the source metal must be controlled narrowly, and this range is usually The residual Mg weight % (hereinafter, all % indicates weight %) is 0.005%.
然し実操業では処理時の溶湯温度、処理溶湯量、酸素及
び硫黄含有量が変動するために、残留Mg量を前記の狭
い範囲にコントロールすると、S含有量が少々い場合に
は球状黒鉛鋳鉄化し、反対にS含有量が多い場合には極
めて脆弱な片状黒鉛鋳鉄化し、そのため、この処理方法
は簡単で経済的であるに拘らず、実用化されてないのが
実情である。However, in actual operation, the temperature of the molten metal during treatment, the amount of molten metal processed, and the oxygen and sulfur content vary, so if the residual Mg amount is controlled within the narrow range described above, if the S content is slightly high, it will not be possible to convert the molten metal into spheroidal graphite cast iron. On the other hand, when the S content is high, flake graphite cast iron becomes extremely brittle, and therefore, although this treatment method is simple and economical, it has not been put into practical use.
また仮え溶湯のS含有量に見合ったFe−81−Mg合
金量の添加処理によって、処理直後の溶湯の鋳込みから
Cv黒鉛鋳鉄が得られたとしても、残留Mg量の経時変
化によるフエイデイング現象によって、処理後の時間経
過によって鋳込まれた溶湯が何時迄CV黒鉛鋳鉄化して
出現するかについても問題かめシ、定量的な把握がなさ
れていないのが実情である。本発明はCV黒鉛鋳鉄の製
造に当って、以上の従来製造法の問題点を解消し、機械
的特性値においても優れたCV黒鉛鋳鉄を能率良く製造
する方法を提供することを目的とするものである。Furthermore, even if Cv graphite cast iron is obtained by pouring the molten metal immediately after the treatment by adding an amount of Fe-81-Mg alloy corresponding to the S content of the molten metal, the fading phenomenon caused by the change in the amount of residual Mg over time will cause However, the actual situation is that there is no quantitative understanding of how long it takes for the cast molten metal to turn into CV graphite cast iron over time after treatment. The purpose of the present invention is to provide a method for efficiently manufacturing CV graphite cast iron that has excellent mechanical properties by solving the problems of the conventional manufacturing method described above. It is.
本発明の要旨は、低周波誘導炉を用いて、該炉のFC1
5相当の残留に、けい素鋼板層、低Sの加炭材、Fe−
8tを装入溶解し、得られた溶湯に脱硫剤を添加し、T
、C:3.6〜6.9重量%、Si:1、4〜1.6重
8%、Mn:0゜3〜0.4重8%、p:o、044〜
0.051%、S : 0.02〜0.05重量%、残
部F(11からなる球状黒鉛鋳鉄用溶湯の元湯を溶製し
該元湯にMtr含有のF e−81−Mg合金を0.4
〜0.75重量%添加し次いでFe−8i で接触し、
前記接種後の経過時間を、前記Fe−81−Mg合金の
添加範囲において、合金添加量と経過時間との関係図(
第3図)の([[)域中より選択し、かつ合金処理後の
残留均量とSiとが前記残留Mg量−8量との関係図(
第1図)において示されるA直線とB直線間の範囲(I
f)とすることを特徴とするCV黒鉛鋳鉄の製造方法に
ある。The gist of the present invention is to use a low frequency induction furnace to
5 equivalent residual, silicon steel plate layer, low S recarburizer, Fe-
8t was charged and melted, a desulfurizing agent was added to the obtained molten metal, and T
, C: 3.6-6.9% by weight, Si: 1,4-1.6% by weight, Mn: 0°3-0.4% by weight, p: o, 044-
0.051%, S: 0.02 to 0.05% by weight, balance F (11). 0.4
~0.75 wt% added and then contacted with Fe-8i,
The elapsed time after the inoculation is shown in the relationship diagram between alloy addition amount and elapsed time in the addition range of the Fe-81-Mg alloy (
Figure 3) is a relationship diagram between the residual average amount selected from the [[
The range between the A line and the B line (I
f) A method for producing CV graphite cast iron.
以下本発明の詳細について、実施例の知見に基づいて述
べる。The details of the present invention will be described below based on the findings of Examples.
本発明は低周波誘導炉を用いることを特徴とし、該炉の
FC−15相当の残湯に、けい素鋼版屑、Fe−8iを
適宜配合して溶解し、取鍋に出湯温度1520±10℃
にて移しとって低S溶湯をつるために脱硫処理を行なう
。Siを含有する溶湯中にては脱硫できないので、取鍋
やキュポラの前炉などで脱硫剤としてソーダ灰、石灰、
カルシウムカーバイト等を用いて脱硫する。カルシウム
カーバイトCaCが脱硫率の点で好ましくその添加量は
溶湯に対して0.5%であシ、処理温度が高い程脱硫反
応が速く進むので前記出湯温度の範囲が好ましい。The present invention is characterized by using a low-frequency induction furnace, and silicon steel plate scraps and Fe-8i are suitably mixed and melted in the remaining hot metal equivalent to FC-15 in the furnace, and the melt is poured into a ladle at a temperature of 1520±. 10℃
Desulfurization treatment is performed to remove the low S molten metal. Desulfurization cannot be performed in molten metal containing Si, so soda ash, lime, or
Desulfurize using calcium carbide, etc. Calcium carbide CaC is preferable from the viewpoint of desulfurization efficiency, and its addition amount is 0.5% based on the molten metal.The higher the treatment temperature, the faster the desulfurization reaction proceeds, so the above range of tapping temperature is preferable.
斯くしてT−03,6〜6.9% S i : 1.4
〜1.6%、Mn : 0.3〜0.4%P : 0.
044〜0.057%、 st:o、oz〜0.06%
残部Feからなる組成範囲の元湯を溶製する。この際け
い素鋼板層が重要な役目をする。Thus T-03, 6-6.9% Si: 1.4
~1.6%, Mn: 0.3~0.4%P: 0.
044~0.057%, st:o, oz~0.06%
A source hot water having a composition range in which the remainder is Fe is melted. In this case, the silicon steel plate layer plays an important role.
本発明者はこの元湯に対してMg含有蓋4.5%のFe
−81−Mg合金を溶湯処理剤として添加量を種々変化
せしめ、F e S i (S 1 : 50%)を黒
鉛の粒数調整、チル化の防止やパーライト地をフエライ
ト地にするだめ0.5チ添加接釉し、接種後の残留Mg
量とS含有量との関係をしらべた結果添付第1図が得ら
れた。地ちFeFe−8t−合金添加量0.8明した。The present inventor added 4.5% Fe to this source water with a Mg-containing lid.
-81-Mg alloy is used as a molten metal processing agent and the amount added is varied, and FeSi (S1: 50%) is used to adjust the number of graphite grains, prevent chilling, and change pearlite to ferrite. Residual Mg after 5g addition glazing and inoculation
As a result of examining the relationship between the amount and the S content, the attached Figure 1 was obtained. The amount of FeFe-8t-alloy added was 0.8.
Ellち勾配大略45”のA直線と、勾配がA直線のし
2のB直線間に狭れた領域がCV黒鉛鋳鉄を実現するた
めの残留Mg量とS量を示すものである。The area narrowed between straight line A, which has a slope of approximately 45'', and straight line B, which has a slope of 2 degrees above straight line A, indicates the amount of residual Mg and the amount of S to realize CV graphite cast iron.
尚合金添加i 0.54〜0.67%においても0.6
%添加と同様の結果が得られた。第1図においてal。In addition, even when alloy addition i is 0.54 to 0.67%, it is 0.6
% addition was obtained. In FIG.
b1点は30.03%に対するMg0.03および0y
015%a2 b2点はS O,02%に対するMg0
.02および0.01%、0点はSおよびMg共に0チ
を示している。b1 point is Mg0.03 and 0y for 30.03%
015% a2 b2 point is Mg0 for SO, 02%
.. 02 and 0.01%, 0 point indicates 0 for both S and Mg.
この場合S含有t0.02〜0.06%の範囲内におい
て残留M・g量の許容範囲は0.01〜0.06%とな
p1溶湯温度、処理量、処理方法等に起因する残留Mg
量の変動によっても、S含有量0.02%で、その平均
許容範囲は0.015%となり、従来の3倍の残留Mg
量の許容範囲が得られた。In this case, within the range of S content t0.02-0.06%, the allowable range of residual M・g amount is 0.01-0.06%. p1 Residual Mg due to molten metal temperature, processing amount, processing method, etc.
Even with variations in the amount, the average allowable range is 0.015% for an S content of 0.02%, which is three times the residual Mg content compared to conventional methods.
Amount tolerances were obtained.
また第1図からS含有量が0.06%以上となれば、F
e−81−Mg合金添加量を0.8チ以上とすればCV
黒鉛鋳鉄が得られることとなシ、また残留Mg量の許容
範囲も広がることが想定されるが通常Cvv鉛鋳鉄製造
のための元湯のS含有量は0、03 %以下であるべき
ことが経験的に知られておシ、仮えぞのよりなS含有量
においてCvv鉛鋳鉄が得られたとしても、そのための
合金添加量の増大は経済的な方法ではない。なお図中に
)数値は引張強さの値であるがCvv鉛鋳鉄の範囲では
64〜41 figf/rrrIR”を示し適当なもの
である。Also, from Figure 1, if the S content is 0.06% or more, F
If the addition amount of e-81-Mg alloy is 0.8 or more, CV
It is assumed that graphite cast iron can be obtained, and that the allowable range of residual Mg content will also expand, but normally the S content of the source water for producing Cvv lead cast iron should be 0.03% or less. Even if Cvv lead cast iron could be obtained at a certain experimentally known and reasonable S content, increasing the amount of alloying added thereto would not be an economical method. The numerical values (in the figure) are tensile strength values, which are appropriate in the range of 64 to 41 figf/rrrIR for Cvv lead cast iron.
次に前述と同様のlli’ e−8i −M g合金処
理を行い、更にpe−8iO,5%接種後の経過時間と
得られた鋳鉄の物理的性質との関係を合金添加量を種々
変更し試験した結果、第2図の如き成績を得た。Next, the same lli' e-8i-Mg alloy treatment as described above was performed, and the relationship between the elapsed time after 5% inoculation of pe-8iO and the physical properties of the obtained cast iron was determined by varying the amount of alloy added. As a result of the test, the results shown in Figure 2 were obtained.
第2図(イ)(ロ)(ハ)に)は夫々経過時間と注湯温
度(℃)引張強さく黍gf/rpm? )、硬さくHB
)、伸び(%)との関係を示すグラフである。尚図中△
、○、目印はFeFe−8t−添加量を夫々0,7.0
,6及び0.5チとした場合をX印は合金添加t0.6
%で、Yブロック鋳込み時の値を示すものである。Figure 2 (a), (b), and (c) show the elapsed time, pouring temperature (°C), tensile strength, millet gf/rpm, respectively. ), Hardness HB
) and elongation (%). △ in the diagram
, ○, marks indicate the FeFe-8t- addition amount of 0 and 7.0, respectively.
, 6 and 0.5 inch, the X mark indicates alloy addition t0.6
%, which indicates the value at the time of Y block casting.
第2図において合金の0.7%添加では15分後からC
−■・化し、それ以前では球状黒鉛鋳鉄化しているが、
0.6%、0.5%添加では処理直後からC0■、化し
、0.6%添加の場合、20分以内が良好なCv化待時
間範囲で、60分経過すると共晶黒鉛が出現した。0.
5チ添加の場合は、15分以内が良好な範囲で、60分
経過すると遊離セメンタイトが出現した。In Figure 2, when 0.7% of alloy is added, C starts to increase after 15 minutes.
−■・, and before that it was spheroidal graphite cast iron,
When 0.6% and 0.5% were added, Cv conversion occurred immediately after treatment, and in the case of 0.6% addition, a good Cv conversion waiting time range was within 20 minutes, and eutectic graphite appeared after 60 minutes. . 0.
In the case of addition of 50% of cementite, a good range was within 15 minutes, and free cementite appeared after 60 minutes.
従って残留Mg量の経時変化による7エイデング現象の
上からも0.4〜0.75%好ましくは0.6チ添加が
Cvv鉛鋳鉄製造に最も適した添加量といえる。まだ第
2図(ロ)において添加量0.6チでYV黒鉛鋳鉄とし
て妥当な値であることを示している。Therefore, in view of the 7 aiding phenomenon caused by changes in the amount of residual Mg over time, addition of 0.4 to 0.75%, preferably 0.6%, can be said to be the most suitable addition amount for producing Cvv lead cast iron. Still, Figure 2 (b) shows that the addition amount of 0.6 g is an appropriate value for YV graphite cast iron.
なお更に詳細な実験を行い、合金添加量と経過時間との
関係について第6図が得られた。Furthermore, more detailed experiments were conducted, and the relationship between the amount of alloy added and the elapsed time was obtained as shown in Figure 6.
図中a−h点はFe−81−Mg合金添加量と良好なC
V黒鉛鋳鉄を形成する経過時間の限界を示し、添加量と
経過時間との関係を下表に示す。Points a to h in the figure indicate the Fe-81-Mg alloy addition amount and good C.
The table below shows the limit of the elapsed time to form V-graphite cast iron, and the relationship between the amount added and the elapsed time.
a bed e fgh
添加量(%) 0.750.70.60.50.450
.40.60.7経過時間(分) 302520151
0 0 0 15図中(1)は球状黒鉛鋳鉄域を示しく
If)の斜線部分はCv黒鉛鋳鉄域であシ、その機械的
性質は引張強さが30〜4549 f 71m2伸び5
〜7チ、硬さHm’:160〜180であることが認め
られた。(IIDは片状黒鉛鋳鉄である。即ち前述の合
金添加fi0.4〜0.75%の範囲内において本第6
図における印の範囲内にある添加量と経過時間のΦ件よ
り経過時間を選択し合金化処理し製造すれば良好なCv
v鉛鋳鉄が得られることとなる。a bed e fgh Addition amount (%) 0.750.70.60.50.450
.. 40.60.7 Elapsed time (minutes) 302520151
0 0 0 In Figure 15, (1) shows the spheroidal graphite cast iron area, and the shaded area (If) is the Cv graphite cast iron area, and its mechanical properties include tensile strength of 30 to 4549 f 71 m2 elongation 5
-7chi, hardness Hm': 160-180. (IID is flake graphite cast iron. In other words, within the range of the above-mentioned alloy addition fi0.4 to 0.75%, this sixth
Good Cv can be obtained by selecting the elapsed time from the addition amount and elapsed time Φ that are within the range marked in the figure, and manufacturing by alloying.
v-lead cast iron will be obtained.
Fe−81−Mg合金0.6%添加処理して得られた代
表的なCvv鉛鋳鉄の鋳鉄組織写真(倍率200倍)を
参考写真A1として示す。本写真はフェライトとパーラ
イト混合基地内にCV黒鉛が晶出されている状況が明確
に示されている。A typical cast iron structure photograph (200x magnification) of Cvv lead cast iron obtained by adding 0.6% of Fe-81-Mg alloy is shown as reference photograph A1. This photo clearly shows that CV graphite is crystallized in a mixed base of ferrite and pearlite.
以上述べた通シ、本発明によるCV黒鉛鋳鉄の製造方法
は従来法に比して、残留Mg量のコントロール範囲を拡
げ、かつCV黒鉛の出現について定量的に把握したもの
であり甚だ有用な発明である。以下実施例について述べ
る。In summary, the method for producing CV graphite cast iron according to the present invention expands the control range of the amount of residual Mg compared to the conventional method, and quantitatively understands the appearance of CV graphite, making it an extremely useful invention. It is. Examples will be described below.
実施例1
3トン容量低周波誘導炉を用いて、FC15相当の残湯
、けい素鋼板層、故銑、電極黒鉛層の低S加炭材、Fe
−8t(Si:50%)合金を適宜配合してCaC0,
5%を添加して脱硫した球状黒鉛鋳鉄用溶湯の元湯を溶
製する。この場合元湯の組成は次の範囲になるよう制御
する。この際けい素鋼板層が重要な役目をなしている。Example 1 Using a 3-ton capacity low-frequency induction furnace, residual metal equivalent to FC15, silicon steel plate layer, waste pig iron, low S recarburization material of electrode graphite layer, Fe
-8t (Si: 50%) alloy is appropriately blended to create CaC0,
A base metal for spheroidal graphite cast iron which is desulfurized by adding 5% of spheroidal graphite is prepared. In this case, the composition of the source water is controlled to be within the following range. In this case, the silicon steel plate layer plays an important role.
T、 C,:3.6〜3.9%、S i : 1.4〜
1.6%、Mn:0.3〜0.4%、 P:0.044
〜0.057%、 Si:0.02〜0.06%残部F
e
上記元湯に対して、Mg4.5%のFe−81−Mg合
金をそれぞれ0.5.0.6.0.8重i %添加し、
Fe−8i(Si:50%)合金0.5チで接種し約5
分後にサンプリングした場合、残留Mgtと処理後のS
含有量との関係として、第1図か得られた。T, C,: 3.6-3.9%, Si: 1.4-
1.6%, Mn: 0.3-0.4%, P: 0.044
~0.057%, Si: 0.02~0.06% balance F
e 0.5, 0.6, 0.8% by weight of Fe-81-Mg alloy containing 4.5% Mg was added to the above source water,
Inoculated with 0.5% Fe-8i (Si: 50%) alloy and approx.
If sampled after 1 minute, residual Mgt and S after treatment
Figure 1 was obtained as a relationship with the content.
即ち添加量0.8 % (・印)では球状黒鉛鋳鉄化し
、0.5%(mm)では片状黒鉛鋳鉄域して、0.6チ
(○印)添加の場合にCV黒鉛鋳鉄(ハツチ部分)が安
定して得られた。In other words, when the addition amount is 0.8% (・mark), it becomes spheroidal graphite cast iron, when it is 0.5% (mm), it becomes flaky graphite cast iron, and when 0.6 inch (○ mark) is added, it becomes CV graphite cast iron (hatched graphite cast iron). part) was obtained stably.
実施例2
実施例1と同様に元湯を得てこの元湯に対してMg4.
.5%のFeFe−8t−合金をそれぞれ0.5.0.
6.0.7tft&%添加し、さらにFe−8i0.5
%接種後の経過時間と得られた鋳鉄の物理的性質との関
係をしらべた結果、第2図に示す如き結果が得られた。Example 2 A source hot water was obtained in the same manner as in Example 1, and Mg4.
.. 5% FeFe-8t-alloy at 0.5.0.
6.0.7tft&% added and further Fe-8i0.5
As a result of examining the relationship between the elapsed time after % inoculation and the physical properties of the cast iron obtained, the results shown in FIG. 2 were obtained.
実施例6
更に注湯温度1380〜1480℃におけるFe−81
−Mg合金添加量と経過時間との関係を調査し、CV黒
鉛鋳鉄の機械的特性を満足する範囲をめ、この結果を第
6図に示す。Example 6 Furthermore, Fe-81 at a pouring temperature of 1380 to 1480°C
-The relationship between the amount of Mg alloy added and the elapsed time was investigated to find a range that satisfies the mechanical properties of CV graphite cast iron, and the results are shown in FIG.
第6図中A′曲線とB′曲線とに囲まれた・・ソチ域が
CV黒鉛鋳鉄域(n)でその機械的特性である・引張に
強さは60〜45両f/wn2、伸びは5〜7%、硬さ
HBは160〜180であった。尚(I)は球状黒鉛鋳
鉄域(2)は片状黒鉛鋳鉄域である。In Figure 6, the Sochi region surrounded by curves A' and B' is the CV graphite cast iron region (n), and its mechanical properties are 60 to 45 f/wn2 in tensile strength and elongation. was 5-7%, and hardness HB was 160-180. Note that (I) is a spheroidal graphite cast iron region (2) is a flaky graphite cast iron region.
第1図は本発明のFeFe−8t−合金添加量毎の残留
Mg量と処理後のS含有量との関係を示すグラフ、第2
図は本発明のFe−81−Mg 合金を添加しFe−8
tを接種した直後からの経過時間と得られた鋳鉄の物理
的性質との関係を示すグラフ第6図はCv黒鉛鋳鉄の特
性を満足する範囲をめるためのFeFe−8t−合金添
加量と経過時間との関係を示すグラフである。
代理人 弁理士 木 村 三 朗Figure 1 is a graph showing the relationship between the amount of residual Mg and the S content after treatment for each addition amount of FeFe-8t-alloy of the present invention.
The figure shows Fe-8 with the addition of the Fe-81-Mg alloy of the present invention.
Figure 6 is a graph showing the relationship between the elapsed time immediately after inoculation of Cv graphite cast iron and the physical properties of the obtained cast iron. It is a graph showing the relationship with elapsed time. Agent Patent Attorney Sanro Kimura
Claims (2)
湯に、けい素鋼板層、低Sの加炭材、Fe−8iを装入
溶解し、得られた溶湯に脱硫剤を添加し、T、C:3.
6〜3.9重量%、S i : 1.4〜1.6重量%
、Mn : 0.3〜0.4重量L P : 0.04
4〜0.057s、S : 0.02〜0.03量残部
Feからなる球状黒鉛鋳鉄用溶湯の元湯を溶製し、該元
湯にMg 含有のFeFe−3t−合金を0.4〜0.
75%添加し、次いでFe−8iを接種し、前記接種後
の経過時間を、前記Fe−31−Mg合金の添加範囲に
おいて、合金添加量と経過時間との関係図(第6図)の
(It)域より選択し、かつ合金処理後の残留Mg量と
S量とが1.前記残留Mg量−8量との関係図(第1図
)において示されるA直線とB直線との間の範囲(II
)とすることを特徴とするC0■黒鉛鋳鉄の製造方法。(1) Using a low-frequency induction furnace, charge and melt a silicon steel sheet layer, low S recarburizer, and Fe-8i into the remaining molten metal equivalent to FC15 in the furnace, and add a desulfurization agent to the obtained molten metal. Add, T, C: 3.
6-3.9% by weight, Si: 1.4-1.6% by weight
, Mn: 0.3-0.4 Weight L P: 0.04
4 to 0.057 s, S: 0.02 to 0.03 Amount of molten metal for spheroidal graphite cast iron consisting of balance Fe, and 0.4 to 0.4 to 0.4 of Mg-containing FeFe-3t-alloy 0.
75% of the Fe-31-Mg alloy, then inoculated with Fe-8i, and the elapsed time after the inoculation is shown in (Figure 6) of the relationship between alloy addition amount and elapsed time within the addition range of the Fe-31-Mg alloy. It), and the residual Mg amount and S amount after alloying treatment are 1. The range (II
) A method for producing C0■ graphite cast iron.
故銑ならびに低S加炭材として電極黒鉛層を装入し、出
湯温度1520±10℃にて取鍋に出湯し、これに脱硫
剤としてCaCを0.5%添加し、前記組成の元湯を溶
製し、該元湯にMg 含有量4.5チのFe−31−M
g合金を0.54〜0.67重量%添加しFe−8t(
St:50重%%)を元湯に対して0.5重量%接種し
て、前記合金添加後20分以内に注湯温度1680〜1
480℃で鋳込むことを特徴とする特許請求の範囲第1
項記載のC,V。 黒鉛鋳鉄の製造方法。(2) Before melting the base metal of the molten metal for the spheroidal graphite cast iron, charge the waste pig iron and an electrode graphite layer as a low S recarburizing material, and tap the hot metal into a ladle at a tapping temperature of 1520 ± 10°C, 0.5% of CaC was added as a desulfurizing agent to this, and a base metal with the above composition was melted, and Fe-31-M with a Mg content of 4.5
Fe-8t (
0.5% by weight of St: 50% by weight) was inoculated into the base water, and the pouring temperature was increased to 1680-1 within 20 minutes after adding the alloy.
Claim 1, characterized in that the casting is performed at 480°C.
C and V described in Section. Method of manufacturing graphite cast iron.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58134353A JPS6026609A (en) | 1983-07-25 | 1983-07-25 | Production of cv graphite cast iron |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58134353A JPS6026609A (en) | 1983-07-25 | 1983-07-25 | Production of cv graphite cast iron |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6026609A true JPS6026609A (en) | 1985-02-09 |
JPH0357163B2 JPH0357163B2 (en) | 1991-08-30 |
Family
ID=15126377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58134353A Granted JPS6026609A (en) | 1983-07-25 | 1983-07-25 | Production of cv graphite cast iron |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6026609A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01100613U (en) * | 1987-12-25 | 1989-07-06 | ||
KR20010063311A (en) * | 1999-12-22 | 2001-07-09 | 이계안 | Method of manufacturing compacted vermicular graphite iron for engine block |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53149115A (en) * | 1977-06-01 | 1978-12-26 | Hitachi Ltd | Manufacture of caterpillar graphite cast iron |
JPS5735660A (en) * | 1980-08-08 | 1982-02-26 | Kawasaki Heavy Ind Ltd | Manufacture of compact graphite cast iron |
-
1983
- 1983-07-25 JP JP58134353A patent/JPS6026609A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53149115A (en) * | 1977-06-01 | 1978-12-26 | Hitachi Ltd | Manufacture of caterpillar graphite cast iron |
JPS5735660A (en) * | 1980-08-08 | 1982-02-26 | Kawasaki Heavy Ind Ltd | Manufacture of compact graphite cast iron |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01100613U (en) * | 1987-12-25 | 1989-07-06 | ||
JPH043685Y2 (en) * | 1987-12-25 | 1992-02-05 | ||
KR20010063311A (en) * | 1999-12-22 | 2001-07-09 | 이계안 | Method of manufacturing compacted vermicular graphite iron for engine block |
Also Published As
Publication number | Publication date |
---|---|
JPH0357163B2 (en) | 1991-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180305796A1 (en) | Gray cast iron inoculant | |
EP1126037B1 (en) | Production of nodular cast iron involving a preliminary inoculation in the casting ladle | |
AU721510B2 (en) | Composition for inoculating low sulphur grey iron | |
US4971623A (en) | Process for making as-cast ferritic spheroidal graphitic ductile iron | |
US3798027A (en) | Gray iron | |
JPS6026609A (en) | Production of cv graphite cast iron | |
US2690392A (en) | Process for producing improved cast iron | |
US4430123A (en) | Production of vermicular graphite cast iron | |
US2749238A (en) | Method for producing cast ferrous alloy | |
US2867555A (en) | Nodular cast iron and process of manufacture thereof | |
JPS6241290B2 (en) | ||
US3711278A (en) | Method of manufacturing chromium alloyed steel | |
US4292075A (en) | Slow fade inocculant and a process for the inocculation of melted cast iron | |
JPS63483B2 (en) | ||
US5100612A (en) | Spheroidal graphite cast iron | |
US2715064A (en) | Method of producing silicon steel | |
US3954446A (en) | Method of producing high duty cast iron | |
RU2124566C1 (en) | Briquetted mixture for inoculation of gray iron | |
JPH03505755A (en) | Material for refining steel with multi-purpose applications | |
JPS6059284B2 (en) | How to inoculate cast iron | |
JPS6026610A (en) | Production of cv graphite cast iron | |
JP2003286538A (en) | Tough, ductile cast iron and its manufacturing process | |
SU765386A1 (en) | Complex modifier | |
JPH0454723B2 (en) | ||
JP3295008B2 (en) | Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties |