JPS6026601A - Manufacture of magnetic manganese-aluminum-carbon alloy powder - Google Patents

Manufacture of magnetic manganese-aluminum-carbon alloy powder

Info

Publication number
JPS6026601A
JPS6026601A JP58134570A JP13457083A JPS6026601A JP S6026601 A JPS6026601 A JP S6026601A JP 58134570 A JP58134570 A JP 58134570A JP 13457083 A JP13457083 A JP 13457083A JP S6026601 A JPS6026601 A JP S6026601A
Authority
JP
Japan
Prior art keywords
phase
powder
etching
alloy powder
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58134570A
Other languages
Japanese (ja)
Other versions
JPS6364481B2 (en
Inventor
Susumu Sanai
佐内 進
Seiji Kojima
小嶋 清司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58134570A priority Critical patent/JPS6026601A/en
Publication of JPS6026601A publication Critical patent/JPS6026601A/en
Publication of JPS6364481B2 publication Critical patent/JPS6364481B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain magnetic alloy powder having improved magnetizability by removing the surface part of Mn-Al-C magnet alloy powder by etching. CONSTITUTION:The surface of Mn-Al-C magnet alloy powder whose principal phase is epsilon-phase as a high temp. phase, tau-phase as a ferromagnetic phase, epsilon'- phase as an intermediate phase or a phase of a mixture thereof is etched. For example, the surface of the alloy powder is chemically reacted with an etching soln. to remove the surface part, so the deposition of beta-phase is inhibited. The etching is carried out before or after heat treating the alloy powder at about 350-800 deg.C. By this method the magnetizability of the Mn-Al-C alloy powder having high coercive force can be improved. The resulting magnetic alloy powder can be used as a material for a sintered magnet, a magnetic tape, etc.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、磁気特性を向上させたマンガン−アルミニウ
ムー炭素(Mn−Al−C)系合金磁性粉末の製造法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a manganese-aluminum-carbon (Mn-Al-C) based alloy magnetic powder with improved magnetic properties.

従来例の構成とその問題点 Mn−Al2元合金に強磁性相のあることが発見されて
以来、数多くの磁石化の研究開発がなされ、炭素の添加
により強磁性相を安定化させたMn−Al−C系、すな
わちMn65.O〜74.0重量%(以下単に%で表示
する)、アルミニウム25.0〜34.0%、炭素4.
0%以下(ただし0を含まない)の組成からなる磁気特
性の優れたMn−AI−C系合金磁石が開発された(特
許第495674号)。この磁石は、更にその後温間塑
性加工によって大幅に磁気特性の向上がはかられ実用化
されている(特許第996692号)。
Structure of the conventional example and its problems Since it was discovered that the Mn-Al binary alloy has a ferromagnetic phase, much research and development has been carried out on magnetization. Al-C system, ie Mn65. O~74.0% by weight (hereinafter simply expressed as %), aluminum 25.0~34.0%, carbon 4.0% by weight.
A Mn-AI-C alloy magnet with excellent magnetic properties, which has a composition of 0% or less (but does not contain 0), has been developed (Japanese Patent No. 495674). This magnet was then subjected to warm plastic working to significantly improve its magnetic properties and has been put into practical use (Japanese Patent No. 996692).

一方近年、磁石形状を自由に作り得る粉末焼結磁石や樹
脂成形磁石の用途が増え、このだめ高性能な粉末磁石桐
料の開発が望まれている。こうした要望に沿ってMn−
Jl系においても磁性粉末の研究開発がなされている。
On the other hand, in recent years, the use of powder sintered magnets and resin molded magnets, which can be freely formed into magnet shapes, has been increasing, and there is a demand for the development of high-performance powdered magnet paulownia materials. In line with these demands, Mn-
Research and development of magnetic powder is also being carried out in the Jl series.

しかし、磁気特性的に、また製造コスト的に実用に供し
得るようなものが未だ提供されていない。以下にMn−
1711系合金磁性粉末についての従来例と問題点を述
べる。
However, a material that can be put to practical use in terms of magnetic properties and manufacturing cost has not yet been provided. Below is Mn-
Conventional examples and problems regarding 1711 series alloy magnetic powder will be described.

Mn−人β系合金磁性粉末を機械的粉砕法で作製すると
、粉末の粒径が細かくなるに従って、保磁力(IHc)
は増加するが、磁化(4πI)l残留磁化(Br )が
急激に減少する傾向がある。この傾向は粒径150μ以
下で顕著である。これは機械的な粉砕による強磁性相の
規則性の低下、積層欠陥、逆位相境界などの導入のため
と報告されている。このために粒径は小さくできず、1
25〜1507(の大きな粒径のものが磁気特性的に最
大を示すと報告されている(R、A 、McCurri
e 、 J 、Rickman 、 P −Dunk 
and D、G、Hawkridge、”Depend
ence ofthe parmanent magn
et properties ofMn 55A 14
50n par tlo les 、 I EEE T
r ans 。
When Mn-Human β-based alloy magnetic powder is produced by mechanical pulverization, the coercive force (IHc) increases as the particle size of the powder becomes finer.
increases, but the magnetization (4πI)l residual magnetization (Br) tends to decrease rapidly. This tendency is remarkable when the particle size is 150 μm or less. This is reported to be due to a decrease in the regularity of the ferromagnetic phase due to mechanical crushing, the introduction of stacking faults, anti-phase boundaries, etc. For this reason, the particle size cannot be reduced, and 1
It has been reported that large grain sizes of 25 to 1507 (R, A, McCurri
e, J., Rickman, P-Dunk.
and D, G, Hawkridge, “Depend
ence of the permanent magnet
et properties of Mn 55A 14
50n par tlo les, I EEE T
r ans.

Magnatics Mag−14、No3 、 p 
682〜p 6845ept。
Magnetics Mag-14, No3, p
682-p 6845ept.

1978 )。しかしながら(BH)m2LXが低いだ
め実用化されていない。
1978). However, it has not been put to practical use because (BH)m2LX is low.

まだ4π1.Brを上げるために、異方性M n −A
 l−C系合金磁石を粉砕する方法が提案されているが
、粒径が100戸より小さくなると4π1が急激に減少
し、最適な粒径が10Q〜150メと太きい。またこれ
は温間押出加工後の合金を粉砕するため製造コストが高
くなる欠点、がちり、実用化されていない。
Still 4π1. To increase Br, anisotropy M n -A
A method of pulverizing l-C alloy magnets has been proposed, but when the particle size becomes smaller than 100 mm, 4π1 decreases rapidly, and the optimum particle size is as large as 10 Q to 150 mm. In addition, since the alloy is crushed after warm extrusion processing, the manufacturing cost is high, and the process is dusty, so it has not been put to practical use.

一方牧野等によると、強磁性相のMn−Aβ系合金を機
械的に粉砕し、この粉末に焼き戻し処理を施すことによ
って、4πI、Brは増加するが、IHCが減少するこ
とが報告されている(日本金属学会誌、28巻、196
4.P4.83〜P489)。
On the other hand, according to Makino et al., it has been reported that by mechanically crushing a ferromagnetic phase Mn-Aβ alloy and subjecting this powder to a tempering treatment, 4πI and Br increase, but IHC decreases. (Journal of the Japan Institute of Metals, Vol. 28, 196)
4. P4.83-P489).

350 ’Cでの焼き戻し後の特性はBr=1620G
Characteristics after tempering at 350'C are Br=1620G
.

5Hc= 128 o Osであり、4πi 、Brが
低いだめに実用化されなかった。
5Hc = 128 o Os, 4πi and Br were low, so it was not put into practical use.

以上のように磁石用粉末として粒径100〜150ノ1
のものがよいとされているが、粉末の磁気特性及び製造
コストの面で問題があり、又1001以下の1)(cの
高い粒径の粉末は4π■、Brが低いために粉末成型磁
石用など実用粉末桐料々して適さないという大きな問題
があった。
As mentioned above, as a powder for magnets, the particle size is 100 to 150.
However, there are problems in terms of the magnetic properties of the powder and the manufacturing cost, and powder with a high particle size of 1) (c) less than 1001 has a low 4π■ and Br, so it is difficult to use powder molded magnets. There was a big problem that paulownia powder was not suitable for any practical use.

発明の目的 本発明は、Mn−kl−C系合金磁性粉末の磁気特性、
特に4π工の値を高めることを目的とする。
Purpose of the Invention The present invention provides magnetic properties of Mn-kl-C alloy magnetic powder,
In particular, the purpose is to increase the value of 4π engineering.

発明の構成 本発明者らは、種々実験の結果、磁性粉末を熱処理する
と粉末の表面部分に非磁性相が析出することをつきとめ
、この表面相を除去することによυ4π工を向上させう
ろことを見い出した。
Structure of the Invention As a result of various experiments, the present inventors have found that when magnetic powder is heat-treated, a non-magnetic phase is precipitated on the surface of the powder, and that it is possible to improve the υ4π process by removing this surface phase. I found out.

本発明は、これをもとになされたもので、M n −A
 I−C系合金磁石の高温相のε相(稠密六方晶構造2
代表的な格子定数2L:2.70A、c−4,40A)
2強磁性のτ相(CuAu型の面心正方晶1代表的な格
子定数&=3.91人、 c=3.e3X)。
The present invention is based on this, and M n -A
ε phase (close-packed hexagonal structure 2) of the high-temperature phase of I-C alloy magnets
Typical lattice constant 2L: 2.70A, c-4,40A)
2 ferromagnetic τ phase (CuAu type face-centered tetragonal 1 typical lattice constant &=3.91, c=3.e3X).

ε相からτ相変態過程の中間段階に現れる中間相のl相
(MgCd型の819構造2代表的な格子定数lL:4
.39X 、b=2.−reX、c=4,5ai )ま
だは上記の相の混合相を主とする粉末の表面部分をエツ
チングによって取り除くことを特徴とする特に前記の粉
末を350〜800°Cの範囲で熱処理する前に、捷だ
は熱処理した後にエツチングすることを特徴とする。
The intermediate l phase that appears at the intermediate stage of the ε phase to τ phase transformation process (MgCd type 819 structure 2 typical lattice constant lL: 4
.. 39X, b=2. -re Another feature is that etching is performed after heat treatment.

本発明によれば、Mn−人1−C系合金磁性粉木の磁気
特性、特に4π工を高めることができる。
According to the present invention, it is possible to improve the magnetic properties of the Mn-1-C alloy magnetic powder, especially the 4π-magnetic properties.

実施例の説明 本発明者らは、まず熱処理による4π工の向上を検討す
るために、溶解・鋳造・熱処理後のMn −kl−0系
合金磁石を粉砕し、この粉末を真空熱処理する時の熱処
理温度を色々変えて実験した。その結果、350°Cよ
り低い温度では磁気特性に及ぼす熱処理の効果はなく、
また8Q○℃より高温で熱処理すると強磁性相のτ相が
高温相のε相と非磁性のτ相(A1Mn(r)相〕に分
解するため、磁気特性向上に効果がなかった。4π工の
向上に効果があるのは粉末を350〜800’Cで熱処
理する場合であることがわかった。
DESCRIPTION OF EMBODIMENTS First, in order to study the improvement of 4π strength by heat treatment, the present inventors pulverized a Mn-kl-0 alloy magnet after melting, casting, and heat treatment, and when this powder was subjected to vacuum heat treatment. Experiments were conducted by varying the heat treatment temperature. As a result, there is no effect of heat treatment on magnetic properties at temperatures lower than 350°C.
Furthermore, heat treatment at a temperature higher than 8Q°C decomposed the ferromagnetic τ phase into the high-temperature ε phase and the nonmagnetic τ phase (A1Mn(r) phase), which had no effect on improving magnetic properties. It has been found that heat treatment of the powder at 350 to 800'C is effective in improving the properties.

次に真空熱処理した粉末の粒径が磁気特性に及ぼす影響
を検討した。その結果を第1図に示す。
Next, we investigated the effect of the particle size of the vacuum heat-treated powder on its magnetic properties. The results are shown in FIG.

図に示すように、粉末粒径が磁気特性に及ぼす影響は、
今まで報告された結果と同様に、粉砕後及び熱処理後共
に粉末の粒径が小さくなると共に4π115K(H= 
15KOe T測定1. タ値) カ低下L タ。
As shown in the figure, the influence of powder particle size on magnetic properties is
Similar to the results reported so far, the particle size of the powder becomes smaller after pulverization and heat treatment, and 4π115K (H=
15KOe T measurement 1. ta value) decrease in ta.

この4π115に低下の原因を探るだめに、粉末をX線
回折で調べた結果、非磁性相のβ相(β−Mn相)が熱
処理によって析出することが明らかとなり、まだβ相の
量は粉末の粒径が小さくなるほど多くなることがわかっ
た。
In order to investigate the cause of this decrease in 4π115, the powder was examined by X-ray diffraction, and it was revealed that the non-magnetic β phase (β-Mn phase) was precipitated by heat treatment, and the amount of β phase was still small in the powder. It was found that the smaller the particle size, the larger the amount.

上記の結果より、本発明者らは4π工が粒径と共に低下
する原因の主たるものはβ相の析出にあると考え、β相
の析出しない処理方法を色々検討した。その結果、熱処
理後の粉末をエツチングすること及びエツチングした粉
末を熱処理することによって、β相の析出をおさえるこ
とができることを見い出した。
Based on the above results, the present inventors believe that the main reason why the 4π-factor decreases with grain size is the precipitation of the β phase, and have investigated various processing methods that do not cause the precipitation of the β phase. As a result, it has been found that precipitation of the β phase can be suppressed by etching the powder after heat treatment and heat treating the etched powder.

ここでエツチングとは、化学的に粉末の表面部分とエツ
チング液とを反応させて、表面部分をとりのぞく処理の
ことである。この処理の具体例を次に述べる。ビーカー
などの中にエツチング液と試料の粉末を入れ、両者を反
応させた。そして粉末のエツチングが選択的にならない
ように、かき寸ぜるなどの操作を施した。次にこのエツ
チング後粉末を有機溶剤(アセトン、エチルアルコール
など)などで洗浄し、次に乾燥させた。
Etching here refers to a process in which the surface portion of the powder is chemically reacted with an etching solution to remove the surface portion. A specific example of this process will be described next. The etching solution and sample powder were placed in a beaker or the like, and the two were allowed to react. Then, operations such as stirring were performed to prevent selective etching of the powder. Next, this etched powder was washed with an organic solvent (acetone, ethyl alcohol, etc.), and then dried.

熱処理後の粉末をエツチングしたものは第1図に示す。An etched version of the heat-treated powder is shown in FIG.

ただしエツチング後の粉末の特性は粉砕後の粒径で図示
しである。図に示すように、エツチング後の粉末は熱処
理後の粉末よりも4π115Kが増加し、4π115K
が粒径にあまり大きく依存しなくなった。まだエツチン
グがtl(cに及ぼす影響は第1図からも明らかなよう
に、はとんどないことがわかった。
However, the characteristics of the powder after etching are indicated by the particle size after pulverization. As shown in the figure, the 4π115K of the powder after etching increases compared to that of the powder after heat treatment.
becomes less dependent on particle size. As is clear from FIG. 1, etching has little effect on tl(c).

以上よりこのエツチング処理によって150)l以下の
XHcの高い粉末の4π工を増加させることができ、本
発明は非常に工業的価値大なるものである。
From the above, this etching treatment can increase the 4π-factor of a powder with a high XHc of 150)l or less, and the present invention is of great industrial value.

ここで粉末に熱処理を施すことによってβ相が多量に析
出する理由は、粉末表面近傍は加工歪を内在し、まだ結
晶の乱れが多いために非磁性安定相のβ相に変態しやす
く、又微粉末になると粒の表面積が非常に大きくなるた
めにβ相の量が増加しだものと考えられる。そして4π
I、Brの増加は表面のβ相がエツチングによってとり
除かれるためと考えられる。
The reason why a large amount of β phase precipitates when the powder is heat-treated is because there is inherent processing strain near the powder surface and there is still a lot of crystal disorder, so it is easy to transform into the non-magnetic stable β phase. It is thought that the amount of β phase increases because the surface area of the particles becomes very large when the powder becomes fine. and 4π
The increase in I and Br is thought to be due to the removal of the β phase on the surface by etching.

次にエツチング後の粉末を真空熱処理した場合の結果を
第2図に示す。図から明らか々ようにβ相の析出がおさ
えられ4π115Kが向上している。これは粉末表面の
加工歪を受けだ部分をとりさるだめに、β相が析出しに
くくなるものと考えられる。
Next, FIG. 2 shows the results when the etched powder was subjected to vacuum heat treatment. As is clear from the figure, the precipitation of the β phase is suppressed and the 4π115K is improved. This is thought to be due to the fact that the β phase is less likely to precipitate as the part of the powder surface that receives processing strain is removed.

このエツチング後熱処理する方法では、β相をすべてと
りさることは難しいが、熱処理後粉末のβ相の量に比べ
ると、はるかに少ない量になり、磁気特性を向上さ斗る
ことかできる。
Although it is difficult to remove all the β phase with this method of heat treatment after etching, the amount is much smaller than the amount of β phase in the powder after heat treatment, and the magnetic properties can be improved.

またこのエツチング処理はτ相を主とする熱処理後合金
を粉砕して得た粉末だけでなく、後の熱処理によってτ
相となるε相とε′相を主とする粉末、上記の混合相よ
りなる粉末及び押出加工材の粉末において、上記と同様
の効果があり、非常に有効な処理法である。
In addition, this etching process is performed not only on the powder obtained by crushing the heat-treated alloy mainly containing the τ phase, but also on the
It is a very effective treatment method, as it has the same effects as above for powders mainly consisting of the ε phase and ε' phase, powders consisting of the above-mentioned mixed phases, and powders of extruded materials.

一方エソチング液として、He l 、 HNO3、N
aOH及びケラ−液などを用いた場合にエツチングの効
果があり粉末の磁気特性が向上した。
On the other hand, as an etching solution, He l, HNO3, N
When aOH and Keller's solution were used, there was an etching effect and the magnetic properties of the powder were improved.

まだ粉末をエツチングして熱処理した後にエツチングす
る処理も上記にあげたのと同様に磁気特性向上に効果が
あることがわかった。
It has been found that a treatment in which the powder is etched, heat treated, and then etched is also effective in improving the magnetic properties in the same manner as mentioned above.

以下具体鈎実施例を述べる。A specific example of the hook will be described below.

実施例1 熱処理後のMn−)、l−C系合金磁石をジェットミル
により粉砕した。この粉末を450°Cで30分間真空
熱処理後、He6でエツチングした。エツチング後の磁
気特性は平均粒径2olで4π115FF−5950G
 + IHC=185008であり、4π工15には熱
処理後の粉末に比べて約20%向上した。
Example 1 A heat-treated Mn-), l-C alloy magnet was pulverized using a jet mill. This powder was vacuum heat treated at 450°C for 30 minutes and then etched with He6. The magnetic properties after etching are 4π115FF-5950G with an average grain size of 2 ol.
+IHC=185008, which was about 20% improved in 4π engineering 15 compared to the powder after heat treatment.

実施例2 熱処理後のMn−A71!−C系合金磁石をジェットミ
ルにより粉砕した。この粉末をケラ−液でエツチングし
た後、500’Cで30分間真空熱処理した。゛X線回
折で20〜46μの粒径の粉末を調べてみると、β相の
量はエツチングなしで熱処理したものより少なくなって
いた。エツチング、熱処理後の20〜46μの粉末の磁
気特性は4π工15K””6500G 、工Hc=16
000sで、エツチングなしの熱処理後の粉末に比べて
4πh5工は12%向」ニした。
Example 2 Mn-A71 after heat treatment! The -C alloy magnet was pulverized using a jet mill. This powder was etched with Keller's solution and then vacuum heat treated at 500'C for 30 minutes. When powders with a particle size of 20 to 46 μm were examined by X-ray diffraction, the amount of β phase was smaller than that of powders heat-treated without etching. The magnetic properties of the 20-46μ powder after etching and heat treatment are 4π 15K”6500G, Hc=16
000 s, the 4πh5 process was 12% better than the powder after heat treatment without etching.

実施例3 実施例2のエツチング、熱処理後の粉末をさらにケラ−
液でエツチングした。このエツチング後の磁気特性ば4
π115に=5700Gとさらに実施例2の特性より増
加した。粉末のX線回折よりβ相はほとんどなかった。
Example 3 The powder after etching and heat treatment of Example 2 was further keratinized.
Etched with liquid. Magnetic properties after this etching
π115=5700G, which is further increased from the characteristics of Example 2. X-ray diffraction of the powder revealed that there was almost no β phase.

実施例4 Mn70.0%、Ad29.5%、 G O,5%の組
成をもつ合金を溶解鋳造により作製した。この合金を1
100°Cで約1時間溶体化処理し、水中にクエンチし
て高温相(ε相)の合金を作製した。この合金をジェッ
トミルにより粉砕した。この粉末をX線回折で鯛べたと
ころε相が主であった。この粉末を500°Cで真空熱
処理した後HGlでエツチングをしだ。
Example 4 An alloy having a composition of 70.0% Mn, 29.5% Ad, and 5% G O was produced by melting and casting. This alloy is 1
Solution treatment was performed at 100°C for about 1 hour and quenched in water to produce a high temperature phase (ε phase) alloy. This alloy was ground using a jet mill. When this powder was analyzed by X-ray diffraction, it was found that the ε phase was the main component. This powder was heat treated in a vacuum at 500°C and then etched with HGl.

エツチング処理後の平均粒径20μの粉末の特性は4π
工15K ==55ooc 、 工H6=165000
であり、熱処理後の粉末に比べて4πI]’5K は約
16%向」ニした。
The characteristics of powder with an average particle size of 20μ after etching treatment are 4π
Engineering 15K ==55ooc, Engineering H6=165000
4πI]'5K was about 16% higher than that of the powder after heat treatment.

実施例5 温間押出加工された異方性Mn−Al−C系合金磁石を
ジェットミルで粉砕した。この粉末を50Q°Cで大気
中で熱処理した後、ケラ−液でエツチングした。平均粒
径20/lの粉末のエツチング後の磁気特性は4π11
5に:6400Cr + zHc=32QQ Osでエ
ツチング前に比べて4π115Kが約17%向」ニした
Example 5 A warm extruded anisotropic Mn-Al-C alloy magnet was pulverized using a jet mill. This powder was heat treated in the air at 50Q°C and then etched with Keller's solution. The magnetic properties of powder with an average particle size of 20/l after etching are 4π11
5: 6400Cr + zHc = 32QQ Os, 4π115K was improved by about 17% compared to before etching.

実施例6 温間押出加工された異方性Mn−Al−C系合金磁石を
ジェットミルで100μ以下に粉砕した後、乳鉢で約2
時間粉砕した。この粉′木を600°Cで熱処理した後
HNO3でエツチングした。このエツチング後粉末をX
線回折した結果、β相のピークはほとんどなかった。4
π115にはエツチング前に比べて約10%向上した。
Example 6 A warm extruded anisotropic Mn-Al-C alloy magnet was ground to 100 μm or less using a jet mill, and then crushed to about 2 μm in a mortar.
Time crushed. This powdered wood was heat treated at 600°C and then etched with HNO3. After this etching, the powder is
As a result of line diffraction, there were almost no β-phase peaks. 4
The value of π115 was improved by about 10% compared to before etching.

実施例7 実施例4のε相合金に400°Cで焼き戻し処理を施し
、τ相とε′相混合の合金を作製した。この合金をジェ
ットミルにより粉砕し、500°Cで真空熱処理した。
Example 7 The ε-phase alloy of Example 4 was tempered at 400°C to produce a mixed τ-phase and ε'-phase alloy. This alloy was pulverized by a jet mill and vacuum heat treated at 500°C.

次にこの粉末をケラ−液でエツチングした。Next, this powder was etched with Keller's solution.

エツチング処理後の平均粒径20にの粉末の特性d、4
π工15に=5900G、工Hc−160ooeであり
熱処理後の粉末に比べて4πII 5には約18%向上
した。
Characteristics of powder with an average particle size of 20 after etching treatment d, 4
π engineering 15=5900G, engineering Hc-160ooe, which was about 18% improved in 4πII 5 compared to the powder after heat treatment.

実施例8 熱処理後のMn−Al−C系合金磁石をジェットミルに
より粉砕した。この粉末を600°Cで30分間真空熱
処理した後、HGlでエツチングした。エツチング後の
磁気特性は平均粒径150/Lで4π工15に=660
0G2.Ho=75oOeであり、4π工I5には熱処
理後の粉末に比べて約9%向上した。
Example 8 A heat-treated Mn-Al-C alloy magnet was pulverized using a jet mill. This powder was subjected to vacuum heat treatment at 600°C for 30 minutes and then etched with HGl. The magnetic properties after etching are 4π work 15 with an average grain size of 150/L = 660
0G2. Ho=75oOe, and the 4π engineering I5 was improved by about 9% compared to the powder after heat treatment.

発明の効果 本発明は、従来から実用に供し得なかったMn−Al系
合金粉末の磁気特性を高めだもので、特に保磁力の高い
粒径150μ以下の粉末の4π工 を高めることを可能
とし、4π工、IHC共にすぐれた磁気特性を有するM
n−41系磁性粉末を提供するもので、焼結体磁石及び
樹脂成形磁石用の磁性粉末として、又磁気テープ用磁性
粉体として非常に有望である。
Effects of the Invention The present invention improves the magnetic properties of Mn-Al alloy powder, which could not be put to practical use in the past, and in particular makes it possible to improve the 4π strength of powder with a particle size of 150μ or less, which has a high coercive force. , 4π engineering, and IHC have excellent magnetic properties.
This product provides an n-41 magnetic powder, which is very promising as a magnetic powder for sintered magnets and resin-molded magnets, and as a magnetic powder for magnetic tapes.

−また粉体を真空中、還元雰囲気中及び不活性ガス中で
なく、大気中で熱処理を行って、粉末の表面が酸化して
も、粉末をエツチングすることによって、酸化膜をとる
ことができ、熱処理工程が簡易になる。
-Also, even if the surface of the powder is oxidized by heat treatment in the air rather than in a vacuum, reducing atmosphere, or inert gas, the oxide film can be removed by etching the powder. , the heat treatment process becomes simpler.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は粉砕後、粉砕・真空熱処理後及び粉砕・真空熱
処理・エツチング後の4π115にとIHCの粒径依存
性を示す図、第2図は真空熱処理後と真空熱処理・エツ
チング後のX線回折によるβ/τピーク比と4π115
Kを示す図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 窄立才そ (メL) X°粉砕後 0コ45o’c真空p侵四U唇変 ・ : Xq振りの二乳→エツチンクネ灸第2図
Figure 1 shows the particle size dependence of IHC on 4π115 after pulverization, after pulverization/vacuum heat treatment, and after pulverization/vacuum heat treatment/etching, and Figure 2 shows X-rays after vacuum heat treatment, vacuum heat treatment, and etching. β/τ peak ratio and 4π115 due to diffraction
It is a figure showing K. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Zukotsu Ritsaiso (Me L)

Claims (3)

【特許請求の範囲】[Claims] (1)マンガン−アルミニウムー炭素系磁石合金の高温
相のε相または強磁性相のτ相まだは中間相のε′相ま
たは上記の相の混合相を主とする合金粉末をエツチング
することを特徴とするマンガン−アルミニウムー炭素系
合金磁性粉末の製造法。
(1) Etching an alloy powder mainly consisting of the high-temperature ε phase, the ferromagnetic τ phase, the intermediate ε' phase, or a mixed phase of the above phases in a manganese-aluminum-carbon magnet alloy. A method for producing a characteristic manganese-aluminum-carbon alloy magnetic powder.
(2)前記エツチングを、前記粉末を350〜800°
Cの範囲で熱処理した後に行う特許請求の範囲第1項記
載のマンガン−アルミニウムー炭素系合金磁性粉末の製
造法。
(2) Etching the powder at 350-800°
The method for producing a manganese-aluminum-carbon alloy magnetic powder according to claim 1, which is carried out after heat treatment in the range of C.
(3)前記エツチングを、前記粉末を350〜800°
Cの範囲で熱処理する前に行う特許請求の範囲第1項記
載のマンガン−アルミニウムー炭素系合金磁性粉末の製
造法。
(3) Etching the powder at 350-800°
The method for producing a manganese-aluminum-carbon-based alloy magnetic powder according to claim 1, which is carried out before heat treatment in the range of C.
JP58134570A 1983-07-22 1983-07-22 Manufacture of magnetic manganese-aluminum-carbon alloy powder Granted JPS6026601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58134570A JPS6026601A (en) 1983-07-22 1983-07-22 Manufacture of magnetic manganese-aluminum-carbon alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58134570A JPS6026601A (en) 1983-07-22 1983-07-22 Manufacture of magnetic manganese-aluminum-carbon alloy powder

Publications (2)

Publication Number Publication Date
JPS6026601A true JPS6026601A (en) 1985-02-09
JPS6364481B2 JPS6364481B2 (en) 1988-12-12

Family

ID=15131427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58134570A Granted JPS6026601A (en) 1983-07-22 1983-07-22 Manufacture of magnetic manganese-aluminum-carbon alloy powder

Country Status (1)

Country Link
JP (1) JPS6026601A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1747829A1 (en) * 2004-03-30 2007-01-31 Sumitomo Electric Industries, Ltd. Method for producing soft magnetic material, soft magnetic powder and dust core
CN108611509A (en) * 2018-05-07 2018-10-02 青海大学 Porous aluminum carbon composite and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1747829A1 (en) * 2004-03-30 2007-01-31 Sumitomo Electric Industries, Ltd. Method for producing soft magnetic material, soft magnetic powder and dust core
EP1747829A4 (en) * 2004-03-30 2010-09-01 Sumitomo Electric Industries Method for producing soft magnetic material, soft magnetic powder and dust core
CN108611509A (en) * 2018-05-07 2018-10-02 青海大学 Porous aluminum carbon composite and preparation method thereof

Also Published As

Publication number Publication date
JPS6364481B2 (en) 1988-12-12

Similar Documents

Publication Publication Date Title
Hall Single crystal anisotropy and magnetostriction constants of several ferromagnetic materials including alloys of NiFe, SiFe, AlFe, CoNi, and CoFe
Croat et al. Pr‐Fe and Nd‐Fe‐based materials: A new class of high‐performance permanent magnets
Wang et al. Effects of as-quenched structures on the phase transformations and magnetic properties of melt-spun Pr 7 Fe 88 B 5 ribbons
Senno et al. Permanent-magnet properties of Sm-Ce-Co-Fe-Cu alloys with compositions between 1-5 and 2-17
JPH01175205A (en) Rare earth permanent magnet
McCormick et al. Mechanically alloyed hard magnetic materials
Gabay et al. Investigation of phase composition and remanence enhancement in rapidly quenched Nd9 (Fe, Co) 85B6 alloys
Smith et al. Mechanically alloyed Sm-(Co-Fe) permanent magnets
JPS6026601A (en) Manufacture of magnetic manganese-aluminum-carbon alloy powder
Ahmad et al. Ultra high coercivity Nd-Fe-B permanent magnet alloy with small addition of Ga
JPS62177101A (en) Production of permanent magnet material
Popov et al. Thermomagnetic and Mössbauer studies of structural transformations caused in the amorphous Nd 9 Fe 85 B 5 alloy by severe plastic deformation and annealing
Chow et al. Nanostructured Co Cu powders via a chemical route
JPH0620813A (en) Rare earth anisotropic permanent magnet powder and manufacture thereof
CA1284612C (en) Enhanced remanence permanent magnetic alloy and bodies thereof
Nesbitt et al. Intrinsic Magnetic Properties and Mechanism of Magnetization of Co‐Fe‐Cu‐R Permanent Magnets
Nesbitt et al. Influence of cerium content on the structure and magnetic behavior of Co-Fe-Cu-Ce permanent magnets
Jurczyk et al. Effect of silicon additions on the magnetic properties of Nd2Fe12Co2B alloy
Pi et al. Effects of heat treatments on coercivity and microstructure in Nd15Fe77B8 sintered magnets
JP3009405B2 (en) Permanent magnet material and manufacturing method thereof
Sui et al. High-coercivity Dy-Fe-X (X= C, B) alloys made by mechanical alloying
Gong et al. The effects of particle size and distribution on the magnetic properties of coercive Sm (Co, Fe, Cu, Zr) z alloy powders for bonded magnet applications
Ding et al. Magnetic hardening of mechanically milled Sm2Fe14Ga3C2
Geisler Structure and properties of the permanent magnet alloys
Severin et al. High magnetic moment in Fe87B11Au2 ribbons