JPS6026445B2 - Photo sensor circuit - Google Patents

Photo sensor circuit

Info

Publication number
JPS6026445B2
JPS6026445B2 JP2426280A JP2426280A JPS6026445B2 JP S6026445 B2 JPS6026445 B2 JP S6026445B2 JP 2426280 A JP2426280 A JP 2426280A JP 2426280 A JP2426280 A JP 2426280A JP S6026445 B2 JPS6026445 B2 JP S6026445B2
Authority
JP
Japan
Prior art keywords
light
signal
variable gain
gain amplifier
photo sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2426280A
Other languages
Japanese (ja)
Other versions
JPS56119807A (en
Inventor
元一 吉村
賢次 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Mitsubishi Electric Corp
Original Assignee
Brother Industries Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd, Mitsubishi Electric Corp filed Critical Brother Industries Ltd
Priority to JP2426280A priority Critical patent/JPS6026445B2/en
Publication of JPS56119807A publication Critical patent/JPS56119807A/en
Publication of JPS6026445B2 publication Critical patent/JPS6026445B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)

Description

【発明の詳細な説明】 本発明は、フオトセンサ回路、詳しくは位置決め装置等
に於いて、位置信号検出器として使用されるフオトセン
サの出力を、温度、経時変化等に対し安定化せしめるフ
オトセンサ回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a photo sensor circuit, and more particularly, to a photo sensor circuit that stabilizes the output of a photo sensor used as a position signal detector in a positioning device, etc. against changes in temperature, aging, etc. It is.

一般にフオトセンサは発光ダイオードと受光ダイオード
との組合せよりなるが、発光ダイオードの電流を一定と
した場合、数十℃の温度変化、数千時間以上の経時変化
に対して受光ダイオードの出力は数十%変動する。
Generally, a photo sensor consists of a combination of a light-emitting diode and a light-receiving diode, but if the current of the light-emitting diode is constant, the output of the light-receiving diode will decrease by several tens of percent when the temperature changes by several tens of degrees Celsius or changes over time over several thousand hours. fluctuate.

ところで、サーボ制御の位置決め装置等に於いては、フ
オトセンサ回路の出力電圧により、位置信号や速度信号
を得て、これらの信号を使って位置や速度を制御してい
る。位置決め装置等に於いて、位置や速度を制御するた
めに使うフオトセンサ回路の出力電圧のずれは、位置信
号や速度信号のずれとなって現われる。このずれは、設
定値と検出器等を介して伝達される制御量の差である制
御偏差が最少になるように設計されている位置決め装置
等の制御系の働きを狂わせ、本来の機能が得られなくな
る。本発明の目的は、上記の欠点を解決するためになさ
れたものであり、周囲の温度変動や発光ダイオード及び
受光ダイオードの蓬時変化並びに発光ダイオードの発光
面のよごれによる光量の減少等に対してフオトセンサの
出力の安定化を図り、該フオトセンサを使用する位置決
め装置等が安定に働く信頼性の高いフオトセンサ回路を
提供することにある。以下図面を用いて本発明によるフ
オトセンサ回路について詳細に説明する。第1図は本発
明に係るフオトセンサ部の一実施例である。
By the way, in a servo-controlled positioning device or the like, a position signal and a speed signal are obtained from the output voltage of a photo sensor circuit, and these signals are used to control the position and speed. In positioning devices and the like, deviations in the output voltages of photo sensor circuits used to control position and speed appear as deviations in position signals and speed signals. This deviation disrupts the operation of control systems such as positioning devices, which are designed to minimize the control deviation, which is the difference between the set value and the control amount transmitted via the detector, etc., and the original function is not achieved. I won't be able to do it. The purpose of the present invention was to solve the above-mentioned drawbacks, and to solve the problem of reducing the amount of light due to ambient temperature fluctuations, changes in the light-emitting diode and light-receiving diode during operation, and dirt on the light-emitting surface of the light-emitting diode. It is an object of the present invention to provide a highly reliable photo sensor circuit that stabilizes the output of a photo sensor and allows a positioning device using the photo sensor to work stably. The photo sensor circuit according to the present invention will be described in detail below with reference to the drawings. FIG. 1 shows an embodiment of a photo sensor section according to the present invention.

第1図aに於いて1は光源用の発光ダイオードであり、
その発光ダイオードと対向して2個の信号検出用受光ダ
イオード2a,2bが配置されている。信号検出用発光
ダイオード2a,2bからそれぞれに得られる信号は互
いに逆位相になるように形成されている。これらの受光
ダイオード2a,2bをモノリシツク基板上に形成した
ものを第1図cに示す。同図に於いて、斜線部は光検出
部であり、例えばN型Si基板の上に、P型拡散領域が
斜線部に形成されている。このようにモノシリック基板
上に形成された受光ダイオード2を構成する2a,2b
のそれぞれの受光ダイオードの電気的特性はほぼ同一と
考えられる。発光ダイオード1と受光ダイオード2の間
にはこの発明のスリット板を構成する回転円板3が配置
され、この回転円板3はモータ(図示せず)の軸4に取
付けられ、モータの回転に追従して回転する。回転円板
3は、第1図bに示すように、ディスク形状になってお
り、その円周上にはエッチングによって光学的スリット
が設けられ、等間隔な光通過部3aと光遮断部3bとか
らなっており、この光通過部3a、又は光遮断部3bの
円周方向の幅Lと、第1図cの受光ダイオード2aの拡
散領域部の幅L又は拡散領域部間の幅Lとが等しくなる
ように形成されている。第1図cの受光ダイオード2b
は第1図bの光通過部3aと光遮断部3bの円周方向の
幅3Lと円板の中心とで形成される扇形の中の形状を同
図のように作ったものである。第1図cの破線部は回転
円板3の光通過部3aと受光ダイオード2が重なりあっ
ている時の一例を示したものである。以上のような構成
にて、回転円板3を回転させると、第3図a,bに示す
ように逆位相の関係にある受光ダイオード2a,2bの
出力信号波形を得ることができる。回転円板3の光通過
部3aと受光ダイオード2a,2bとの重なりぐあいに
より、入力される光の総量が変わり、第3図a,bに示
すように正弦波状に変化する出力電流が得られるが、こ
れらの波形を加算したものは、回転円板3を回転させて
も変化せず、第3図cのように、常に一定になる。第2
図に本発明によるフオトセンサ回路の一実施例を説明す
るためのブロック図を示す。同図に於いて、1は発光ダ
イオード、2a,2bは受光ダイオードでこれらにより
得られる信号は互いに逆位相になっている。5,6は端
子5b,6bに入力される制御信号によって利得が変わ
る可変利得増幅器である。
In FIG. 1a, 1 is a light emitting diode for a light source,
Two signal detection light receiving diodes 2a and 2b are arranged opposite to the light emitting diode. Signals obtained from the signal detection light emitting diodes 2a and 2b are formed to have opposite phases to each other. FIG. 1c shows a structure in which these light receiving diodes 2a and 2b are formed on a monolithic substrate. In the figure, the shaded area is a photodetector, and for example, a P-type diffusion region is formed in the shaded area on an N-type Si substrate. 2a and 2b constituting the light receiving diode 2 formed on the monolithic substrate in this way.
It is thought that the electrical characteristics of each photodetector diode are almost the same. A rotating disk 3 constituting the slit plate of the present invention is arranged between the light emitting diode 1 and the light receiving diode 2. Follow and rotate. As shown in FIG. 1b, the rotating disk 3 has a disk shape, and optical slits are provided on its circumference by etching, and light passing portions 3a and light blocking portions 3b are formed at equal intervals. The width L in the circumferential direction of the light passing section 3a or the light blocking section 3b and the width L of the diffusion region or the width L between the diffusion regions of the light receiving diode 2a in FIG. are formed to be equal. Light-receiving diode 2b in Fig. 1c
The shape shown in FIG. 1B is made from the fan shape formed by the circumferential width 3L of the light passing portion 3a and the light blocking portion 3b and the center of the disk. The broken line portion in FIG. 1c shows an example where the light passing portion 3a of the rotating disk 3 and the light receiving diode 2 overlap. With the above configuration, when the rotary disk 3 is rotated, it is possible to obtain output signal waveforms of the light receiving diodes 2a and 2b having opposite phases as shown in FIGS. 3a and 3b. The total amount of input light changes depending on the overlap between the light passing section 3a of the rotating disk 3 and the light receiving diodes 2a and 2b, and an output current that changes sinusoidally as shown in Fig. 3a and b is obtained. However, the sum of these waveforms does not change even when the rotating disk 3 is rotated, and remains constant as shown in FIG. 3c. Second
The figure shows a block diagram for explaining one embodiment of a photo sensor circuit according to the present invention. In the figure, 1 is a light emitting diode, 2a and 2b are light receiving diodes, and the signals obtained by these diodes are in opposite phases to each other. Reference numerals 5 and 6 indicate variable gain amplifiers whose gains vary depending on control signals input to terminals 5b and 6b.

5a,6aはこれら可変利得増幅器の入力端子で、5c
,5d,6cは出力端子である。
5a and 6a are the input terminals of these variable gain amplifiers, and 5c
, 5d, and 6c are output terminals.

7は加算器、8は基準電圧Vrefを出力する定電圧源
、9は定電圧源8の出力電圧Vrefと加算器7の出力
電圧を比較する制御回路である。
7 is an adder, 8 is a constant voltage source that outputs a reference voltage Vref, and 9 is a control circuit that compares the output voltage Vref of the constant voltage source 8 with the output voltage of the adder 7.

受光ダイオード2a,2bはそれぞれ可変利得増幅器5
,6の入力端子5a,6aに接続されてお夕り、各受光
ダイオードの出力電流はそれぞれの可変利得増幅器で増
幅される。これらの可変利得増幅器5,6を同一の回路
構成にしておけば、同一の利得が得られる。可変利得増
幅器5,6で増幅された増幅信号はそれぞれの出力端子
5c,6coに出力され、各増幅信号は加算器7の入力
端子7a,7bに入力される。この加算器7に入力され
た2つの信号は互いに逆位相の関係になっているので、
加算した信号は(第3図cに示すように)回転円板の回
転に拘らず一定になる。加算器7か夕らの加算信号は、
制御回路9により定電圧源8の基準電圧Vrefと比較
される。この制御回路9からの制御信号は可変利得増幅
器5,6の端子5b,6bに入力され、利得が制御され
る。可変利得増幅器5,6、加算器7、制御回路9で構
成ご0れるループを負帰還となるようにしておけば加算
器7からの加算信号は入力に拘らず一定で基準電圧Vr
efと等しくなる。受光ダイオード2a,2bの出力電
流は第3図a,bに示されているが、この電流レベルは
温度等の変化により発光ダィオタード1の輝度が変った
り、あるいは受光ダイオード2a,2bの特性が変化し
た時等に変化する。しかしながら、幾何学的な配置が変
わらない限り、受光ダイオード2a,2bの相対的な電
流関係は変わらない。又、受光ダイオード2a,2bo
が同一のモノシック基板上に配置されていれば、特性の
バラッキは小さくなると共に、温度や経時変化等による
特性も同じ額向で変化するため、相対的な電流関係は変
わらない。また、集積化することによって信頼性向上や
、検出器を取付ける時の受光ダイオード相互間の調整が
、不要になり、かつ、簡単に高い取付け精度を出すこと
ができる。更に可変利得増幅器5,6は同一の利得を持
ち、また加算器7の出力端子7cから出力される加算信
号は定電圧源8からの基準電圧Vrefと等しくなるよ
うに制御されているため、可変利得増幅器5の出力端子
5dには、発光ダイオード1の輝度、受光ダイオード2
a,2bの受光特性に関係なく安定化された増幅信号を
得ることが出来る。この増幅信号を検出信号として位置
決め装置等の制御に利用すれば、安定した動作が得られ
る。第4図には、第2図に示す可変利得増幅器5,6、
加算器7の具体的な回路例を示す。同図に置いて、OP
1,OP2はオベアンプ、R1,R2,R3,R4,R
5,R6は抵抗であり、Q1,Q2,Q3,Q4,Q5
,Q6はそれぞれPNPトランジスタである。V1,V
2,V3,V4はバイアス電圧を与える電源である。第
4図の端子は、第3図の対応する端子と同一の記号を付
けている。入力端子5aに入力された電流DIはオベア
ンプOP1、PNPトランジスタQIによつて(RI/
R2)倍の電流○2に増幅される。PNPトランジスタ
Q2,Q3と抵抗R3は、入力端子5bとV2との電圧
の差によって、電流D3,D5(D4)の分流比を変え
て利得を変えうる利得調整器である。可変利得増幅器6
は可変利得増幅器5と同一の利得が得られるように構成
しておけばよい。以上のようにして得られる出力電流D
4,D6を抵抗R4の一端へ流れこむようにすればこの
電圧は二つの信号が加算されたことに3なり、加算器7
を構成することが出来る。上記の説明から明らかな如く
、本発明によるフオトセンサ回路は、互いに逆位相の二
つの検出信号を受光素子から得て、これら二つの検出信
号をそれぞれ可変利得増幅器により増幅した信号を加算
したものと基準電圧とを比較し、その偏差量が長4・に
なるように可変利得増幅器の利得を調節することにより
、温度や経時変化等による光源輝度や受光素子の特性の
変化に関係なく受光素子から得られる検出信号を安定化
せしめるようにしたものである。
The light receiving diodes 2a and 2b are each connected to a variable gain amplifier 5.
, 6, and the output current of each photodiode is amplified by a respective variable gain amplifier. If these variable gain amplifiers 5 and 6 have the same circuit configuration, the same gain can be obtained. The amplified signals amplified by variable gain amplifiers 5 and 6 are outputted to respective output terminals 5c and 6co, and each amplified signal is inputted to input terminals 7a and 7b of adder 7. Since the two signals input to the adder 7 have opposite phases to each other,
The summed signal remains constant regardless of the rotation of the rotating disk (as shown in Figure 3c). The addition signal from adder 7 is
The control circuit 9 compares it with the reference voltage Vref of the constant voltage source 8 . A control signal from this control circuit 9 is input to terminals 5b and 6b of variable gain amplifiers 5 and 6, and the gain is controlled. If the loop consisting of the variable gain amplifiers 5 and 6, the adder 7, and the control circuit 9 is set to negative feedback, the addition signal from the adder 7 will be constant regardless of the input, and the reference voltage Vr will be constant.
It becomes equal to ef. The output currents of the light-receiving diodes 2a and 2b are shown in FIGS. 3a and 3b, but this current level may change due to changes in temperature, etc., which may cause the brightness of the light-emitting diotard 1 to change or the characteristics of the light-receiving diodes 2a, 2b to change. It changes when However, as long as the geometric arrangement remains unchanged, the relative current relationship between the light receiving diodes 2a and 2b remains unchanged. Moreover, the light receiving diodes 2a, 2bo
If they are arranged on the same monolithic substrate, the variation in characteristics will be small, and the characteristics due to temperature, aging, etc. will also change in the same direction, so the relative current relationship will not change. Further, by integrating the detector, reliability is improved, and adjustment between the light receiving diodes when attaching the detector becomes unnecessary, and high attachment accuracy can be easily achieved. Furthermore, the variable gain amplifiers 5 and 6 have the same gain, and the addition signal output from the output terminal 7c of the adder 7 is controlled to be equal to the reference voltage Vref from the constant voltage source 8, so that the variable gain amplifiers 5 and 6 have the same gain. The output terminal 5d of the gain amplifier 5 has the brightness of the light emitting diode 1 and the light receiving diode 2.
A stabilized amplified signal can be obtained regardless of the light receiving characteristics of a and 2b. If this amplified signal is used as a detection signal to control a positioning device or the like, stable operation can be obtained. FIG. 4 shows the variable gain amplifiers 5, 6 shown in FIG.
A specific circuit example of the adder 7 will be shown. In the same figure, OP
1, OP2 is an oven amplifier, R1, R2, R3, R4, R
5, R6 are resistors, Q1, Q2, Q3, Q4, Q5
, Q6 are each PNP transistors. V1, V
2, V3, and V4 are power supplies that provide bias voltages. The terminals in FIG. 4 have the same symbols as the corresponding terminals in FIG. The current DI input to the input terminal 5a is converted to (RI/
R2) is amplified to double the current ○2. PNP transistors Q2, Q3 and resistor R3 are gain adjusters that can change the gain by changing the dividing ratio of currents D3, D5 (D4) depending on the voltage difference between input terminal 5b and V2. variable gain amplifier 6
may be configured so that the same gain as the variable gain amplifier 5 can be obtained. Output current D obtained as above
4. If D6 is made to flow into one end of resistor R4, this voltage becomes 3, which is the sum of the two signals, and adder 7
can be configured. As is clear from the above description, the photo sensor circuit according to the present invention obtains two detection signals having opposite phases from each other from a light receiving element, and adds signals obtained by amplifying these two detection signals by variable gain amplifiers. By comparing the voltage with the voltage and adjusting the gain of the variable gain amplifier so that the amount of deviation becomes 4, the gain from the light receiving element can be adjusted regardless of changes in the light source brightness or the characteristics of the light receiving element due to temperature or changes over time. This is to stabilize the detected signal.

このセンサー回路を用いた位置検出装魔は、受光素子と
回路部を一体化することが容易であり、簡単な構成で、
温度や特性の劣化等の環境条件や使用条件に対して極め
て安定で精度の高い位置信号が得られるためサーボ機器
等の位置決め制御の誤差を極めて小さくでき、信頼性も
非常に高く、なおかつ検出器機部の組立、調整も簡単で
精度も向上するなど極めて優れた効果を得ることが出来
る。
A position detection device using this sensor circuit can easily integrate the light receiving element and the circuit, and has a simple configuration.
Because extremely stable and highly accurate position signals can be obtained under environmental and usage conditions such as temperature and characteristic deterioration, errors in positioning control of servo equipment, etc. can be extremely minimized, and reliability is extremely high. It is easy to assemble and adjust the parts, and the accuracy is improved, making it possible to obtain extremely excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るフオトセンサ回路の一部分である
フオトセンサ部の一実施例を示す概略構成図、第2図は
本発明に係る一実施例のブロック図、第3図は第2図に
おける各部信号波形図、第4図は第2図に於ける可変利
得増幅器、加算器の一具体例を示す回路図であり、図中
、1は光源である発光ダイオード、2a,2bは受光ダ
イオード、6は第1の可変利得増幅器、6は第2の可変
利得増幅器、7は加算器、9は制御回路、Vrefは基
準電圧である。 第1図 第3図 第2図 第4図
FIG. 1 is a schematic configuration diagram showing an embodiment of a photo sensor section which is a part of a photo sensor circuit according to the present invention, FIG. 2 is a block diagram of an embodiment of the present invention, and FIG. 3 shows each part in FIG. 2. The signal waveform diagram, FIG. 4, is a circuit diagram showing a specific example of the variable gain amplifier and adder in FIG. is a first variable gain amplifier, 6 is a second variable gain amplifier, 7 is an adder, 9 is a control circuit, and Vref is a reference voltage. Figure 1 Figure 3 Figure 2 Figure 4

Claims (1)

【特許請求の範囲】 1 光源と、 前記光源からの光を、光学的スリツトを有するスリツ
ト板を介して受光し、スリツト板との相対移動に伴つて
第1の検出信号を出力する第1の受光素子と、 前記第
1の検出信号を増幅し、増幅信号を出力する第1の可変
利得増幅器と、 前記光源からの光を、前記スリツト板
を介して受光し、スリツト板との相対移動に伴つて前記
第1の検出信号と逆位相の第2の検出信号を出力する第
2の受光素子と、 前記第2の検出信号を増幅し、増幅
信号を出力する第2の可変利得増幅器と、 前記第1の
可変利得増幅器の増幅信号と第2の可変利得増幅器の増
幅信号とを加算し加算信号を出力する加算器と、 前記
加算信号と基準電圧信号とを比較し、前記第1及び第2
の可変利得増幅器の利得を調節するための制御信号を出
力する制御回路とから構成され、前記第1の可変利得増
幅器の増幅信号を安定化させることを特徴とするフオト
センサ回路。
[Scope of Claims] 1. A light source; a first light source that receives light from the light source via a slit plate having an optical slit, and outputs a first detection signal as it moves relative to the slit plate; a light receiving element; a first variable gain amplifier that amplifies the first detection signal and outputs an amplified signal; and a first variable gain amplifier that receives light from the light source via the slit plate and that receives the light from the slit plate and moves relative to the slit plate. a second light-receiving element that outputs a second detection signal having an opposite phase to the first detection signal; a second variable gain amplifier that amplifies the second detection signal and outputs an amplified signal; an adder that adds the amplified signal of the first variable gain amplifier and the amplified signal of the second variable gain amplifier and outputs a summed signal; and an adder that compares the summed signal and a reference voltage signal, and 2
and a control circuit that outputs a control signal for adjusting the gain of the first variable gain amplifier, the photo sensor circuit stabilizing the amplified signal of the first variable gain amplifier.
JP2426280A 1980-02-28 1980-02-28 Photo sensor circuit Expired JPS6026445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2426280A JPS6026445B2 (en) 1980-02-28 1980-02-28 Photo sensor circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2426280A JPS6026445B2 (en) 1980-02-28 1980-02-28 Photo sensor circuit

Publications (2)

Publication Number Publication Date
JPS56119807A JPS56119807A (en) 1981-09-19
JPS6026445B2 true JPS6026445B2 (en) 1985-06-24

Family

ID=12133315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2426280A Expired JPS6026445B2 (en) 1980-02-28 1980-02-28 Photo sensor circuit

Country Status (1)

Country Link
JP (1) JPS6026445B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593214A (en) * 1982-06-29 1984-01-09 Yaskawa Electric Mfg Co Ltd Rotary encoder
US4538063A (en) * 1983-01-05 1985-08-27 Dresser Industries, Inc. Photo transducer circuit for setting minimum and maximum current flow between power terminals
US4495821A (en) * 1983-01-31 1985-01-29 General Electric Company Magnetostrictive pressure detector
JPS59136621U (en) * 1983-03-01 1984-09-12 旭光学工業株式会社 Camera aperture amount detection device
JPS59210322A (en) * 1984-03-24 1984-11-29 Canon Inc Photoelectric position detection system

Also Published As

Publication number Publication date
JPS56119807A (en) 1981-09-19

Similar Documents

Publication Publication Date Title
US4730128A (en) Bias circuit for an avalanche photodiode
JP3421103B2 (en) Photodetection circuit using avalanche photodiode
US5138623A (en) Semiconductor laser control device
US5015836A (en) Source intensity adjustment apparatus for optical channel
US4649267A (en) Automatic gain control circuit for encoder
JPH0376428B2 (en)
JPH07321392A (en) Automatic temperature control circuit for laser diode and electro-optical signal conversion unit
JPS6026445B2 (en) Photo sensor circuit
US4710622A (en) Device for stabilizing photosensor output to varying temperature
JPS5952974B2 (en) Photo sensor circuit
JPS6112529B2 (en)
JPH0314244B2 (en)
EP0504974B1 (en) Electrical supply circuit, in particular for APDs
JPS5940643Y2 (en) photo sensor
JPS6326403B2 (en)
JPH0315859B2 (en)
JPS5845523A (en) Photometric circuit
JP2576414B2 (en) AC level detection circuit
JPS5931081B2 (en) Reference voltage source circuit
EP0508711B1 (en) Transistor direct-coupled amplifier
JPS6140323B2 (en)
JPS6140324B2 (en)
US4509020A (en) Push-pull amplifier
US6650605B1 (en) Apparatus for scanning optical recording media
JP2841743B2 (en) Light emitting and receiving circuit for optical sensor