JPS60263046A - Control device for air conditioner - Google Patents

Control device for air conditioner

Info

Publication number
JPS60263046A
JPS60263046A JP59117675A JP11767584A JPS60263046A JP S60263046 A JPS60263046 A JP S60263046A JP 59117675 A JP59117675 A JP 59117675A JP 11767584 A JP11767584 A JP 11767584A JP S60263046 A JPS60263046 A JP S60263046A
Authority
JP
Japan
Prior art keywords
temperature
humidity
control
vehicle
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59117675A
Other languages
Japanese (ja)
Inventor
Akihiko Kono
昭彦 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59117675A priority Critical patent/JPS60263046A/en
Publication of JPS60263046A publication Critical patent/JPS60263046A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3207Control means therefor for minimizing the humidity of the air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To obtain the control device of air conditioner capable of effecting more comfortable air-conditioning service by a method wherein the follow-up control of temperature and humidity in a vehicle is effected so that the temperature and humidity are controlled within predetermined ranges at all times. CONSTITUTION:When the control is started, initial setting is effected at first and, thereafter, the set point of the temperature in the vehicle is detected. Next, all detecting temperatures of a plurality of temperature sensors 11 are measured to compute the average value thereof. Subsequently, the humidity is measured by a humidity sensor 16 and an OR condition, whether the measured temperature is higher than 25 deg.C and the measured humidity is higher than 70% RH, is detected. When the condition is established, the operations of a compressor 10 and a fan are switched from weak into strong. When the condition is not established, the operating condition, strong or weak, is set based on the decision of combined temperature and humidity. These controls are effected at every given unit times to correct the temperature and humidity in the vehicle. The series of operations are carried out by a CPU13E and the control signals of strong and weak instructions are outputted from a DO13C to equipments to be controlled, such as the compressor 10 or the like.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は空気調和制御装置に係り、特に車両用の空気調
和装置に於いて偏差制御やパターン制御等の逐次制御を
効率良く行なうために使用されるものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an air conditioning control device, and in particular is used to efficiently perform sequential control such as deviation control and pattern control in an air conditioning device for a vehicle. It is something that

〔発明の技術的背碩〕[Technical background of the invention]

従来から車両用の空気調和装置は、特に夏季や冬季等の
如く寒暖の差の大きい季節に於いて、それぞれ一度、湿
度を適度に補正づることにより乗客に快適な居住性を提
供するサービス装置として用いられている。
Traditionally, air conditioners for vehicles have been used as service devices that provide comfortable living for passengers by appropriately correcting humidity, especially in seasons with large temperature differences such as summer and winter. It is used.

第8図は従来から周知の車両用空気調和IIの概略の構
成図である。なお以下の図面の説明において同一要素は
同一符号で示づ一0図に示す如く、車両用の空気調和装
置は冷房用の冷房ユニツ1−1と、暖房用のシーズ線ヒ
ータ12と、室温検知用の温度センサ11と、外部から
の制御信号を制御信号入力端14から受けて空気調和シ
ステムを一括1IItIlする空調制御部13から構成
される装置冷房ユニット1はヒートポンプ式の冷房機能
を有し、フロン22 (CHCj! F2)等の冷媒を
用いて、液体が気化する時の放熱作用による一般的な冷
凍サイクルを利用して冷房を行なう。この冷房ユニット
1は室外ニュット2と室内ユニット3に分かれ、それぞ
れを中継バルブ4で中継される。
FIG. 8 is a schematic configuration diagram of a conventionally well-known vehicle air conditioner II. In the following description of the drawings, the same elements are indicated by the same reference numerals.As shown in Figure 10, the air conditioner for a vehicle includes a cooling unit 1-1 for cooling, a sheathed wire heater 12 for heating, and a room temperature sensor. The device cooling unit 1 is composed of a temperature sensor 11 for use in the air conditioning system, and an air conditioning control section 13 that receives external control signals from a control signal input terminal 14 and controls the air conditioning system all at once, and has a heat pump type cooling function. Cooling is performed by using a refrigerant such as Freon 22 (CHCj! F2) and a general refrigeration cycle based on the heat dissipation effect when liquid is vaporized. This cooling unit 1 is divided into an outdoor unit 2 and an indoor unit 3, each of which is relayed by a relay valve 4.

なお、室外ユニット2内には室外空気熱交換器5と室外
ファン7が設置される。一方、室内ユニット3内には室
内空気熱交換器6、コンプレッサ10、室内ファン8、
送風ファン9等が設置される。ちなみに、室外空気熱交
換器5、室内空気熱交換器6及びコンプレッサ10はル
ープ状に接続され、この中を冷媒が循環する。
Note that an outdoor air heat exchanger 5 and an outdoor fan 7 are installed inside the outdoor unit 2. On the other hand, inside the indoor unit 3, an indoor air heat exchanger 6, a compressor 10, an indoor fan 8,
A blower fan 9 etc. is installed. Incidentally, the outdoor air heat exchanger 5, the indoor air heat exchanger 6, and the compressor 10 are connected in a loop, through which the refrigerant circulates.

かかる構成に於いて、コンプレッサ10が動作すると冷
媒ガスは圧縮され、圧力が上昇すると共に温度も上昇づ
る。高温高圧になった冷媒ガスは室外空気熱交換器5に
入り、外気により冷却され凝縮液化し高圧の液体となる
。続いて、冷媒は球状乾燥剤を充填した図示しないドラ
イヤ部を通過し、液中の水分を除去される。更に、冷媒
は減圧され断熱膨張する。断熱膨張と共に冷媒の温度は
下がり、低圧低温の液体となって室内空気熱交換器6に
入る。ここで、冷媒液は室内の熱を吸収して蒸発し冷却
作用を行なう。冷媒はここで再びガス化し、コンプレッ
サ10により圧縮され、室外空気熱交換器5に送出され
、同様の作用により冷却を繰返す。なお、室内の空気が
室内空気熱交換器6を通過する時、空気中に含まれる水
分が凝縮して水滴となる為に除湿も併せて行なわれる。
In this configuration, when the compressor 10 operates, the refrigerant gas is compressed, and as the pressure rises, the temperature also rises. The high-temperature, high-pressure refrigerant gas enters the outdoor air heat exchanger 5, where it is cooled by the outside air, condenses, and liquefies to become a high-pressure liquid. Subsequently, the refrigerant passes through a dryer section (not shown) filled with a spherical desiccant, and moisture in the liquid is removed. Furthermore, the refrigerant is depressurized and expands adiabatically. The temperature of the refrigerant decreases with the adiabatic expansion, and enters the indoor air heat exchanger 6 as a low-pressure, low-temperature liquid. Here, the refrigerant liquid absorbs indoor heat and evaporates to perform a cooling effect. Here, the refrigerant is gasified again, compressed by the compressor 10, and sent to the outdoor air heat exchanger 5, where cooling is repeated by the same action. Note that when indoor air passes through the indoor air heat exchanger 6, moisture contained in the air condenses into water droplets, so that dehumidification is also performed.

ちなみに、室内ファン7、室内ファン8はそれぞれ室内
空気熱交換器6、室外空気熱交換器5による熱交換を効
率良く行なわせる為の強制通風用のもので、送風ファン
9は冷却された空気を室内に送風する。
Incidentally, the indoor fan 7 and the indoor fan 8 are for forced ventilation to efficiently exchange heat by the indoor air heat exchanger 6 and the outdoor air heat exchanger 5, respectively, and the ventilation fan 9 is for blowing cooled air. Blow air into the room.

一方冬季に於ける暖房は、乗客の座席の下などに配置さ
れたシーズ線ヒータ12により行なう。
On the other hand, heating in winter is performed by a sheathed wire heater 12 placed under the passenger's seat.

さて、空調制御部13は制御信号入力端14から入力さ
れる乗務員からの冷w1房の起動・停止指令、冷暖房の
強弱指令、冷房時の送風ファンの起動・停止指令、冷房
時の除湿指令等を受け、それぞれの指令に応じて冷房ユ
ニット1内の各装置の起動・停止fIllImをシーケ
ンシャルに実施したり、シーズ線ヒータ12の加圧・非
加圧や加圧・非加圧の数mの切換えを実施している。
Now, the air conditioning control unit 13 receives commands from the crew to start/stop the cooling w1 room, strength commands for heating and cooling, commands to start/stop the ventilation fan during cooling, dehumidification commands during cooling, etc. In response to each command, each device in the cooling unit 1 is started and stopped fIllIm sequentially, and the sheathed wire heater 12 is pressurized or unpressurized, or pressurized or unpressurized several meters long. Switching is being carried out.

上述の如き空気調和装置は、手動に1目標温度を設定す
ると目標温度に達するまでは定格運転を続け、目標温度
を越えると停止状態となり、その後は一定の湿度差が生
じた時点で再起動したり出力の切換を行ったりりる。こ
の場合、室内温度の検出は温度センサ11によって実施
する。温度センサ11としては、バイメタル等を用いた
WfUスイッチ形式のものが主に用いられるが、その出
力状態はオンまたはオフの2値のみである。
When an air conditioner such as the one described above is manually set to a target temperature, it continues to operate at the rated temperature until the target temperature is reached, stops when the target temperature is exceeded, and then restarts when a certain humidity difference occurs. or change the output. In this case, the indoor temperature is detected by the temperature sensor 11. As the temperature sensor 11, a WfU switch type sensor using a bimetal or the like is mainly used, but its output state is only two values, on or off.

ところが、設定口1111度に対して空気調和装置を起
動・停止制御して追従させる制御方式では、オン・オフ
時のヒステリシス幅の差が大きく、室内状態が常に一定
でない車両への適用に際しては必ずしも最適な制御方法
とは言えない。この為、一般にはバックアップとして車
両?i!i重による乗車率を用いて空気調和装置の起動
・停止タイミングを調整する手法が用いられている。こ
の場合、車両荷重の検知には車両の台車に取付けられた
専用の応荷重検知装置が用いられる。この応荷重検知装
置としては、車両が一定荷重に達した事を検出して検知
指令を外部に出力するスイッチ構成のものや、荷重に応
じて抵抗値を変化させる形式のものが主に用いられてい
る。
However, with the control method that starts and stops the air conditioner to follow the setting of 1111 degrees, there is a large difference in the hysteresis width between on and off, and it is not always possible to apply it to vehicles where the indoor conditions are not constant. This cannot be said to be the optimal control method. For this reason, a vehicle is generally used as a backup? i! A method is used in which the start/stop timing of an air conditioner is adjusted using the occupancy rate based on the i weight. In this case, a dedicated variable load detection device attached to the bogie of the vehicle is used to detect the vehicle load. This variable load detection device is mainly used with a switch configuration that detects when the vehicle has reached a certain load and outputs a detection command to the outside, or with a type that changes the resistance value depending on the load. ing.

〔背景技術の問題点〕[Problems with background technology]

上記の如ぎ方式の車両用空気調和装若に於いて、空調制
御部13は機構的な部分を制御ループに含み、乗務員か
らの外部指令に基いて冷・@房装置をシーケンシトルに
制御づる礪能し持たない。つまり、制御は各部の装置の
起動・停止の最低限の動作、即ち各漂器の破損を防ぐ程
度の動作にしか及ばない。また、乗務員はこれらの指令
入力を空気調和すべき客車とは別の乗務fivで行なう
為、設定操作を精度良く行なう事は難しく、また個人差
による設定誤差も加わる為、実際の客室の環境に適応し
た操作は極めて困難である。
In the above-mentioned vehicle air conditioning system, the air conditioning control unit 13 includes a mechanical part in the control loop and sequentially controls the cooling/air conditioning system based on external commands from the crew. I can't hold it. In other words, the control only extends to the minimum operations of starting and stopping each part of the device, that is, the operations to prevent damage to each drifting vessel. In addition, since the crew inputs these commands in a separate crew from the passenger car that is to be air-conditioned, it is difficult to perform the setting operations with high precision.Also, setting errors due to individual differences are added, so it may not be possible to match the actual cabin environment. Adapted operation is extremely difficult.

しかも、設定温度に対づる空気調和制mは申両の一部の
温度を検出してこれが予め設定した温度以上かまたは以
)かを判定して冷・暖房!置を起動・停止する事により
行なう為、動作応答、ヒステリシス、車両内の温度分布
、湿度電着、ドア開閉の度合等による車両内の温・湿度
の変移にきめ細く対応した制御はほとんど不可能である
。更に、応荷重検知装置を用いた乗車率検出に暴く補正
も、一定の乗車率に達したという情報のみに基いている
為、空気調和υl111情報として必ずしも適している
とは言えなかった。
Moreover, the air conditioning system based on the set temperature detects the temperature of a part of the room and determines whether it is above or below the preset temperature and cools or heats it! Since this is done by starting and stopping the system, it is almost impossible to control the temperature and humidity in the vehicle in a finely tuned manner due to operational response, hysteresis, temperature distribution in the vehicle, humidity electrodeposition, degree of door opening and closing, etc. It is. Furthermore, since the correction that exposes the detection of the occupancy rate using a variable load detection device is based only on the information that a certain occupancy rate has been reached, it cannot necessarily be said to be suitable as air conditioning υl111 information.

以上の理由から、従来装置では冷房時の冷房不足、除湿
不足または冷え過ぎ、暖房時の暖房不足また4、を暖た
まり過ぎ等の問題が多く発生している。
For the above reasons, conventional devices often have problems such as insufficient cooling during cooling, insufficient dehumidification or too much cooling, insufficient heating during heating, or too much heating.

また、制御系自体が必ずしも最適なものとは言えないム
、無駄や損失が多く省力化運転が困難であるという問題
もあった。
Further, there are also problems in that the control system itself is not necessarily optimal, and there is a lot of waste and loss, making labor-saving operation difficult.

(発明の目的) 上記の従来技術の欠点を解消するため本発明は、乗車率
に対応した最適lll111iIl、温度・湿度に対応
した最適制御、温度・湿度分布または変移に対応した最
適制御、そのときの状態と空気調和の効率を考慮したR
過制御を自動判別し、乗務員を中間に介在する事なしに
車両に対する最適な空気調和を可能ならしめた空気調和
制御装置を提供するためにある。
(Object of the Invention) In order to eliminate the drawbacks of the above-mentioned prior art, the present invention provides optimal control corresponding to the occupancy rate, optimal control corresponding to temperature and humidity, optimal control corresponding to temperature and humidity distribution or change, and the like. R, which takes into account the state of
To provide an air conditioning control device that automatically determines overcontrol and enables optimal air conditioning for a vehicle without involving a crew member.

〔発明の概要〕[Summary of the invention]

上記の目的を達成する為に本発明は、暖房機能及び冷房
機能を有づる能力可変の空気調和手段と、空気調和対象
学内(車両内)の各部の温度や湿度を検出するセンサ手
段と、所望の空気調和温度を設定する設定手段と、セン
サ手段及び設定手段からの信号を取り込み、センサ信号
と設定信号の偏差、センサ信号の分布、各信号の時間的
な@差に基いて予め設定されている制御パターンに対応
した制御対象及び制御量を演算する演算手段と、演算手
段からの制御対象信号及び制御量に暴いて空気調和手段
の機能選択及び能力切換を行なう制御手段とを備える空
気調和制御装置を提供するものである。
In order to achieve the above object, the present invention provides an air conditioning means with variable capacity having a heating function and an air conditioning function, a sensor means for detecting the temperature and humidity of each part of the air-conditioned school (inside the vehicle), and a desired air conditioner. A setting means for setting the air conditioning temperature of the sensor means and a signal from the setting means are taken in, and the temperature is set in advance based on the deviation between the sensor signal and the setting signal, the distribution of the sensor signal, and the temporal @ difference of each signal. An air conditioning control comprising: a calculation means for calculating a control object and a controlled amount corresponding to a control pattern; and a control means for selecting a function and switching the capacity of an air conditioning means based on the control object signal and control amount from the calculation means. It provides equipment.

(発明の実施例) 以下、添付図面の第1図乃至第7図を参照しながら本発
明の詳細な説明する。
(Embodiments of the Invention) The present invention will be described in detail below with reference to FIGS. 1 to 7 of the accompanying drawings.

第1図は一実施例に係る空気調和制御装置の概略の構成
図である。図に示す如く、センサ入力インターフェース
(以下、SEIと称する)131には複数個の温度セン
サ11及び湿度センサ16が接続され、車両内の各部の
温度・湿度をアナログ値で選択して取り込み、レベル交
換した後、絶縁してディジタル量に変換する。プロセッ
サ(以下、CPUと称すル> 13EG、tSE r 
131カラ得られるディジタル化された数値を測定した
り、各種の数値油筒や選択、入出力制御を行なう。
FIG. 1 is a schematic configuration diagram of an air conditioning control device according to an embodiment. As shown in the figure, a plurality of temperature sensors 11 and humidity sensors 16 are connected to a sensor input interface (hereinafter referred to as SEI) 131, which selects and inputs the temperature and humidity of each part of the vehicle in analog values, and levels After replacing it, it is insulated and converted into a digital quantity. Processor (hereinafter referred to as CPU)
It measures the 131-karat digitized numerical value, performs various numerical oil cylinder selections, and input/output control.

ウォッチドッグタイマ(以下、WDTと称づる)13G
はCPU13E内で処理されるプログラムの暴走の監視
を行なう。ディジタル入力インターフェース(以下、D
Iと称する)13Dは制御信号入力端14からの制御信
号入力を受けレベル交換や絶縁等の処理をし、CPU1
3Eにデータを与える。ディジタル出力インターフェー
ス(以下、Doと称する。)13C1,tCPUl 3
Eからの制御指令を外部に送出する。ドライバ(g、下
、ORと称する)13BはD1130からの指令を絶縁
しレベル交換して、冷房ユニット1内の被制御対象機器
やシーズ線ヒータ12を動作させる。ランダムアクセス
メモリ(以下、RAMと称する)13FはCPU13E
で処理された各種情報を記憶しておく。リードオンメモ
リ(以下、ROMと称する)13HはCPU13Eが演
算を実行する為の各種パターンデータや演鐸手続き等を
記憶している。停電検知器(以下、LVDと称する)1
3Aは電源15のレベルを検出し、このレベルが一定値
以下の時に停電としてこれを検知する。
Watchdog timer (hereinafter referred to as WDT) 13G
monitors the runaway of programs processed within the CPU 13E. Digital input interface (hereinafter referred to as D
(referred to as I) 13D receives the control signal input from the control signal input terminal 14 and performs processing such as level exchange and insulation.
Give data to 3E. Digital output interface (hereinafter referred to as Do) 13C1, tCPUl 3
Sends control commands from E to the outside. The driver (referred to as "g" and "OR") 13B insulates the command from the D1130, exchanges the level, and operates the controlled equipment in the cooling unit 1 and the sheathed wire heater 12. Random access memory (hereinafter referred to as RAM) 13F is the CPU 13E
Stores various information processed in . A read-on memory (hereinafter referred to as ROM) 13H stores various pattern data, entaku procedures, etc. for the CPU 13E to execute calculations. Power outage detector (hereinafter referred to as LVD) 1
3A detects the level of the power supply 15, and when this level is below a certain value, it is detected as a power outage.

次に第1図に示す実施例の作用を説明する。車両の各部
に配置された温度センサ11と湿度センサ16で検知さ
れたrQ度と湿度は、それに等価なアナグロIf(例え
ばI!!mM等)に変換され5E1131に入力される
Next, the operation of the embodiment shown in FIG. 1 will be explained. The rQ degree and humidity detected by the temperature sensor 11 and humidity sensor 16 placed in each part of the vehicle are converted into equivalent analog If (for example, I!!mM, etc.) and input to the 5E1131.

ちなみに、温度センサ11は一般的に温度変化のより大
きな所(例えば車両のドア付近、車両中央の上部及び底
部、特に冷房装置に於いては冷気送風口付近、冷気リタ
ーン口付近)に配置するのが望ましく、湿度センサ16
は車両の室内中央最高部に配置するのが望ましい。
By the way, the temperature sensor 11 is generally placed in places where temperature changes are greater (for example, near the door of the vehicle, at the top and bottom of the center of the vehicle, especially in the vicinity of the cold air outlet or the cold air return opening in an air conditioner). It is desirable that the humidity sensor 16
It is desirable to place it at the highest point in the center of the vehicle's interior.

5E1131に入力された温度センサ11および湿度セ
ンサ16からの信号はここで適正なレベルに変換され、
補正を加えられ、更に絶縁されてCPU13Eに入力さ
れる。この時、CPU13Eは複数のセンサ11.16
をS[[131を介して順次スキャンニングし、それぞ
れの値を読み取る。この様にしてCPU13Eに読み取
られた温、湿度センサ11.16からの温度・湿度に対
応した電気量は、一定サンプリング時間当りのデータと
して扱われる。
The signals from the temperature sensor 11 and humidity sensor 16 input to the 5E1131 are converted to appropriate levels here,
The signal is corrected, further insulated, and input to the CPU 13E. At this time, the CPU 13E uses the plurality of sensors 11.16.
is sequentially scanned through S[[131 and the respective values are read. The electrical quantities corresponding to the temperature and humidity from the temperature and humidity sensors 11 and 16 read by the CPU 13E in this manner are treated as data per fixed sampling time.

次に、外部から制御信号入力端14を通じて冷暖房の起
動又は停止及び出力の強弱等の操作指令を受けると、こ
れらの指令はD113Dに入力される。D113Dはこ
れらの制御信号を適正なレベルに変換すると共に絶縁し
てCPU13E葉のデータを生成する。このD113D
には、別に電源15からの電源電圧が設定レベル以上の
電源電圧であるか否かを判別しているLVD13Aの出
力が与えられている。これは、瞬時停電や停電等で電源
15にレベルドロップが生じて設定電圧以下となった場
合、この事を検知してこの情報をCPU13Eに取り込
む為である。このLVD13Aからの電源15の電圧低
下に関する情報は、特に瞬時停電後の再起動に当って、
コンプレッサ10の破損を防ぐ為の起動時間管理を行な
うべく、タイミング信号の生成用として用いられる。
Next, when operation commands such as starting or stopping the air conditioning and the strength of the output are received from the outside through the control signal input terminal 14, these commands are input to the D113D. The D113D converts these control signals to appropriate levels and isolates them to generate data for the CPU 13E. This D113D
In addition, the output of the LVD 13A, which determines whether or not the power supply voltage from the power supply 15 is equal to or higher than a set level, is provided. This is to detect when a level drop occurs in the power supply 15 and become below the set voltage due to a momentary power outage or a power outage, etc., and this information is taken into the CPU 13E. This information regarding the voltage drop in the power supply 15 from the LVD 13A is especially useful when restarting after a momentary power outage.
It is used to generate a timing signal to manage startup time to prevent damage to the compressor 10.

上述のように入力された各種のw制御指令、温度センサ
11及び湿度センサ16の各検出値に基いてCPU13
Eで最適な制御パターンを演算算出し、その結果をDO
13Cを介して制御信号としてDR13Bに送出する。
Based on the various w control commands inputted as described above and the detected values of the temperature sensor 11 and the humidity sensor 16, the CPU 13
Calculate the optimal control pattern with E, and send the result to DO.
It is sent to the DR 13B as a control signal via the DR 13C.

DR13Bはこの制御信号を絶縁すると共にレベル変換
し、冷房ユニット1内の被制御対象機器やシーズ線ヒー
タ12を個別に制御する。この場合、CPU13Eでの
演算に必要な変換データ、運転パターンはROM131
−1にあらかじめ記憶させておく。
The DR 13B insulates and converts the level of this control signal, and individually controls the controlled equipment and the sheathed wire heater 12 in the cooling unit 1. In this case, the conversion data and operation pattern necessary for calculation by the CPU 13E are stored in the ROM 131.
-1 in advance.

一方、RAM13FはCPU13Eが演算した途中デー
タ等の一時的なデータ保管に用いる。なお、CPU13
Eによる一連のプログラムの演算実行に際して、プログ
ラム暴走を監視する為にWDT13Gが用いられる。
On the other hand, the RAM 13F is used for temporary data storage such as intermediate data calculated by the CPU 13E. In addition, CPU13
When E executes a series of program operations, the WDT 13G is used to monitor program runaway.

ここで、第1図に示す実施例の!lJm方式に於tプる
作用的な特徴に関して説明する。従来の如き設定温度の
一定点を基準とした制御対象機器のオン・オフ制御と違
って、本実施例では複数の温度センサ11や湿度センサ
16からの情報を扱えるばかりでなく、温、湿度センサ
11.16からの情報変化をリニアにしかも早いサンプ
リング周期で処理出来る事から、実際の車内環境に常に
合った追従制御が可能である。また、湿度状態や外気変
動に対しても、ハード的には温、湿度センサ11゜16
の追加のみで演む事から、体感温度に近い制御をソフト
ウェアの変更のみで実施可能である。
Here, the example shown in FIG. The functional features of the lJm method will be explained. Unlike conventional on/off control of controlled devices based on a fixed point of set temperature, this embodiment not only handles information from multiple temperature sensors 11 and humidity sensors 16, but also handles information from multiple temperature and humidity sensors. Since changes in information from 11.16 can be processed linearly and at a fast sampling period, follow-up control that always matches the actual environment inside the vehicle is possible. In addition, temperature and humidity sensors 11° and 16
Since it is possible to control the temperature close to the sensible temperature only by changing the software.

更に、冷房ユニット1の送風ファン9、コンプレッサ1
0等を現状に合わせて独立に出力切換すると共に、これ
らを組み合わせる事によってより効率的な補正追従制御
を実施する事が出来る。
Furthermore, the air blower fan 9 of the cooling unit 1 and the compressor 1
By independently switching the output of 0, etc. according to the current situation, and by combining these, more efficient correction follow-up control can be performed.

上述の作用を総合しで占える第1図に示す実施例の主な
作用は、数値制御に適したマイクロプロセッサを用いて
偏差比例制御を行なう串により、各ファン7.8.9の
オン・オフ及びそれぞれの強弱、コンプレッサ10の起
動・停止、シーズ線ヒータ12のオン・オフを効果的に
組み合わせ、時間経過に対する温度変化に対応して各部
の機器を効率良く制御11°るところにある。
The main function of the embodiment shown in FIG. 1, which combines the above-mentioned functions, is to turn on and off each fan 7, 8, and 9 by means of a skewer that performs deviation proportional control using a microprocessor suitable for numerical control. By effectively combining the respective strengths, starting and stopping the compressor 10, and turning on and off the sheathed wire heater 12, the equipment of each part can be efficiently controlled in response to temperature changes over time.

ところで、第1図に示す実施例に於いては、一度の設定
値との偏差を少なくする為に偏差に比例した結果をフィ
ードバックし、この偏差を積分し設定点が安定となる様
に主として比例積分制御(PIilllll)を行なう
。しかし実際には偏差を時間要素で積分する為に生じる
安定時間の長さ、つまり追従スピードの早さを補償する
ための微分回路を追加した比例・積分・微分制御(PI
D制御)をソフトウェア、ハードウェアの両面に用いた
制御法を実施している。
By the way, in the embodiment shown in Fig. 1, in order to reduce the deviation from the set point at one time, a result proportional to the deviation is fed back, and this deviation is integrated to stabilize the set point. Integral control (PIllllll) is performed. However, in reality, proportional-integral-derivative control (PI) is used that adds a differentiator circuit to compensate for the length of the stabilization time that occurs when the deviation is integrated over the time element, that is, the fast tracking speed.
We are implementing a control method that uses D control) on both software and hardware.

更に、冷房ユニット1内の各機器やシーズ線ヒ−タ12
のそれぞれの運転を制御パターン化することにより、C
P(J13Eを含むマイクロプロセッサの特徴を十分に
話尾し、ロスタイミングや無駄な機器運転を極力省いた
効率的な運転が可能である。
Furthermore, each device in the cooling unit 1 and the sheathed wire heater 12
By creating a control pattern for each operation of C.
The characteristics of microprocessors, including P (J13E), will be fully discussed, and efficient operation will be possible by eliminating lost timing and unnecessary equipment operation as much as possible.

一方、複数の温、湿度セン#J11,16からの入力信
号に応じ、温度・湿度の変移や分布を正確に把握スると
共に各機器の定格コントロールを組み合わせることによ
って、より正確な制御を可能としている。
On the other hand, by accurately grasping the changes and distribution of temperature and humidity according to the input signals from multiple temperature and humidity sensors #J11 and #J16, and by combining the rated control of each device, more accurate control is possible. There is.

また、第1図に示す実施例の従来に無い利点として挙げ
られるのは、乗車率に対する補正制御である。これは、
車外温度に対する設定温度を乗車率に応じて補正制御す
るもので、仮に標準束Φ率で車内温度が一定以上になっ
た場合、第3図の設定温度パターン図に示づ一様に、設
定温度も上背させる事により温度差による乗降の際の湿
度ショックを防止りる様な1tlJIlも可能となる。
Another advantage of the embodiment shown in FIG. 1 that is not found in the prior art is the correction control for the occupancy rate. this is,
This system corrects and controls the set temperature relative to the temperature outside the vehicle according to the occupancy rate, and if the temperature inside the vehicle exceeds a certain level at the standard flux Φ rate, the set temperature will be adjusted uniformly as shown in the set temperature pattern diagram in Figure 3. By raising the back of the vehicle, it is also possible to prevent humidity shock when getting on and off due to temperature differences.

この様なパターン運転に於いても、パターン自体の補正
変更で設定値を最適に選択する事が出来る。
Even in such pattern operation, the setting value can be optimally selected by changing the correction of the pattern itself.

一方、乗車率に対づる適正制御は、車内温度と設定温度
の差や時間に対する温度変化m等から乗車率を算出して
、第4図の制御特性図に示す如き標準動作時の動作モー
ドと第5図の制御特性図に示す如き満車時の動作モード
を切換えて、乗車率に対応した空気調和装置の定格切換
えを行なう事により実施する。
On the other hand, appropriate control of the occupancy rate involves calculating the occupancy rate from the difference between the interior temperature and the set temperature, the temperature change m over time, etc., and adjusting the operating mode during standard operation as shown in the control characteristic diagram in Figure 4. This is carried out by switching the operating mode when the vehicle is full as shown in the control characteristic diagram of FIG. 5, and changing the rating of the air conditioner corresponding to the occupancy rate.

この様に、温、湿度センサ11,16から得られる外気
温、車内気温及び車内湿度と、これらの混合率からまる
最少外気に於ける混合気の絶対湿度や許容絶対湿度範囲
とを、快適範囲を規定づるデータの1つのパラメータと
して、温度・i度の飴や乗車率のシミユレーション値等
をCPU13Eで演算し、これらの値がパターンデータ
化された快適範囲データのどの部位にあるかを判別して
、得られた結宋に最も即した運転パターンを判別生成す
る事により、逐次適正な空気調和装置の運転が可能とな
り、かかる種々のパターンの補正を行うだけで違う種類
の車両への対応も可能となり、柔軟性のあるシステム構
成を実現する事が出来る。
In this way, the absolute humidity of the air-fuel mixture in the minimum outside air and the allowable absolute humidity range are calculated from the outside temperature, inside the car temperature, and inside humidity obtained from the temperature and humidity sensors 11 and 16, and the mixing ratio of these, and the comfortable range. As one parameter of the prescribed data, the CPU 13E calculates the temperature, i degree candy, the occupancy rate simulation value, etc., and determines where these values are in the comfort range data converted into pattern data. Then, by determining and generating the driving pattern that most closely matches the obtained Song Dynasty, it becomes possible to operate the air conditioner in a sequentially appropriate manner, and by simply correcting these various patterns, it is possible to adapt to different types of vehicles. This makes it possible to realize a flexible system configuration.

一方、快適湿度制御も同じ様なパターン化の手法を用い
て逐電追従制御が可能である。その−例として第2図の
温・湿度制御運転パターン図に示す如く、各編・湿r!
i域での温度値や湿度値に対してノーマル運転、セーブ
運転、送風運転、停止等の組み合わせパターンを対応さ
せる事により一般に言われている様な快適湿度範囲内に
車内状態を理想ti制御する事が出来る。
On the other hand, the comfortable humidity control can also be controlled using a similar patterning method. As an example, as shown in the temperature/humidity control operation pattern diagram in Figure 2, each edition/humidity r!
By matching the combination patterns of normal operation, save operation, ventilation operation, stop, etc. to the temperature and humidity values in the i range, the inside condition of the vehicle can be controlled to ideal ti within the generally considered comfortable humidity range. I can do things.

次に、空気調和制御のパターン化の手法を第2図に示し
た温・湿度i制御のパターンを例にとって以下に説明す
る。
Next, a method of patterning air conditioning control will be described below, taking as an example the pattern of temperature/humidity i control shown in FIG.

ここで、制御の基本となるパターンの定義について述べ
る。普通、人間が感する快適な空調は温度と湿度の組み
合わせにより成る範囲をもって決定される。例えば、成
る温度の範囲内では温度により快適感が決定される。こ
のことを第6図の湿り空気線図(t−X線図)を用いて
説明する。ちなみに、第6図中、1pは設定温度、Cは
現在の給気状態点、P maxは室温を設定値とした場
合の快適状態の上限、Plnは室温を設定値とした場合
の快適状態の下限、Pは室温湿設定状態、Rは現在の環
気状態点、[↓まP lllax点の室内状態にする為
の露点の状態点、Z(XX)は快適性を維持するのに必
要な給気湿度範囲、Z(tX)は快適性を維持するのに
必要な給気温度範囲である。
Here, we will discuss the definition of the pattern that is the basis of control. Normally, the comfortable air conditioning felt by humans is determined by a range of combinations of temperature and humidity. For example, within a range of temperatures, comfort is determined by temperature. This will be explained using the psychrometric diagram (t-X diagram) shown in FIG. Incidentally, in Figure 6, 1p is the set temperature, C is the current air supply state point, P max is the upper limit of the comfortable state when the room temperature is the set value, and Pln is the comfortable state when the room temperature is the set value. The lower limit, P is the room temperature and humidity setting state, R is the current ambient air state point, [↓ is the dew point state point to bring the indoor state to the P lllax point, and Z (XX) is the temperature required to maintain comfort. The supply air humidity range, Z(tX), is the supply air temperature range necessary to maintain comfort.

図に於いて、快適範囲fで示される区域であれば快適性
が維持される。例えば、温湿度Pの設定点であれば上限
状態P waxと下限状態P10の範囲内に湿度が納ま
ればよく、この゛範囲から外れたとき初めて湿度制御を
すればよいことになる。ちなみに、湿度の表現には絶対
湿度と相対湿度の2つがあるが、特に相対湿111i(
R1−()と注釈を付けず単に湿度と行った場合には絶
対湿度を表わすものとする。なお、快適範囲の表現例と
しては、例えば相対湿度70〜40%RHとか絶対温度
0.015 (*g/NyDA)以下とか、温度22〜
26℃などがある。
In the figure, comfort is maintained in the area indicated by the comfort range f. For example, if it is a set point for temperature and humidity P, it is sufficient that the humidity falls within the range between the upper limit state P wax and the lower limit state P10, and it is only necessary to perform humidity control when it deviates from this range. By the way, there are two ways to express humidity: absolute humidity and relative humidity, but especially relative humidity 111i (
If R1-() is not annotated and it is simply referred to as humidity, it represents absolute humidity. Examples of expressions of the comfort range include relative humidity 70-40% RH, absolute temperature 0.015 (*g/NyDA) or less, and temperature 22-40% RH.
26℃ etc.

これらの事をもとにして得られる快適範囲fを温・湿度
制御の基本パターンとして持たせると、実uJtllに
於番ブる対応は、第6図の上限状態pHa×と下限状l
Pm1nの快適範囲内に於いて、予め決められている設
定室温tpの値に基いて湿度・温度を快適範囲fの範囲
内に納める様な補正制御を行えばよい。
If we have the comfort range f obtained based on these things as a basic pattern for temperature and humidity control, the corresponding response to the actual uJtll will be the upper limit state pHa × and the lower limit state l in Fig. 6.
Within the comfort range of Pm1n, correction control may be performed to keep the humidity and temperature within the comfort range f based on the predetermined value of the set room temperature tp.

次に、第1図に示す構成に於ける具体的なtil11!
l1例を、第7図の潟・湿度ti111!11フローチ
ャートを用いて説明する。制御がスタートすると、まず
7O−Flで初期設定を行ない、その後にフローF2で
車両内のfA度設定点を検出する。次に、フローF3で
複数個の温度センサ11の全ての検出温度を測定しその
平均値を算出する。次に、フローF4で湿度センサ16
で湿度を測定し、次のフローF5で測定温度が25℃以
上であるかまたは湿度が70%Rl−1以上であるかの
論理和条件を取り、条件が成立した場合、7O−F6で
コンプレッサ10と送風を弱から強に切換える。フロー
F5での判定の結果、条件不成立の場合には、フローF
7のサブルーチン5UBIを実行する。サブルーチン5
UB1にエントリーすると、7O−F8゜F9.Flo
、Fllに於ける温度(TM)と湿1 (1−(UM)
の組み合わせの判定に基いて」ンプレッサ10の強弱を
判断し、次のフo−F12゜Fl3.Fl4.Fl5で
コンプレッサ10の強・弱を設定する。サブルーチン5
UB1から抜は出すと、次にフローF16で設定された
コンプレッサ10の強弱を判断し、強設定なら7O−F
6でコンプレッサ10を強にし、弱設定なら7O−Fl
7でコンプレッサ10を弱に一4゛る。これらの制御は
一定v1間単位毎に行ない、車内i度及び湿度を補正し
てゆく。これらの一連の演nはCPU13Eにて実行し
、0013Gより強・弱指令として制御信号をコンプレ
ッサ10等の被制御機器に送出する。
Next, the specific til11! in the configuration shown in FIG.
An example of l1 will be explained using the lagoon/humidity ti111!11 flowchart in FIG. When the control starts, initial setting is first performed in 7O-Fl, and then the fA degree set point in the vehicle is detected in flow F2. Next, in flow F3, all detected temperatures of the plurality of temperature sensors 11 are measured and the average value thereof is calculated. Next, in flow F4, the humidity sensor 16
In the next flow F5, the humidity is measured, and in the next flow F5, the logical sum condition of whether the measured temperature is 25°C or higher or the humidity is 70% Rl-1 or higher is taken, and if the conditions are met, the compressor is 10 and switch the ventilation from weak to strong. As a result of the judgment in flow F5, if the condition is not satisfied, flow F5 is executed.
7 subroutine 5UBI is executed. Subroutine 5
When entering UB1, 7O-F8°F9. Flo
, temperature (TM) and humidity 1 (1-(UM)
The strength of the compressor 10 is determined based on the determination of the combination of "o-F12°Fl3." Fl4. Set the strength or weakness of the compressor 10 with Fl5. Subroutine 5
When the extractor is removed from UB1, the strength of the compressor 10 set in flow F16 is determined, and if it is set to strong, it is set to 7O-F.
Set compressor 10 to strong with 6, and 7O-Fl if set to weak.
At 7, turn the compressor 10 down to 14 degrees. These controls are performed in units of a certain period v1, and the i degree and humidity inside the vehicle are corrected. A series of these operations is executed by the CPU 13E, and a control signal is sent from 0013G as a strong/weak command to a controlled device such as the compressor 10.

なお、第7図に示した制御フローは制御方式の1例であ
り、温度・湿度の組合わせを更に細かく設定して実施す
る事も可能であり、このようにプるとより精度の高いI
II御を実施づる事が出来る。
Note that the control flow shown in Figure 7 is an example of a control method, and it is also possible to set more detailed combinations of temperature and humidity.
II control can be carried out.

また、コンプレッサ10の出力と送風ファン9や室内フ
ァン8、室外ファン7の強弱111111を組み合わせ
る事により、よりきめ細かなt+1IIllを実施する
事が可能となる。
Further, by combining the output of the compressor 10 with the strength 111111 of the blower fan 9, indoor fan 8, and outdoor fan 7, it becomes possible to perform more detailed t+1IIll.

〔発明の効果) 上記の如く本発明によれば、車両内部の温度や湿度をセ
ンサで検出し、このセンサ出ツノの時間あたりの変化量
や分布移動、分布状況から車両内の空気調和状況を判断
し、特に′fIA度・湿度を予め定めた快適範囲内に常
に入る様に追従制御する事により、一段と快適な空気調
和サービスが可能な空気調和サービスを得る事が出来る
。この様な例えばCPUを用いた数値演算に於【ブるパ
ターン運転を用いると、ユーザー側の希望による細部の
パターン修正が容易な為、より現状に即した設定を行な
う事が可能である。
[Effects of the Invention] As described above, according to the present invention, the temperature and humidity inside the vehicle are detected by a sensor, and the air conditioning condition inside the vehicle can be determined from the amount of change per hour, distribution movement, and distribution condition of the sensor output horn. In particular, by controlling the 'fIA degree and humidity so that they are always within a predetermined comfortable range, it is possible to obtain an air conditioning service that is even more comfortable. For example, when using the blue pattern operation in numerical calculations using a CPU, it is easy to modify the pattern in detail according to the user's wishes, so it is possible to make settings that are more in line with the current situation.

また、従来乗務員が行なっていた空気調和機器の起動・
停止や強弱切換え等の運転能力の切換えも、車内の環境
に応じてリアルタイムに実施される為、より効率的な運
転が可能である。この為、電力面での省力化や乗務員の
扱い操作面での省力化が可能で、より柔軟で適確な東宮
サービスを実現する事が出来る。
In addition, the startup of air conditioning equipment, which was previously done by crew members,
Switching of driving ability, such as stopping and switching strength, is also carried out in real time according to the environment inside the car, allowing for more efficient driving. Therefore, it is possible to save labor in terms of electric power and operation by the crew, and it is possible to realize more flexible and accurate Togu service.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る空気調和111111
装置の概略の構成図、第2図は第1図に示す実施例の作
用を説明する為の温・湿度制御運転パターン図、第3図
は第1図に示す実施例に於ける設定温度パターン図、第
4図は標準乗車時の動作モードを示4制御特性図、第5
図は満車時の動作モードを示すfII11Il特性図、
第6図は湿り空気線図、第7図は第1図に示す実施例の
制御動作の一例を示すフローチャートである。第8図は
従来装置の一例の概略の構成図である。 1・・・冷房ユニット、2・・・室外ユニット、3・・
・室内ユニット、5・・・室外空気熱交換器、6・・・
室内空気熱交換器、7・・・室外ファン、8・・・室内
ファン、9・・・送風ファン、10・・・コンプレッサ
、11・・・温度センサ、12・・・シーズ線ヒータ、
13・・・空調i制御部、13A・・・停電検知器、1
3B・・・ドライバ、13C・・・ディジタル出力イン
ターフ】−イ113D・・・ディジタル入力インターフ
ェイス、13E・・・プOセッ1ノ、13F・・・ラン
ダムアクセスメモリ、13G・・・ウォッチドッグタイ
マ、13 H・・・リードオンメモリ、16・・・湿度
セン1ノ。 出願人代理人 猪 股 清 第1図 第2図 ra 第3図 車外ブエ度 (℃) 第4図
FIG. 1 shows an air conditioner 111111 according to an embodiment of the present invention.
A schematic configuration diagram of the device, FIG. 2 is a temperature/humidity control operation pattern diagram for explaining the operation of the embodiment shown in FIG. 1, and FIG. 3 is a set temperature pattern in the embodiment shown in FIG. 1. Figure 4 shows the operating mode during standard riding. Figure 4 shows the control characteristic diagram, Figure 5
The figure shows the fII11Il characteristic diagram showing the operating mode when the vehicle is full.
FIG. 6 is a psychrometric diagram, and FIG. 7 is a flowchart showing an example of the control operation of the embodiment shown in FIG. FIG. 8 is a schematic configuration diagram of an example of a conventional device. 1... Cooling unit, 2... Outdoor unit, 3...
・Indoor unit, 5...Outdoor air heat exchanger, 6...
Indoor air heat exchanger, 7... Outdoor fan, 8... Indoor fan, 9... Ventilation fan, 10... Compressor, 11... Temperature sensor, 12... Sheathed wire heater,
13... Air conditioning i control unit, 13A... Power outage detector, 1
3B...Driver, 13C...Digital output interface]-113D...Digital input interface, 13E...Process controller, 13F...Random access memory, 13G...Watchdog timer, 13 H...Read-on memory, 16...Humidity sensor 1no. Applicant's representative Kiyoshi Inomata Figure 1 Figure 2 ra Figure 3 Degree of buoyancy outside the vehicle (°C) Figure 4

Claims (1)

【特許請求の範囲】[Claims] 暖房機能及び冷房機能を有する能力可変の空気調和手段
と、空気調和対象室内の各部の温度及び湿度を検出しセ
ンV信号を発するセンサ手段と、所望の空気調和温度を
設定ダる設定手段と、前記センサ手段及び設定手段から
の信号を取り込み、前記センサ信号と前記設定手段の出
力信号の偏差\このセンサ信号の分布、このセンサ信号
と設定手段の出力信号の時間的な偏差に塁いて予め設定
されている制御パターンに対応した制御対象及び制御m
を演算する演算手段と、この演算手段からのt+制御対
象信号及び制御量に基いて前記空気調和手段の機能選択
及び能力切換を行なう制御手段とを備える空気調和制御
装置。
A variable-capacity air conditioning means having a heating function and a cooling function, a sensor means for detecting the temperature and humidity of each part of the room to be air conditioned and emitting a sensor V signal, and a setting means for setting a desired air conditioning temperature; The signals from the sensor means and the setting means are taken in, and presetting is performed based on the deviation between the sensor signal and the output signal of the setting means, the distribution of this sensor signal, and the temporal deviation between this sensor signal and the output signal of the setting means. Control object and control m corresponding to the control pattern
An air conditioning control device comprising: a calculation means for calculating the t+ control target signal and a control amount from the calculation means, and a control means for selecting a function and switching the capacity of the air conditioning means based on the t+ control target signal and the control amount from the calculation means.
JP59117675A 1984-06-08 1984-06-08 Control device for air conditioner Pending JPS60263046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59117675A JPS60263046A (en) 1984-06-08 1984-06-08 Control device for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59117675A JPS60263046A (en) 1984-06-08 1984-06-08 Control device for air conditioner

Publications (1)

Publication Number Publication Date
JPS60263046A true JPS60263046A (en) 1985-12-26

Family

ID=14717502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59117675A Pending JPS60263046A (en) 1984-06-08 1984-06-08 Control device for air conditioner

Country Status (1)

Country Link
JP (1) JPS60263046A (en)

Similar Documents

Publication Publication Date Title
US7757504B2 (en) Air conditioning controller
US5452762A (en) Environmental control system using poled diodes to allow additional controlled devices in existing four wire system
EP0192140B1 (en) Air conditioning method
US4869073A (en) Air conditioner with automatic selection and re-selection function for operating modes
JP2004524495A (en) Wet temperature control priority type temperature and humidity integrated controller
US8805589B2 (en) Air conditioning operating device and air conditioning operating method
JPH09217953A (en) Air conditioning control equipment
JPH0938546A (en) Method and apparatus for controlling air conditioning of coating booth
JPH11101485A (en) Temperature/humidity controller for air conditioner
JPS5946804B2 (en) Vehicle air conditioner control device
JPS60263046A (en) Control device for air conditioner
JP2007139212A (en) Air-conditioning control system
JPS6277212A (en) Air conditioner controller for vehicle
JP3577764B2 (en) Air conditioner
JP3429397B2 (en) Air conditioner
JP2001355900A (en) Air conditioner
JP2971778B2 (en) Dehumidifier regeneration control environment device
AU2018376559B2 (en) Method for conditioning air
JPS60206711A (en) Controlling device for air conditioner for car
JPH09152172A (en) Heating/humidification output conversion type environment testing device
JP3118177B2 (en) Dehumidifier on-off type environmental device
JPH07280324A (en) Temperature/humidity control device
JPH01208634A (en) Air conditioner
JP3954447B2 (en) Temperature / humidity control system and temperature / humidity control method
JPH0428945A (en) Air conditioner