JPS60263923A - Electrochromic display element - Google Patents

Electrochromic display element

Info

Publication number
JPS60263923A
JPS60263923A JP11987384A JP11987384A JPS60263923A JP S60263923 A JPS60263923 A JP S60263923A JP 11987384 A JP11987384 A JP 11987384A JP 11987384 A JP11987384 A JP 11987384A JP S60263923 A JPS60263923 A JP S60263923A
Authority
JP
Japan
Prior art keywords
layer
alumina
oxide hydrate
display element
sulfonated styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11987384A
Other languages
Japanese (ja)
Inventor
Atsuo Imai
今井 淳夫
Shigeru Matake
茂 真竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11987384A priority Critical patent/JPS60263923A/en
Publication of JPS60263923A publication Critical patent/JPS60263923A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1525Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material characterised by a particular ion transporting layer, e.g. electrolyte

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To realize lowering of drive voltage and speed-up of response and to prevent deterioration of function in a dry state by adding a sulfonated styrene polymer as a binder to a specified inorg. proton conductor powder to form a solid-state electrolyte layer. CONSTITUTION:A transparent electrode is attached to a transparent base made of glass or the like, and on this layer an electrochromic layer 4 made of, e.g., WO3, colorable, decolorable, or discolorable reversibly by electrochemical reduction and oxidation is formed. The intended electrochromic display element can be obtained by adding the polymer of sulfonated styrene expressed by the formula as a binder into an inorg. powder high in proton conductivity, selected from a hydronium-substd. type beta''-alumina and antimony oxide hydrate and tin oxide hydrate, and coating said layer with the coating soln. obtd. by above-mentioned way to form a solid-state electrolyte layer.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は電気化学的還元及び酸化によシ発色。[Detailed description of the invention] [Technical field of invention] This invention develops color by electrochemical reduction and oxidation.

消色或いは変色を行うことによシブイスプレイを行うい
わゆるエレクトロクロミック表示素子に関し、更に詳し
くはその固体電解質に関する。
The present invention relates to a so-called electrochromic display element that performs a dynamic display by decoloring or changing color, and more specifically relates to a solid electrolyte thereof.

〔発明の技術的誉景とその問題点〕[Technical honors of inventions and their problems]

電気化学的に酸化、還元を行うことによシ、可逆的に発
消色或いは変色を行うことを利用した表示素子であるエ
レクトロクロミックディスプレイ素子(ECD)は、視
覚依存性が少く、見やすい記憶性がある等の長所のため
期待されている。発消色或いは変色をさせる材料(EC
材料)としては種々のものが知られるが、HCDとして
は、これらEC材料を電気化学的に酸化或いは還元を行
うために、通常は、イオン導電性のみを有し、電子導電
性の小さい電解質材料をEC材料と接して配置する。こ
のような電解質は希硫酸、過塩素酸リチウムを溶解した
炭酸プロピレン等の液体を用いた例も知られるが、組立
ての容易さ、信頼性等を考慮すると固体であることが望
丈しい。才た固体電解質中の移動イオンとしては、EC
材料中での拡散の容易さ等を考慮するとプロトン(H)
が望ましい場合が多い。従来プロトン導電性固体電解質
としてli Z r OH+ M gFt + Ca 
Ft p S s Ot等の蒸着膜が知られている。こ
れらの材料は本来その中に構成要素として11+ を含
む必要はな(o2 イオン導電性或いは電子導電性或い
は絶縁性の材料とみなされているものである。これらが
H+を移送する機構は充分解明されているとは云い難い
が、微視的には多くの孔を□持った多孔質体として蒸着
され、蒸着工程中或いは蒸着後に周囲雰囲気に含まれる
水分を孔壁に吸着し、この吸着した水分によって十 H5の移送が可能になるものと考えられている。
Electrochromic display devices (ECDs) are display devices that reversibly change color through electrochemical oxidation and reduction, and have low visual dependence and easy-to-read memory. It is expected because of its merits such as: Materials that develop, fade or change color (EC
Various materials are known as HCD materials, but in order to electrochemically oxidize or reduce these EC materials, HCDs are usually made of electrolyte materials that have only ionic conductivity and low electronic conductivity. is placed in contact with the EC material. Examples of such an electrolyte using a liquid such as dilute sulfuric acid or propylene carbonate in which lithium perchlorate is dissolved are known, but in consideration of ease of assembly, reliability, etc., it is desirable to use a solid electrolyte. As a mobile ion in a solid electrolyte, EC
Considering the ease of diffusion in the material, protons (H)
is often desirable. As a conventional proton conductive solid electrolyte, li Z r OH + M gFt + Ca
Vapor deposited films such as Ft p S s Ot are known. These materials do not originally need to contain 11+ as a constituent element (O2 is considered to be an ionic conductive, electronic conductive, or insulating material.The mechanism by which these materials transport H+ has not been fully elucidated). Although it is difficult to say that it is deposited microscopically, it is deposited as a porous material with many pores, and during or after the deposition process, moisture contained in the surrounding atmosphere is adsorbed to the pore walls, and this adsorbed It is believed that moisture enables the transport of 10H5.

実際にこれらの蒸着膜を電解質としたECDを製作し、
動作させると、夏期の高湿度雰囲気では充分動作するが
、乾燥状態(例えば相対湿度10%以下)では短時間に
その能力を失う。恐らくは上述の吸着水分の離脱による
と考えられる。このように前述した蒸着膜(一般に習慣
的に誘電体膜と称されている)は乾燥状態でその能力が
低下し、逐には失われると云う欠点を有する。一方、ヒ
ドロニウム(HsO) 置換型βアルミナ等、無機結晶
のプロトン導電体が知られている。これらはその結晶構
造に水分子(H2O)を含むもので、室温での乾燥に対
しては安定であるが蒸着、スパッター等の技法によシ薄
膜にすることが出来ない。
We actually produced an ECD using these vapor deposited films as electrolytes,
When operated, it operates satisfactorily in a high humidity atmosphere during the summer, but loses its ability in a short period of time in dry conditions (for example, relative humidity of 10% or less). This is probably due to the detachment of the adsorbed moisture mentioned above. Thus, the above-mentioned vapor deposited film (commonly and customarily referred to as a dielectric film) has the disadvantage that its performance decreases and is eventually lost in a dry state. On the other hand, inorganic crystal proton conductors such as hydronium (HsO) substituted β-alumina are known. These contain water molecules (H2O) in their crystal structures, and are stable when dried at room temperature, but cannot be made into thin films by techniques such as vapor deposition and sputtering.

〔発明の目的〕[Purpose of the invention]

本発明は上記の如き乾燥状態においても充分機能する固
体模型のECD用プロトン導電性電解質を用いたエレク
トロクロミック表示素子を提供する事を目的とする。
An object of the present invention is to provide an electrochromic display element using a solid model proton conductive electrolyte for ECD that functions satisfactorily even in the dry state as described above.

〔発明の概要〕[Summary of the invention]

本発明は比較的高いプロトン導電性を有しながら従来膜
とすることが困難なためECDに利用することが困難で
あったヒドロニウム置換型βアルミナ、ヒドロニウム置
換型β′アルミナ、酸化アンチモン含水酸化スズ含水塩
等の無機材料をその導電性を大きく損するととな(EC
D用のプロトン導電性固体電解質膜として利用したエレ
クトロクロミック表示素子である。
The present invention can be applied to hydronium-substituted β-alumina, hydronium-substituted β'-alumina, and antimony oxide-containing hydrated tin oxide, which have relatively high proton conductivity but are difficult to use in ECD because they are difficult to form into conventional membranes. When inorganic materials such as hydrated salts lose their electrical conductivity (EC
This is an electrochromic display element used as a proton conductive solid electrolyte membrane for D.

これら含水塩は通常粉体の形で得られるが、このような
粉体をそのまま層状に成形しても結晶内部のプロトン導
電性と比較して小さな導電性しか得ることが出来ない。
These hydrated salts are usually obtained in the form of powder, but even if such powder is formed into a layer as it is, only a small electrical conductivity can be obtained compared to the proton electrical conductivity inside the crystal.

それはこのような粉体の集合体では各結晶粒間に充分な
接触は得られず、大きな空隙が存在するためである。こ
のような空隙をプロトン導電性材料で埋めることが出来
ればイオン導電性は向上する。この場合、そのプロトン
導電性は大なる程望ましいが、たとえ各結晶粒と較べ若
干その導電性は小さくとも、全く導電性を持たない場合
にくらべれば、相当な効果が期待できる。本発明はこの
ような空隙を埋め、且また粒体をよ上納金して機械的f
二も強く、プロトン導電性もあるバインダーを使用して
、バイブリドプロトン導電性膜を得ることをその骨子と
している。
This is because in such a powder aggregate, sufficient contact cannot be obtained between each crystal grain, and large voids are present. If such voids can be filled with a proton conductive material, ion conductivity will be improved. In this case, the higher the proton conductivity, the more desirable it is, but even if the conductivity is slightly lower than that of each crystal grain, a considerable effect can be expected compared to the case where it has no conductivity at all. The present invention is designed to fill such voids and to deposit the granules in a mechanical fusing process.
The main idea is to use a binder that is both strong and proton conductive to obtain a hybrid proton conductive membrane.

無機プロトン導電材料としては、ヒドロニウム置換型β
アルミナ、ヒドロニウム置換型β″アルミナ、含水酸化
アンチモン酸化スズ含水塩の少なくとも1種としたが、
プロトン導電性の高い含水結晶であれば、何を用いても
差支えない。一方バインダー樹脂としては種々の樹脂に
ついて試行したなおスチレンの一部がスルフォン酸化し
ていない場合も本発明の基本的主旨を損うことはなく、
適当な溶媒に溶解できる範囲であればポリマー鎖間に若
干の架橋重合があっても支障はない。
As an inorganic proton conductive material, hydronium-substituted β
At least one of alumina, hydronium-substituted β″ alumina, and hydrated antimony oxide and tin oxide hydrate was used,
Any hydrated crystal with high proton conductivity may be used. On the other hand, although various resins have been tried as the binder resin, even if some of the styrene is not oxidized with sulfone, the basic gist of the present invention is not impaired.
There is no problem even if there is some crosslinking polymerization between polymer chains as long as it can be dissolved in a suitable solvent.

前記スルフォン酸化スチレンポリマーは水その他の有極
性溶媒に溶解することが出来るため、溶液中にプロトン
導電性含水結晶の粉体を懸濁したく材料の上に塗布し乾
燥して用いる。この場合結晶粒とポリマーの接触を充分
にし、溶媒中に均一に分散せしめるため、分散剤、界面
活性剤等を添加することは、結晶粒、ポリマーの物性に
悪影響を及ぼさ々い限り支障はない。
Since the sulfonated styrene polymer can be dissolved in water or other polar solvents, a powder of proton conductive water-containing crystals is suspended in the solution, coated on the material, and dried. In this case, in order to ensure sufficient contact between the crystal grains and the polymer and to ensure uniform dispersion in the solvent, adding dispersants, surfactants, etc. is not a problem as long as it does not adversely affect the physical properties of the crystal grains or polymer. .

〔発明の効果〕〔Effect of the invention〕

本発明のハイグリッド膜を用いることによシ、スルフォ
ン酸化スチレンポリマー単独の場合よシもECDの駆動
電圧が低く、応答時間も早くすることが出来た。
By using the high grid membrane of the present invention, the driving voltage of the ECD was lower and the response time was faster than when using the sulfonated styrene polymer alone.

〔発明の実施例〕[Embodiments of the invention]

平均粒径15μmのMgO安定化Naβ″アルミナを濃
硫酸中に入れ240℃で40時間加熱し、大量の冷水中
に投入してH,0+置換型β′アルミナを得た。これを
水・洗後ボールミルで粉砕し、平均粒径0.9μmとし
た。この粉体32 fに対してスルフォン酸化スチレン
ポリマー2.51を加え、水100m/を加えてよく攪
拌し白色懸濁液を得た。この液をガラス基板(: I 
T ON!i、 WO,蒸着層(厚さ2000人)と層
状に重ねて設けた上に塗布し厚さ1.5μmの層を得た
MgO-stabilized Naβ' alumina with an average particle size of 15 μm was placed in concentrated sulfuric acid, heated at 240°C for 40 hours, and poured into a large amount of cold water to obtain H,0+ substituted β' alumina. It was then ground in a ball mill to give an average particle size of 0.9 μm.To 32 f of this powder, 2.5 l of sulfonated styrene polymer was added, and 100 m/m of water was added and thoroughly stirred to obtain a white suspension. This liquid was applied to a glass substrate (: I
T ON! i, WO, and a vapor-deposited layer (thickness: 2000) and coated on top to obtain a layer with a thickness of 1.5 μm.

この上に更にWO5層(厚さ2000A)を設け、最後
l二金500OAを蒸着した。
On top of this, a layer of 5 WO (thickness: 2000 Å) was further provided, and finally, 500 OA of gold was deposited.

一方、比較のためT(、O置換β′アルミナを用いス、
スルフォン酸化スチレンポリマーのみを用いて0.7μ
mの膜をWO5層間に設けた他は、実施例と同じ構成の
試料を用意した。
On the other hand, for comparison, T(,O-substituted β' alumina was used).
0.7μ using only sulfonated styrene polymer
A sample having the same configuration as the example was prepared, except that a film of m was provided between the WO5 layers.

これらC二重圧を引加してECDとしての特性をしらべ
た所、実施例は±2.5■で発消色し応答時間は150
m5ec、比較例は±3vで応答時間は500m5ec
であった。
When applying these C double pressures and examining the characteristics as an ECD, the example exhibited color development and fading within ±2.5 square meters, and the response time was 150 cm.
m5ec, comparative example is ±3v and response time is 500m5ec
Met.

il ) K、H,Sb、07 ・4H,0ヲ5 N 
O硝酸中でU時間処理してパイロクロア−型結晶のH8
bO,xH,0(x=l)を得た。これを充分水洗し九
後ボールミル粉砕を行い粒径0.9μmの粉末を得た。
il) K, H, Sb, 07 ・4H, 0wo5 N
After treatment in O nitric acid for U hours, H8 of pyrochlore-type crystals was obtained.
bO,xH,0 (x=l) was obtained. This was thoroughly washed with water and then pulverized in a ball mill to obtain a powder with a particle size of 0.9 μm.

これを実施例1のβ“アルミナと同様にスルフォン酸化
スチレンポリマーを溶解した水に懸濁した。混合比は実
施例1と同じとした。このようにして試作したBCDは
±2.7Vで発消色し応答時間Lt 200 m se
cであった。
This was suspended in water in which a sulfonated styrene polymer was dissolved in the same manner as β" alumina in Example 1. The mixing ratio was the same as in Example 1. Discolored response time Lt 200 mse
It was c.

Claims (1)

【特許請求の範囲】 透明電極上に電気化学的還元、酸化≦二よシ可逆的に発
色、消色或いは変色をする層を設け、この上にヒドロニ
ウム置換型βアルミナ、ヒドロニウム置換型β′アルミ
ナ、酸化アンチモン含水塩(s b。 0、.4H20) 、酸化スズ含水塩(8nO,・3H
,0)の少なくとも1種からなる無機プロトン導電体の
粉末にスルフォン酸化スチレン重合体をノくインダーと
して加えた層を設けたことを特徴とするエレクトロクロ
ミック表示素子。
[Scope of Claims] A layer that reversibly develops, decolors, or changes color when electrochemical reduction or oxidation≦2 is provided on a transparent electrode, and a layer of hydronium-substituted β-alumina or hydronium-substituted β'-alumina is provided on this layer. , antimony oxide hydrate (s b. 0, .4H20), tin oxide hydrate (8nO, .3H
An electrochromic display element characterized in that a layer is provided in which a sulfonated styrene polymer is added as an inder to a powder of an inorganic proton conductor consisting of at least one of the following.
JP11987384A 1984-06-13 1984-06-13 Electrochromic display element Pending JPS60263923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11987384A JPS60263923A (en) 1984-06-13 1984-06-13 Electrochromic display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11987384A JPS60263923A (en) 1984-06-13 1984-06-13 Electrochromic display element

Publications (1)

Publication Number Publication Date
JPS60263923A true JPS60263923A (en) 1985-12-27

Family

ID=14772363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11987384A Pending JPS60263923A (en) 1984-06-13 1984-06-13 Electrochromic display element

Country Status (1)

Country Link
JP (1) JPS60263923A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0731519A2 (en) * 1995-03-07 1996-09-11 Matsushita Electric Industrial Co., Ltd. Protonic conductor and electrochemical device using the same
EP0818841A1 (en) * 1996-07-09 1998-01-14 Automobiles Peugeot Protonically conducting material, its use for manufacturing a protonically conducting membrane for fuel cells and supercapacitors
EP1223632A3 (en) * 2001-01-09 2004-11-24 National Institute of Advanced Industrial Science and Technology Proton-conductive membrane, method for producting the same, and fuel cell using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0731519A2 (en) * 1995-03-07 1996-09-11 Matsushita Electric Industrial Co., Ltd. Protonic conductor and electrochemical device using the same
EP0731519A3 (en) * 1995-03-07 1996-10-23 Matsushita Electric Ind Co Ltd
US5682261A (en) * 1995-03-07 1997-10-28 Matsushita Electric Industrial Co., Ltd. Protonic conductor and electrochemical element using the same
EP0818841A1 (en) * 1996-07-09 1998-01-14 Automobiles Peugeot Protonically conducting material, its use for manufacturing a protonically conducting membrane for fuel cells and supercapacitors
FR2751119A1 (en) * 1996-07-09 1998-01-16 Commissariat Energie Atomique PROTONIC CONDUCTION MATERIAL, USE THEREOF FOR THE PRODUCTION OF A PROTONIC CONDUCTION MEMBRANE FOR FUEL CELLS AND SUPERCAPACITIES
EP1223632A3 (en) * 2001-01-09 2004-11-24 National Institute of Advanced Industrial Science and Technology Proton-conductive membrane, method for producting the same, and fuel cell using the same

Similar Documents

Publication Publication Date Title
US4193670A (en) Electrochromic devices having protective interlayers
Chemseddine et al. Electrochromism of colloidal tungsten oxide
US4573768A (en) Electrochromic devices
JPH07505965A (en) Electrochromic structures and methods
US5028124A (en) Thin film electrochromic displays
US5210638A (en) Electrolyte material and light modulation devices using the same
JPS58193527A (en) Electrochromic display and manufacture thereof
US4225216A (en) Tungsten niobate electrochromic device
JPS6327692B2 (en)
JPS60263923A (en) Electrochromic display element
JP2003255400A (en) Electrochromic device
KR850000135B1 (en) Electrochromic display device with improved erasing characteristic
Su et al. An all-solid-state electrochromic display device of prussian blue and WO3 particulate film with a PMMA gel electrolyte
JP2003248242A (en) Electrochromic device
JP2003315840A (en) Electrochromic display
US2930830A (en) Solid-state cell and battery
Zhang et al. Advances in the Study of Gel Polymer Electrolytes in Electrochromic Devices
JPH0145895B2 (en)
JPS61223724A (en) Electrochromic display element
JP2005181578A (en) Electrochromic device
JP2003315843A (en) Electrochromic display
JP2003270672A (en) Electrochromic device
JP2003248241A (en) Electrochromic device
JPS61239227A (en) Electrochromic element
EP0229438A1 (en) Electrochromic devices using solid electrolytes